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Abstract: Water vapor is an important greenhouse gas that affects regional climatic and weather pro-
cesses. Atmospheric water vapor content is highly variable spatially and temporally, and continuous
quantification over a wide area is problematic. However, existing methods for measuring precipitable
water (PW) have advantages and disadvantages in terms of spatiotemporal resolution. This study uses
high temporal resolution numerical prediction data and high spatial resolution elevation to reproduce
PW distributions with high spatiotemporal resolution. This study also focuses on the threshold for
elevation correction, improving temporal resolution, and reproducing PW distributions in near real
time. Results show that using the water vapor content in intervals between the ground surface and
1000-hPa isobaric surface as the threshold value for elevation correction and generating hourly numerical
prediction data using the Akima spline interpolation method enabled the reproduction of hourly PW
distributions for 75% of the global navigation satellite system observation stations in the target region
throughout the year with a root mean square error of 3 mm or less. These results suggest that using
the mean value of monthly correction coefficients for the past years enables the reproduction of PW
distributions in near real time following the acquisition of numerical prediction data.

Keywords: atmospheric water vapor; digital elevation model; spline interpolation

1. Introduction

Precipitable water (PW) is an indicator that indicates fluctuations in the amount of
water vapor in the atmosphere. It is defined as the total amount of water vapor included
in a vertical air column with a unit cross-sectional area extending from the ground to the
upper edge of the atmosphere [1]. Water vapor is one of the most important elements
of the atmosphere. It is also one of the most important greenhouse gases, making up
approximately 60% of all greenhouse gases [2,3], and it is also thought to affect regional
climatic and weather processes. Most water vapor is present in the lower troposphere
and plays a critical role during the precipitation process in the lower atmosphere as well
as water circulation and climatic phenomena. Moreover, changes in the PW amount
are also strongly associated with the global radiation balance, and they may affect the
structure of atmospheric temperature and the characteristics of droughts and rainfall [4].
Furthermore, water vapor in the atmosphere provides the only major positive feedback for
global warming [5–7], and it is predicted, based on both climate models and observations,
that the amount of water vapor may tend to increase in response to the rise in the surface
temperature [7–9]. Accordingly, monitoring fluctuations in water vapor in the atmosphere
is important to determine climate fluctuations and to deepen our understanding of the
feedback provided by water vapor in response to global warming [2].

Currently, methods commonly used to observe PW amounts include radiosonde obser-
vations [10], microwave radiometers [11,12], global navigation satellite system (GNSS) [13–15],
and satellite remote sensing [16–19]. Of these, radiosonde observations are the traditional
observation method [20]. However, in the case of radiosonde observations, there is a distance
of 200–300 km between stations, and observations are performed only two to four times daily;
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thus, PW data obtained through radiosonde observations have a disadvantage in that they
have low spatiotemporal resolutions [1,21]. Moreover, highly reliable microwave radiometers
and terrestrial GNSS, generally used for ground-based observations, have desirable features
such as high accuracy and high temporal resolution. However, the problem with these two
ground-based observation technologies is that the ground stations are few and far between [20].
Furthermore, progress in satellite remote sensing technologies has made it possible to observe
water vapor in the atmosphere on a large scale with high frequency. For example, the data
collected by the MODIS sensors mounted on the Terra and Aqua satellites can provide atmo-
spheric water vapor products with a high spatial resolution [16,19], but the disadvantage is that
the temporal resolution is low. Moreover, PW amounts can be obtained at a temporal resolution
of 1 h from the numerical predictions of global models, but these involve the disadvantage of
having low spatial resolutions and accuracy [22,23].

The amount of water vapor in the atmosphere is affected by production and absorption
sources such as cloud condensation and evaporation, rainfall, and evaporation of soil
moisture, as well as by mixing and transport. Convection processes on various scales
control the vertical transport of water vapor, and water vapor is also transported by large-
scale advection of air masses. The combination of various processes such as these means
that water vapor in the atmosphere has a high degree of variability in both spatial and
temporal terms [24], and these complex temporal and spatial fluctuations make accurate
quantification extremely difficult even today [23]. Moreover, the fundamental process is
still not well understood [25]. Vogelmann et al. [25] demonstrated that, within the scope
of several km and in intervals of 1 h or less, PW amounts possess high variability up to
0.5 mm. However, continuous and wide-spectrum quantification of water vapor remains a
problem [26].

