
Citation: Safia, M.; Abbas, R.; Aslani,

M. Classification of Weather

Conditions Based on Supervised

Learning for Swedish Cities.

Atmosphere 2023, 14, 1174. https://

doi.org/10.3390/atmos14071174

Academic Editor: Da-Lin Zhang

Received: 18 June 2023

Revised: 13 July 2023

Accepted: 18 July 2023

Published: 20 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Classification of Weather Conditions Based on Supervised
Learning for Swedish Cities
Mohamad Safia , Rodi Abbas and Mohammad Aslani *

Department of Computer and Geo-Spatial Sciences, University of Gävle, 801 76 Gävle, Sweden;
mohammadsafieh@live.com (M.S.); aram95123@hotmail.com (R.A.)
* Correspondence: mohammad.aslani@hig.se; Tel.: +46-737073770

Abstract: Weather forecasting has always been challenging due to the atmosphere’s complex and
dynamic nature. Weather conditions such as rain, clouds, clear skies, and sunniness are influenced by
several factors, including temperature, pressure, humidity, wind speed, and direction. Physical and
complex models are currently used to determine weather conditions, but they have their limitations,
particularly in terms of computing time. In recent years, supervised machine learning methods have
shown great potential in predicting weather events accurately. These methods use historical weather
data to train a model, which can then be used to predict future weather conditions. This study
enhances weather forecasting by employing four supervised machine learning techniques—artificial
neural networks (ANNs), support vector machines (SVMs), random forest (RF), and k-nearest
neighbors (KNN)—on three distinct datasets obtained from the Weatherstack database. These
datasets, with varying temporal spans and uncertainty levels in their input features, are used to
train and evaluate the methods. The results show that the ANN has superior performance across all
datasets. Furthermore, when compared to Weatherstack’s weather prediction model, all methods
demonstrate significant improvements. Interestingly, our models show variance in performance
across different datasets, particularly those with predicted rather than observed input features,
underscoring the complexities of handling data uncertainty. The study provides valuable insights
into the use of supervised machine learning techniques for weather forecasting and contributes to the
development of more precise prediction models.

Keywords: cross-validation; weather data analysis; model training; model evaluation; support vector
machines; artificial neural networks; k-nearest neighbors; random forest; machine learning; weather
prediction

1. Introduction

Weather forecasting has always been challenging due to the complex and ever-
changing nature of weather conditions. Traditional forecasting methods rely on physical
models that consider various factors, such as temperature, humidity, pressure, wind, and
cloud cover [1]. However, these models have limitations in terms of accuracy and efficiency,
primarily due to the computational complexity involved. Fortunately, the emergence of
machine learning has opened up new opportunities to enhance the weather forecasting
accuracy by automatically analyzing large and intricate datasets [2]. Machine learning
algorithms offer the capability to identify patterns within weather data and learn from
them, enabling accurate predictions without human intervention. Support vector machines
(SVMs), artificial neural networks (ANNs), k-nearest neighbors (KNN), and random forest
(RF) are promising machine learning techniques that can be employed to develop models
for accurate weather prediction. These algorithms can effectively discover hidden patterns
and relationships between inputs and outputs, improving weather forecasts’ accuracy [3].

The accurate prediction of weather conditions has become progressively more complex
due to the persistent fluctuations in the climate across the globe. These ever-changing
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climatic patterns introduce a multitude of variables that complicate the process of classi-
fying weather labels. Consequently, meteorologists and scientists face a formidable task
in adapting forecasting models to effectively incorporate these dynamic and evolving
environmental conditions. The ability to account for these factors is crucial, as they directly
influence the precision and reliability of weather predictions [4]. Traditional forecasting
methods have limitations, and weather conditions’ dynamic nature necessitates the explo-
ration of machine learning techniques such as SVMs, ANNs, KNN, and RF. The problem
lies in developing models capable of predicting weather changes with the highest possible
accuracy, which requires the exploration of supervised learning in SVMs, ANNs, KNN,
and RF.

This study aims to develop models that can accurately forecast weather conditions
using SVMs, ANNs, KNN, and RF. It seeks to provide insights into the potential of machine
learning algorithms for weather forecasting and identify the most suitable techniques
for accurate prediction. The study involves training the models on labeled weather data
and comparing their performance in predicting new weather conditions. By employing
evaluation metrics, such as F1, recall, and precision, it becomes possible to determine
which model is superior in predicting weather conditions. This study contributes to
the advancement of weather forecasting methods and provides insights to improve the
accuracy of weather predictions using machine learning techniques. We assume that
weather patterns generally follow historical trends, but changes due to climate shifts are
taken into account. As for the implementation scenario, the machine learning models are
built with the aim of real-world application in predicting weather conditions. In the future,
these models could potentially be integrated into weather forecasting systems to improve
the prediction accuracy.

The remainder of this paper is organized as follows. Section 2 provides an overview
of previous research into weather prediction using machine learning. Section 3 gives the
background for SVMs, ANNs, KNN, and RF. The employed input data are described in
Section 4. The experimental setup and results are presented and discussed in Section 5.
Finally, Section 6 presents the conclusions and the proposed directions for future work.

2. Related Work

Sheela and Deepa [1] reviewed ANNs for wind speed prediction to identify the
strengths and weaknesses of various ANNs. They concluded that ANNs can improve
the accuracy of weather forecasting and highlighted the importance of appropriate data
pre-processing and model validation techniques. Chattopadhyay and Bandyopadhyay [5]
demonstrated that ANNs provide accurate predictions of ozone concentrations. More
specifically, the potential of ANNs with back-propagation training was explored in pre-
dicting the mean monthly total ozone in Arosa, Switzerland. The performance of ANNs
was also compared with that of other statistical models, and the results showed that ANNs
exhibited better performance as they could capture the nonlinear relationships between the
input variables and the target variable.

Mantri et al. [6] developed a model to predict the temperature and humidity and
classify weather conditions using a dataset comprising observations of Delhi’s weather
between 2011 and 2016. For temperature and humidity predictions, ANNs were used,
which demonstrated substantial efficacy, reflected by coefficient of determination (R²)
values close to one. For the classification of weather conditions, KNN was used, which
showed suitable performance. ANNs were adopted because of their capability to use
numerical and nonlinear data in models with a large number of inputs. A disadvantage of
ANNs is that they are expensive and time-consuming to train.

Abdulraheem et al. [3] evaluated the performance of the KNN algorithm for weather
prediction because of its simplicity and efficiency. The KNN algorithm was used with
different values of k to predict the temperature, relative humidity, and rainfall for three
cities in Nigeria. The performance of KNN was evaluated using various metrics, including
the root mean squared error (RMSE), mean absolute error (MAE), and coefficient of deter-
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mination (R²). The results showed that KNN had satisfactory performance for temperature
prediction in the study areas, but the performance may vary depending on the specific
weather variable being predicted and the dataset being used. KNN can easily adapt to
new instances or classes without the need for retraining of the entire model. This makes it
useful in dynamic or evolving classification problems. On the other hand, KNN is sensitive
to the scales of features. If the features have different scales, this can affect the distance
calculations and potentially lead to biased results.

Hill and Schumacher [7] employed RF, an ensemble learning technique consisting of
multiple decision trees, to attain accurate weather predictions. The RF model’s strengths,
such as its capacity to manage extensive and intricate datasets and its resilience to noise
and missing data, make it particularly suitable to address forecasting challenges involving
nonlinear relationships and variable interactions. The RF model was trained and tested
utilizing a dataset with atmospheric variables, including temperature and humidity. The
performance of RF was benchmarked against that of a deterministic convection-allowing
model—a conventional weather forecasting approach. The study’s findings revealed that
the RF model, with its robustness to noise and missing data, surpassed the deterministic
convection-allowing model in predicting heavy rainfall occurrences. It might be difficult
to comprehend the underlying connections between the input variables and predictions
when using RF models, frequently referred to as black box models. An RF model may
make accurate forecasts, but it may also be difficult to understand, making it challenging to
obtain new knowledge and comprehend the aspects that influence the model’s predictions.
Wang et al. [8] utilized SVMs to predict weather conditions based on a historical dataset
containing various weather variables, including temperature, humidity, wind speed, and
cloud cover. The performance of the SVMs was benchmarked against that of other super-
vised learning algorithms, such as KNN and ANNs. The comparative results revealed that
SVMs had better performance in predicting weather conditions, highlighting their potential
in complex meteorological forecasting scenarios. When used in real-world applications
with constrained computational resources, the models’ poor scalability and efficiency may
present problems.

Medina and Tian [9] focused on improving the accuracy of reference evapotranspira-
tion forecasts based on numerical weather prediction models. Probabilistic post-processing
approaches were developed to address biases and uncertainties in numerical weather
prediction-based forecasts. They compared three widely used techniques: ensemble model
output statistics, Bayesian model averaging, and quantile regression. Ensemble model
output statistics showed superior calibration performance for shorter forecast lead times,
while Bayesian model averaging effectively captured the uncertainty associated with longer
lead times. Quantile regression demonstrated promising results in generating reliable
quantile forecasts. However, the effectiveness of these approaches can vary based on the
region and season. Conducting regional and seasonal assessments is crucial in selecting the
optimal post-processing technique.

Bochenek et al. [10] conducted a comprehensive study on day-ahead wind power
forecasting in Poland using machine learning techniques. Their study aimed to predict
the future energy generation of wind power, considering the inherent variability and non-
dispatchable nature of wind generators. Adopting a holistic approach at the national level,
the study incorporated a numerical weather prediction model and hourly wind power
generation data specific to Poland. Various machine learning methods were employed,
with the extreme gradient boosting (XGB) model demonstrating the best performance for
day-ahead, hourly wind power prediction. Additionally, the ANN model exhibited the
lowest error for daily totals. The findings revealed significant seasonal and daily variations
in prediction errors, with higher errors observed during summer and daytime periods.
Notably, the XGB and RF models outperformed the ANN model in scenarios with high
real energy production. This study provides valuable insights into the challenges and
effectiveness of wind power forecasting, particularly in the context of Poland’s energy
generation landscape.
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The reviewed work underscores the great potential and continued relevance of em-
ploying machine learning techniques such as ANNs, KNN, SVMs, and RF for weather
prediction. Each of these algorithms has demonstrated its unique strengths and advantages
in various studies, highlighting their ability to capture complex nonlinear relationships,
classify data effectively, and achieve high accuracy in prediction tasks. As the field of
weather forecasting continues to evolve and adapt to the challenges presented by climate
change, it is crucial to explore and leverage the capabilities of these diverse machine
learning methods.