In the past, the authors have investigated methods for reproducing PW distributions
with high spatiotemporal resolutions by converting the spatial resolution of obtainable nu-
merical prediction data with a temporal resolution of 1–3 h to high-resolution values [27,28].
With Japan’s Kanto district as the target scope, the authors used numerical prediction data
for 5-km grid squares provided by the Japan Meteorological Agency and elevation data
with a resolution of 90 m to reproduce the PW distribution with a resolution of 90 m at
3-h intervals. The accuracy when using the PW amounts obtained from GNSS as true
values was a root mean square error (RMSE) of 4.0 mm throughout the year. However,
for elevation correction, necessary to reproduce PW distributions at high resolutions, the
appropriate threshold value for the application range of elevation correction is unclear,
making it necessary to temporarily reproduce the PW amounts for one month to derive the
correction coefficient required for elevation correction, and this presented a problem in that
it was impossible to convert the PW distribution data to high-resolution values immediately
following the acquisition of the numerical prediction data. In addition, as a portion of
the numerical prediction data had a temporal resolution of 3 h, the PW distribution could
only be reproduced at 3-h intervals. Accordingly, to reproduce PW distributions at a high
spatiotemporal resolution (90 m, 1 h), using numerical prediction data with a high temporal
resolution and elevation data with a high spatial resolution, this study examined (1) the
threshold value for the application range of elevation correction, (2) methods for converting
temporal resolutions to high-resolution values, and (3) the possibility of reproducing PW
distributions in near real time.

The abbreviations and explanations used in the article are listed in Table 1.
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Table 1. List of abbreviations used in this article.

Abbreviation Explanation

AMeDAS Automated Meteorological Data Acquisition System

ASTER Advanced Spaceborne Thermal Emission and
Reflection Radiometer

ASTER GDEM ASTER Global Digital Elevation Model
DEM Digital Elevation Model
GNSS Global Navigation Satellite System
GPV Grid Point Value
MSM Meso-Scale Model
PW Precipitable Water
RH Relative Humidity

RISH Research Institute for Sustainable Humanosphere
RMSE Root Mean Square Error

2. Materials and Methods
2.1. Data Used and Target Region

In this study, the reconfigured MSM-GPV datasets, which were derived by reconfig-
uring the grid point value (GPV) data for the mesoscale model (MSM) calculated by the
Japan Meteorological Agency, were used as numerical prediction data. The reconfigured
MSM-GPV datasets comprise archived data reconfigured from the original MSM-GPV
data to enable the Kyoto University Research Institute for Sustainable Humanosphere
(RISH) to express the most likely atmospheric conditions. These archived data comprise
the initial value data obtained by the objective analysis and the predicted data using the
forward initial value [29]. The spatial resolution of the reconfigured MSM-GPV data is
5 km at the ground level and 10 km for each barometric surface, and the corresponding
temporal resolutions were 1 and 3 h, respectively (Table 2). The MSM-GPV datasets from
2014 through 2022 were downloaded from RISH for use in this study [29].

Table 2. Description of MSM-GPV data.

Variable Level Spatial
Resolution (km)

Temporal
Resolution (h)

Air temperature (K) Surface 5 1
Relative humidity (%) Surface 5 1
Surface pressure (hPa) Surface 5 1

Sea-level pressure (hPa) Surface 5 1
Air temperature (K) 16 pressure levels 1 10 3

Relative humidity (%) 12 pressure levels 2 10 3
1 16 pressure levels: 1000, 975, 950, 925, 900, 850, 800, 700, 600, 500, 400, 300, 250, 200, 150, and 100 hPa.
2 12 pressure levels: 1000, 975, 950, 925, 900, 850, 800, 700, 600, 500, 400, and 300 hPa.