3. Materials and Methods
3.1. Supervised Learning

Supervised learning is a method in which a model is trained using a dataset composed
of input features and their corresponding target values or labels. This approach can be
employed for both regression and classification tasks. In regression tasks, the model
predicts continuous variables, while, in classification tasks, it predicts discrete variables.
Within the domain of meteorology and climatology, supervised learning techniques are
instrumental in addressing challenges such as estimating the temperature or precipitation
for specific locations and timeframes, facilitating accurate predictions. However, the choice
of algorithm and model architecture is critical in supervised learning, as it can significantly
affect the accuracy of the predictions [11].

3.2. ANNs

ANNs are computational models inspired by biological neural networks, designed
to recognize patterns and make predictions. An ANN consists of interconnected nodes or
neurons organized into input, hidden, and output layers. The connections between layers
have associated weights that are adjusted during the learning process. Most ANNs have
between zero and three hidden layers, which help to capture complex relationships in the
dataset [11]. In addition, ANNs typically employ activation functions, such as the sigmoid
function, to introduce nonlinearity into the model and enable the learning of complex
patterns. Feedforward ANNs propagate information only in the forward direction, from
input to output layers, without loops.

The learning process in ANNs often involves adjusting the weights of connections
to minimize the differences between predicted outputs and actual target values. Back-
propagation is a widely used supervised learning method that aims to minimize the overall
system error. The algorithm adjusts the weights by calculating the gradients of a cost
function, which quantifies the error between predictions and target values [5]. Gradient
descent is an iterative optimization algorithm commonly employed to minimize the cost
function in ANNs. While the detailed mathematical calculations involved in gradient
descent are beyond the scope of this article, it is crucial to acknowledge its role in refining
the ANN model for improved predictions.

3.3. SVMs

An SVM is a classifier designed to identify the optimal hyperplane that maximizes
the margin between two classes of data points, as illustrated in Figure 1. The margin is
defined as the distance between the hyperplane and the nearest data points from each
class. SVMs try to maximize this margin while minimizing classification errors. SVMs
can be categorized into linear and nonlinear types. Linear SVMs seek a linear hyperplane
to separate classes, whereas nonlinear SVMs address classification problems involving
nonlinear relationships between data points. Nonlinear SVMs employ kernel functions to
transform the original input data into higher-dimensional feature spaces, where a linear
hyperplane can effectively separate the classes. A variety of kernel functions can be utilized
in nonlinear SVMs, such as polynomial kernels, radial basis functions (RBFs), and sigmoid
kernels. Each kernel function has its own set of parameters, which can significantly affect
the performance of the SVM model [12].
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Figure 1. Maximum margin hyperplane.

The RBF kernel is a widely utilized kernel function in SVMs. As a nonlinear function,
the RBF kernel measures the similarity between two data points within a high-dimensional
space. As the distance between the points increases, the kernel value decreases accord-
ingly. The RBF kernel includes a hyperparameter, kernel scale γ, which determines the
kernel’s width and the decision boundary’s smoothness. Lower kernel scale values result
in smoother decision boundaries, while higher kernel scale values yield more complex
decision boundaries that closely fit the data, potentially leading to overfitting. The equation
for the RBF kernel function is defined as follows [13]:

K(x, y) = exp(−γ||x− y||2) (1)

In this equation, γ represents the hyperparameter controlling the width of the kernel,
and ||x− y|| denotes the Euclidean distance between points x and y. The RBF kernel is
highly regarded for its capacity to capture nonlinear relationships within data and its
computational efficiency [14].

SVMs offer several advantages over alternative machine learning algorithms, such
as the efficient handling of high-dimensional data and lower susceptibility to overfitting
compared to decision trees and neural networks. Additionally, SVMs demonstrate robust-
ness to noisy data and outliers. However, SVMs also exhibit certain limitations, including
sensitivity to the choice of kernel function and its parameters and potential computational
expenses for large datasets, especially in the case of nonlinear SVMs. Despite these limi-
tations, SVMs, both linear and nonlinear, remain popular and widely used algorithms in
machine learning due to their robust theoretical foundations and remarkable performance
across a diverse range of applications, as noted by Zhang et al. [15].

3.4. RF

RF is a widely used supervised learning algorithm employed for both classification and
regression problems. It is an ensemble learning method that combines multiple decision
trees to construct a robust and accurate model. A decision tree is a predictive model that
utilizes a tree-like graph to delineate various possible outcomes and the decisions leading
to them (Figure 2). Each internal node represents a decision in this structure, while each
leaf node signifies a predicted outcome [16]. The RF algorithm generates each decision
tree by randomly selecting a subset of features and data points, which mitigates overfitting
and enhances the model’s generalization capabilities. RF models offer several advantages,
including the capacity to handle high-dimensional data, nonlinear relationships, and
missing values. Furthermore, RF models demonstrate robustness to noise and outliers
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present in the data. Additionally, RF models provide a feature importance measure, which
can be employed to identify the most significant predictors for a given outcome [17]. This
valuable information can be used to refine the model, optimize feature selection, and
ultimately improve the overall performance of RF.

Yes No

Yes No Yes No

Figure 2. Example of a decision tree of an RF.

3.5. KNN

KNN is a popular supervised learning algorithm. It operates by finding the k closest
training examples to a given test example and assigning the test example to the most com-
mon class among its k nearest neighbors (Figure 3). KNN is straightforward to implement
and performs well across diverse datasets and applications. However, KNN has some limi-
tations, including sensitivity to outliers and difficulties in handling high-dimensional data.
Nonetheless, various methods can address these challenges, such as employing distance-
weighted KNN or reducing the dimensionality of the data before applying KNN [18]. These
approaches can enhance the performance of KNN, making it more robust and adaptable to
various datasets and problem domains.

5

Figure 3. Example of weather classification using KNN for 3 and 5 nearest neighbors.
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3.6. Evaluation Metrics

The performance of SVMs, ANNs, RF, and KNN can be evaluated using three assess-
ment metrics: precision, recall, and the F1 score. These metrics were used to measure the
predictive performance of the models [19]. Precision, calculated using Equation (2) [20],
serves as a valuable performance metric in evaluating the accuracy of the positive pre-
dictions made by a model. It specifically measures the proportion of correctly identified
positive instances out of all instances that are classified as positive. In this metric, True
Positives represents the count of data points correctly identified as positive by the model,
while False Positives corresponds to the number of instances mistakenly classified as positive
when they are, in fact, negative. Recall evaluates the model’s capability to accurately iden-
tify positive cases, and it is calculated using Equation (3) [20]. It determines the proportion
of true positive instances detected among all the actual positive examples in the dataset.
Recall mainly focuses on the model’s sensitivity to positive examples and its effectiveness
in minimizing false negatives. In Equation (3), False Negatives refers to the number of cases
that are actually positive but are incorrectly classified as negative by the model. The F1
score, calculated using Equation (4) [20], combines recall and precision. An increase in the
F1 score, which ranges from 0 to 1, indicates improved overall performance. It considers
both precision and recall to achieve a balance between the two measures.

Precision =
True Positives

True Positives + False Positives
(2)

Recall =
True Positives

True Positives + False Negatives
(3)

F1 Score = 2× Precision× Recall
Precision + Recall

(4)

4. Weather Data Collection and Preparation

To effectively evaluate the performance of the classifiers in weather prediction, weather
data were collected. For this purpose, the Weatherstack API (https://weatherstack.com,
accessed on 6 February 2023) was used as it readily collects a vast range of weather data
from different areas with high reliability, consistency, and accuracy, ensuring that the
collected datasets are accurate and up-to-date. It is also compatible with Python, the
employed programming language in this study.

Three distinct datasets were collected, each consisting of weather data for four different
cities across Sweden—Gävle, Kiruna, Malmö, and Stockholm. The selection of these cities
aimed to capture a variety of weather conditions, reflective of the geographical disparities
within Sweden. Each of the three collected datasets contains 14 input features (or attributes)
and an output. The output shows the actual weather condition, such as sunny, cloudy,
or clear sky, and the input features show the variables that affect the weather conditions.
The employed input features are time, temperature, pressure, humidity, wind speed, wind
direction, wind degree, perception, visibility, cloud cover, heat index, dewpoint, windchill,
and wind gust—factors that collectively influence the weather conditions. While the first
dataset contains weather data spanning from 2009 to 2022, the latter two contain weather
data for April 2023. An important differentiation to note here is that the input features are
based on recorded observations in the first and second datasets, whereas the third dataset
includes input features forecasted (estimated) by Weatherstack. Table 1 shows the input
features of some entries in the first dataset. Figure 4 displays a histogram representing
the distribution of weather conditions (weather descriptions) in the first dataset, spanning
13 years. The weather conditions serve as the labels used to train the models. From the
figure, which is ordered from the highest to the lowest number of occurrences, it is observed
that partly cloudy weather occurs most frequently, with 35,304 samples, followed closely
by overcast, with 31,331 samples, and clear, with 24,445 samples. On the other hand, fog
occurs the least frequently in the dataset, with only 106 samples.

https://weatherstack.com
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Table 1. Features used as input variables in weather condition prediction. Each row represents a
data point.

Sample No. Time Temperature Pressure Humidity Wind Speed Wind Dir. Wind
Degree

1 0 13 1016 85 19 NNE 28
2 300 11 1017 82 21 NE 40
3 600 12 1017 75 17 NE 38
4 900 13 1017 63 13 ENE 58

Precip. Visibility Cloud Cover Heat Index Dewpoint Windchill Wind Gust

0.0 10 47 13 10 11 28
0.0 10 90 11 9 9 27
0.0 10 89 12 8 11 26
0.0 10 26 13 8 12 21

35304

31331

24445

22275

19386

11281

4680

3784

1533

1413

941

890

724

563

436

356

106

0 5000 10000 15000 20000 25000 30000 35000 40000

Partly cloudy

Overcast

Clear

Sunny

Cloudy

Patchy rain possible

Light freezing rain

Moderate rain at times

Heavy rain at times

Moderate or heavy rain shower

Patchy moderate snow

Heavy snow

Moderate snow

Mist

Freezing fog

Light snow

Fog

Number of data points

W
ea

th
er

 d
e

sc
ri

p
ti

o
n

's
 la

b
e

ls

Figure 4. Histogram of the weather conditions in the dataset from 2009 to 2022.

5. Experimental Setup, Results, and Discussion

In the datasets, some input and output features encompass nominal values that are not
readily usable for the training of models. These categorical data need to be transformed into
numerical representations to facilitate processing. Hence, we applied an encoding strategy
to convert these nominal values into corresponding numerical values. Following the
model’s output generation, decoding was introduced to revert these numerical predictions
to their original nominal forms. Additionally, duplicated entries within the datasets were
identified and eliminated during the data preparation phase to maintain data integrity and
prevent overfitting.

This section presents an assessment and comparison of the performance of ANNs,
KNN, RF, and SVMs in weather forecasting. As demonstrated in Figure 5, our evaluation
process consisted of several steps. Firstly, we partitioned the collected dataset 1, comprising
weather data from 2009 to 2022, into an outer training set and an outer test set. An
outer training set plays a dual role: it assists in fine-tuning the hyperparameters of each
method and is also used to train the models with the optimized hyperparameters. Then, the
performance of the trained models was evaluated using three separate sets of data: the outer
test set, dataset 2, containing observed weather data for April 2023; and dataset 3, containing
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predicted features for April 2023. Evaluating the models using three distinct datasets
enhanced the reliability and accuracy of the results, providing a robust understanding
of each model’s forecasting capabilities. In this study, Weatherstack was used not only
as a source of weather data but also to benchmark the performance of our developed
models. Weatherstack has its own model for the classification of weather conditions. By
benchmarking our models’ predictions against those from Weatherstack, the validity and
effectiveness of our developed models could be assessed in the context of real-world,
industry-standard predictions.

Dataset 1: Weather 
data for 2009–2022 

that contains the 
observed features

Dataset 2: Weather 
data for April 2023 
that contains the 
observed features

Outer test set

Results

Outer training 
set

Hyperparameter tuning for 
ANNs, KNNs, SVMs, and 
RFs using K-fold cross-

validation

Training ANNs, KNNs, 
SVMs, and RFs 

Performance 
evaluation

Trained ANNs, 
KNNs, SVMs, and 

RFs 

Dataset 3: Weather 
data for April 2023 

that contains 
predicted features

Weather 
conditions 

predictions by 
Weatherstack

Figure 5. Workflow for evaluation of the performance of the classifiers.

The hyperparameters were optimized using a k-fold cross-validation scheme inte-
grated with grid search. This process is essential as the performance of learning models
depends significantly on the optimal selection of the hyperparameters. During the k-fold
cross-validation process, the outer training set is partitioned into k exclusive folds. The
model is then trained using k-1 folds, while the remaining folds serve as the validation set
to evaluate the model’s predictive performance. This process is repeated such that each
fold is used exactly once for validation. Subsequently, the hyperparameter values that
yield the highest average classification accuracy across all folds are selected as the optimal
parameters for the learning models [21]. This approach ensured that our models were
trained using robust, scientifically sound practices that enhanced their performance and
predictive accuracy. In this study, the number of folds was set to 5. Regarding the train,
test, and validation split, we used 80% for training, 10% for the test, and 10% for validation.

The experiments were conducted utilizing Python [22], a powerful and versatile
programming language widely adopted in machine learning and data analysis. Various
open-source libraries were also employed to assist in the experimental process: NumPy [23]
and Pandas [24] for data manipulation, Matplotlib [25] and Seaborn [26] for data visualiza-
tion, Scikit-learn [27] for machine learning algorithms, and TensorBoard, TensorFlow [28],
and Keras [29] to create and manage neural networks. Each library provides specialized
functions that facilitate various aspects of data analysis and machine learning model devel-
opment [30]. The accessibility of Google Colab, an online runtime environment for data
analysis, also contributed to the efficient development of the models.
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5.1. ANNs

Feedforward neural networks consist of several layers of neurons, which process the
input data and pass them forward until a prediction is made at the output layer. The
networks have both parameters and hyperparameters that influence their performance.
The parameters in feedforward neural networks are the weights and biases that the model
learns during training to make accurate predictions. Hyperparameters, on the other hand,
are configuration variables set before training, such as the number of hidden layers and
neurons in the network, the learning rate, and the choice of activation and loss functions.
The number of hidden layers and neurons in each layer impacts the model’s complexity
and its ability to learn diverse data patterns. The learning rate controls how rapidly the
model learns. The choice of activation and loss functions influences how the model handles
nonlinearities and measures prediction errors, respectively. All these hyperparameters
collectively shape the model’s learning efficiency and overall performance.

The number of hidden layers and neurons, as the most important hyperparameters
in ANNs, were optimized using 5-fold cross-validation. More specifically, a systematic
search was performed over multiple combinations of hidden layers and neurons, and the
combination delivering the highest average cross-validated accuracy was selected as the
optimal choice. Table 2 shows the cross-validated accuracy of some of the combinations
close to the optimal combination. As demonstrated in the table, the best setup was found
to have 33 neurons in the first hidden layer and 35 neurons in the second hidden layer.
Figure 6 shows the architecture of the implemented ANN.

Table 2. Results of cross-validation to find the best-performing ANN model by tuning the num-
ber of neurons in the first hidden layer and the number of neurons in the second hidden layer
as hyperparameters.

Number of Neurons in the
First Hidden Layer

Number of Neurons in the
Second Hidden Layer Validation Accuracy (%)

33 33 95.37
33 34 95.51
33 35 95.58
33 36 95.37
33 37 95.39

Input layer

Second hidden layer
(35 neurons)First hidden layer

(33 neurons)

Output layer

14 Inputs 17 Outputs

.

.

.

.

.

. .
.
.

.

.

.

Figure 6. Architecture of the ANN.

The SoftMax activation function is used in the output layer as this is a multi-class
classification problem, and it returns the probabilities of each class. The model uses the
rectified linear unit (ReLU) activation function in the hidden layers. The ReLU activation
function is defined as follows [31]:

f (x) = max(0, x) (5)
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where x is the input to the function. The ReLU function sets any negative values in the
input to zero and leaves positive values unchanged. The ReLU function is popular in
neural networks because it is computationally efficient and helps to prevent the vanishing
gradient problem that can occur with other activation functions. The vanishing gradient
problem occurs when the gradient of the loss function with respect to the weights becomes
very small, making it difficult for the network to learn [32]. A batch normalization layer
was also incorporated into the network, serving to normalize the inputs of each layer. It
allows faster learning and higher overall accuracy [33].

To adjust the weights and biases in the network, the Adam optimizer was used [34].
It is a widely employed method that distinguishes itself by dynamically adjusting the
learning rate for different parameters. This ensures that each parameter is updated at a rate
specifically tailored to its behavior, leading to improved convergence and stability during
training. Additionally, it incorporates the concept of momentum by adding a fraction of
the previous update to the current one, hence reducing oscillations and accelerating the
training process. With its ability to automatically adjust the learning rate and speed up
training, Adam is an appealing choice. It not only minimizes the time required for training
but also reduces the need for extensive manual tuning of the hyperparameters.

In training, the loss function was set to categorical cross-entropy, the maximum number
of training epochs was set to 50, the batch size was set to 800, and the initial learning rate
was set to 0.002. Early stopping was also used to prevent the risk of model overfitting
during the training phase [35]. Overfitting refers to a situation whereby a model, due to
its excessive complexity, aligns too closely to the training data, thereby compromising its
ability to perform accurately on new, unseen data. By using early stopping, the training
process is terminated once the model’s accuracy for validation data no longer improves,
ensuring its robustness and generalization capacity [36,37].

Moreover, to monitor the training progress and evaluate the model’s performance
during training, the epoch loss function and epoch accuracy were used. The epoch loss
function measures the difference between the predicted output and the actual output
during one epoch of training, while the epoch accuracy measures the percentage of correctly
classified samples in the training dataset. In Figure 7, the epoch loss and epoch accuracy
are plotted against the number of epochs. The blue line represents the training accuracy
and loss for the model. On the other hand, the red line represents the validation accuracy
and loss for the model. These two metrics are critical in assessing the performance of a
model and determining when to stop the training to avoid overfitting. The performance
of the final trained ANN model was evaluated on the outer test set, yielding remarkable
accuracy of 97.00%.
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Figure 7. Epoch accuracy and loss accuracy on the training set and validation set.

5.2. RF

RF is an ensemble learning method that generates a collection of decision trees for
predictive modeling [17]. Each decision tree is constructed using a random subset of
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the input features and training samples. This randomness contributes to the creation
of an ensemble of diverse decision trees that capture different patterns in the data [38].
The final prediction of the RF model is determined by aggregating the predictions of
the individual trees, typically via majority voting. This ensemble approach significantly
enhances the model’s robustness, reducing overfitting and improving its generalization to
unseen data [39].

In building and optimizing RF models, several key hyperparameters are important,
including the number of trees (estimators), the maximum depth of trees, the maximum
number of features, and the splitting criterion. The number of trees specifies the count of
decision trees in the forest, influencing the robustness and computational demand of the
model. Increasing the number of estimators typically improves the model’s accuracy but
also increases the computational complexity [40]. The maximum depth of trees defines the
longest path from the root to a leaf, thereby controlling model complexity and preventing
overfitting. A deeper tree can better capture complex relationships in the data but is also
more prone to overfitting. The maximum number of features determines the subset of
features considered at each split, offering control over the model’s randomness and bias–
variance balance. Finally, the splitting criterion measures the effectiveness of a split within
a tree, thereby influencing the decision-making mechanism in each tree.

The number of estimators and the maximum depth of trees were fine-tuned using a
grid search approach in combination with 5-fold cross-validation. Using this approach,
different combinations of the number of trees and the maximum depth were tested, and the
configuration that resulted in the best cross-validation performance was selected. Table 3
provides a detailed overview of the cross-validated accuracy for a number of combinations
in close proximity to the optimal one. As the table shows, the optimal number of estimators
and the maximum depth of trees are 195 and 25, respectively.

Table 3. Results of cross-validation to find the best-performing RF model by tuning the number of
estimators and the maximum depth of the tree as hyperparameters.

Number of Estimators Maximum Depth of Trees Validation Accuracy (%)

195 25 95.75
196 25 95.71
197 25 95.73
198 25 95.70
199 25 95.73
200 25 95.70

Moreover, the Gini index was used as the splitting criterion. It measures the probability
of incorrectly classifying a randomly chosen sample from the dataset [41]. The Gini impurity
equation is defined as follows [42]:

Gini = 1−∑
i

pi(1− pi) (6)

where i is the index of each class in the dataset, and pi is the proportion of samples belonging
to class i in the dataset. The Gini index was used due to its computational efficiency and
tendency to favor multi-class splits, making it well suited to our problem. Furthermore, its
calculation does not involve logarithmic functions, enabling faster model training without
compromising the accuracy of the results. The maximum number of features was also set
to 14, the total number of features in the dataset. After selecting the hyperparameters, we
initialized the RF classifier model and trained it using the outer training set. Upon testing
the trained RF model on the outer test set, we attained an accuracy score of 96.69%.

5.3. KNN

KNN is a simple but effective algorithm for classification that works by identifying the
k closest data points to the input and assigning the input to the most common class among
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these k neighbors. The number of neighbors k is the most critical hyperparameter for KNN.
It represents the number of neighbors that the algorithm examines in order to predict. A
small value of k means that noise will have a greater influence on the result, while a large
value makes it computationally expensive. The number of neighbors k was tuned using
a grid search approach in combination with 5-fold cross-validation. Table 4 shows the
cross-validation accuracy for some values of hyperparameter k. The table illustrates that
the optimal value for k appears to be 5, which yields the highest cross-validation accuracy.
Therefore, this value was selected to perform predictions on the test sets. Moreover, the
distance metric was set to Euclidean, and all points in the neighborhood were weighted
equally to predict the output. Given the high dimensionality of our dataset, we employed
an exhaustive search method to ensure that k closest neighbors were accurately identified.
The trained KNN model was tested on the outer test set, and the accuracy was 77.97%.
Firstly, this might be a reflection of the robust nature of our dataset. If our data instances are
well clustered, then a slight variation in the number of neighbors would not significantly
affect the model’s ability to correctly classify instances, as the majority of the neighbors
would still belong to the correct class. Second, it might also suggest that our data have a
lower degree of noise. In noisier datasets, the choice of the number of neighbors can have a
more noticeable impact, as fewer neighbors can lead to overfitting to the noise, while more
neighbors can help to smooth out the noise.

Table 4. Results of cross-validation to find the best-performing KNN model by tuning the number of
neighbors (k).

Number of Neighbors (k) Validation Accuracy (%)

1 76.01
3 76.78
5 77.64
7 76.55
9 76.46

5.4. SVMs

SVMs seek a maximum-margin hyperplane as a decision boundary, aiming for the
most substantial possible separation between different classes. This strategy makes SVMs
reliable and precise in their classification performance. The use of the RBF kernel in SVMs
further contributes to this precision. The RBF kernel allows SVMs to handle complex,
nonlinear, and high-dimensional data, making it a preferred choice over linear kernels in
many cases. It essentially maps the input space into a higher-dimensional feature space,
ensuring that the data are more likely to be linearly separable.

However, the efficient performance of SVMs strongly relies on fine-tuning two pivotal
hyperparameters—the box constraint and the kernel scale. The box constraint balances
the model’s complexity against its capacity to tolerate errors. A higher box constraint
can lead to a precise but potentially overfitted model, whereas a lower value can cause
the model to oversimplify, risking underfitting. The kernel scale adjusts the shape of the
decision boundary. High kernel scale values produce a more rigid boundary, which may
lead to underfitting. Conversely, low kernel scale values allow for more flexible boundaries,
which can capture intricate data patterns but may also risk overfitting. Thus, tuning these
hyperparameters properly is essential to achieve the desired bias–variance trade-off and
optimal model performance.

Similar to the previous methods, the hyperparameters—the box constraint and the
kernel scale—were fine-tuned using a grid search approach in combination with 5-fold cross-
validation. Table 5 shows the cross-validated accuracy for some of the best combinations.
As the table shows, the optimal values for the box constraint and the kernel scale are 10
and 0.1, respectively. After training, the obtained trained SVM model was evaluated on the
outer test set, resulting in remarkable accuracy of 93.00%.
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Table 5. Results of cross-validation to find the best-performing SVM model by tuning the box
constraint and kernel scale (γ).

Box Constraint Kernel Scale (γ) Validation Accuracy (%)

1.00 0.10 93.02
1.00 1.00 87.45
10.00 0.10 95.44
10.00 1.00 88.33

5.5. Comparing the Performance of the Methods

In this section, we compare the performance of the developed models based on SVMs,
ANNs, KNN, and RF and benchmark them against the performance of Weatherstack.
Figures 8–11 show the precision, recall, and F1 scores for the different classes predicted
by the models on dataset 2. The ANN achieved the highest F1 score in the majority of
classes, indicating a good balance between precision and recall. RF had slightly lower F1
scores than the ANN but performed better than KNN and SVM, which had the lowest
F1 scores. Regarding recall, KNN maintained the highest score, while the ANN and RF
showed comparable performance. Moreover, the SVM had the lowest recall score. In terms
of precision, RF achieved the highest score, and the ANN closely followed, with similar
performance. On the other hand, the KNN and SVM had lower precision scores.
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Figure 8. Class scores for precision, recall, and F1 in the ANN model obtained from dataset 2.
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Figure 9. Class scores for precision, recall, and F1 in the RF model obtained from dataset 2.
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Figure 10. Class scores for precision, recall, and F1 in the KNN model obtained from dataset 2.
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Figure 11. Class scores for precision, recall, and F1 in the SVM model obtained from dataset 2.

Figure 12 compares the performance of each developed model on the outer test set,
dataset 2, and dataset 3 in terms of the accuracy score. In this figure, the y-axis represents
the model name, while the x-axis represents the accuracy percentage. For dataset 2, the
ANN has the highest accuracy, with a value of 80.17%. The RF also performs well, with
accuracy of 79.67%. The SVM and KNN have the lowest accuracy rates, with 77.81% and
62.55%, respectively. For dataset 3, the ANN has the highest accuracy, with a value of
60.16%. The SVM also performs well, with accuracy of 59.19%. RF and KNN have the
lowest accuracy rates, with 53.83% and 48.47%. Overall, the results suggest that the ANN
model is the most accurate model in predicting weather conditions in all datasets. The
performance of the developed models was also benchmarked against the performance of
the Weatherstack model. As is evident from the figure, the accuracy of Weatherstack’s
model is 12.43%, highlighting the substantial performance advantage of our developed
models over Weatherstack’s model. ANNs have an inherent capacity for feature learning,
allowing them to construct higher-level features from the raw input data, which likely
contributed to their enhanced performance in our study. SVMs, RF, and KNN rely on
manual feature extraction, which might not always capture the necessary information for
accurate weather forecasting.

It can be observed from the figure that the models demonstrate a lower level of
accuracy on dataset 2 compared to the outer test set. This might be attributed to several
factors, such as temporal differences and distribution shifts. More specifically, the weather
patterns in dataset 2, which corresponds to April 2023, might differ from the patterns in
the original training data that span 2009 to 2022 due to climate change. Additionally, the
statistical properties of the April 2023 data could differ from those of the original dataset,
meaning that the models are less effective at predicting these new patterns.

The figure further shows that the models yield even lower accuracy on dataset 3
in comparison to both the outer test set and dataset 2. This decrease may result from
the nature of the input features within dataset 3. Unlike the previous datasets, dataset 3
consists of predicted rather than observed input features for April 2023. These predicted
features are subject to a level of uncertainty and possible prediction errors that could
have been introduced during their generation by Weatherstack. Furthermore, potential
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mismatches between the predicted and true values, or differences in their respective
statistical distributions, can lead to poorer model performance when applied to such data.
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Figure 12. Comparison of models’ accuracy on the outer test set, dataset 2, and dataset 3, and weather
condition predictions of Weatherstack.

6. Conclusions and Future Work

In this study, we developed and evaluated four models based on ANNs, SVMs, RF, and
KNN for the classification of weather conditions for multiple cities in Sweden. The results
indicated that the trained ANN model had the best performance on all the employed
datasets in comparison to other machine learning models. We also benchmarked our
models with the model of Weatherstack, and the results showed that all four developed
models significantly outperformed the model of Weatherstack, suggesting that machine
learning techniques can be highly effective in classifying weather conditions and that the
choice of model can significantly impact the prediction accuracy. Moreover, our results
illuminated the consequential impact of the model choice on the prediction accuracy and
the vital role of hyperparameter optimization in achieving the best performance.

The study also revealed interesting variations in model performance across different
datasets. The accuracy on the test set, comprising observed data from 2009 to 2022, was
notably higher than on dataset 2 and dataset 3, both representing April 2023. This variance
emphasizes the influence of temporal differences and possible distribution shifts on model
performance. Moreover, the disparity was more pronounced on dataset 3, which contained
predicted rather than observed input features, highlighting the potential complexities
introduced by the inherent uncertainty and possible prediction errors within such data.
These insights provide a foundation for future research and development in enhancing
model adaptability and robustness across varied data scenarios.

In light of the findings of this study, there are several potential avenues to enhance
the accuracy of future research. One suggestion is to augment the existing 14 features of
the input data with the date as an additional attribute. By incorporating the date, it would
be possible to encode temporal patterns and trends, which may improve the predictive
accuracy of the model. Additionally, future work could benefit from adopting instance
selection methods. Such methods aim to filter out noisy data or outliers from the training
dataset, thus refining the classifier’s ability to distinguish between different classes in the
testing dataset. Techniques such as data reduction based on locality-sensitive hashing
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(DRLSH) [43] and border point extraction based on locality-sensitive hashing (BPLSH) [44]
have been demonstrated as effective in this regard. AdaBoost [45] and XGBoost [46] are
interesting models that can be used for comparisons in future work on weather predictions,
as they have demonstrated good performance in categorizing data. XGBoost is particularly
intriguing due to its emphasis on speed and high accuracy, making it suitable for scenarios
where these factors are crucial. On the other hand, AdaBoost is known to work best in
datasets with minimal noise.
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