As digital elevation model (DEM) data, the Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) data were
used. These data were generated using stereo pair images photographed by ASTER sensors
mounted on the Terra satellite [30]. The spatial resolution of the ASTER GDEM data was
approximately 30 m (1 arc-second). In this study, however, data resampled to a spatial
resolution of 90 m were used. Figure 1 depicts the target scope for the study and placement
of 98 GNSS observation stations. The base map in Figure 1 shows the ASTER GDEM
elevation data converted to a spatial resolution of 90 m.
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Figure 1. Locations of the target region, along with GNSS observation stations. The base map shows 
the elevation, which was mapped using ASTER GDEM data. The red dots indicate the locations of 
the GNSS observation stations. 
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tion values of the Japan Meteorological Agency’s Automated Meteorological Data Acqui-
sition System (AMeDAS) [35] were used to calculate the hourly GNSS-PW amounts in the 
study. 

2.2. Method Used to Reproduce Pecipitable Water Distributions from MSM-GPV and DEM 
Data  

The integrated water vapor amount (𝐼𝑊𝑉) can be calculated from radiosonde data 
using Equation (1) [36]. 𝐼𝑊𝑉 ൌ ଵ ൣ𝑞ଵ,ሺ𝑃 − 𝑃ଵሻ  𝑞ଵ,ଶሺ𝑃ଵ − 𝑃ଶሻ  ⋯ ൧, (1)

where 𝑞,  denotes the mean value (kg/kg) for specific humidity between the barometric 
surface 𝑃(hPa) and 𝑃(hPa), and 𝑔 represents the standard acceleration of free fall. 

Accordingly, the PW distribution with a resolution of 5 km can be calculated with 
the MSM-GPV data using Equation (2): 

Figure 1. Locations of the target region, along with GNSS observation stations. The base map shows
the elevation, which was mapped using ASTER GDEM data. The red dots indicate the locations of
the GNSS observation stations.

PW amounts estimated from GNSS data were used to verify the accuracy of PW
distributions reproduced using MSM-GPV and ASTER GDEM data. The PW amounts
at GNSS observation stations can be estimated from the atmospheric delay of the GNSS
signal between the satellite and the ground receiver, as long as the temperature and air
pressure at the GNSS observation station are known [31]. The PW amounts estimated from
the atmospheric delay of the GNSS signal are referred to as GNSS-PW amounts in this
study. Following previous studies [32,33], the GNSS atmospheric delay data at 1-h intervals
provided by the Geospatial Information Authority of Japan [34] and the hourly temperature
and air pressure values at each GNSS observation station interpolated from the observation
values of the Japan Meteorological Agency’s Automated Meteorological Data Acquisition
System (AMeDAS) [35] were used to calculate the hourly GNSS-PW amounts in the study.

2.2. Method Used to Reproduce Pecipitable Water Distributions from MSM-GPV and DEM Data

The integrated water vapor amount (IWV) can be calculated from radiosonde data
using Equation (1) [36].

IWV =
100

g
[qL1,L0(PL0 − PL1) + qL1,L2(PL1 − PL2) + · · ·], (1)

where qLi,Lj denotes the mean value (kg/kg) for specific humidity between the barometric
surface PLi(hPa) and PLj(hPa), and g represents the standard acceleration of free fall.

Accordingly, the PW distribution with a resolution of 5 km can be calculated with the
MSM-GPV data using Equation (2):

IWV300 = 100
g [qS,1000(Ps − P1000) + q1000,975(P1000 − P975) + · · ·+ q400,300(P400 − P300)]

= WS,1000 + W1000,975 + · · ·+ W400,300,
(2)
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where IWV300 denotes the cumulative amount of water vapor from the ground surface
to the 300-hPa barometric surface level (mm), PS denotes the surface pressure (hPa), qS
denotes the specific humidity at the surface pressure (kg/kg), and WL1,L2 denotes the
amount of water vapor between the barometric surface PL1 and the barometric surface PL2
(mm). In this study, IWV300 was used as the amount of PW.

Next, the specific humidity (kg/kg) at the barometric surface Pn (qn) can be calculated
using Equation (3) [36].

qn =
0.622

(Pn/ePn)− 0.378
, (3)

where ePn denotes water vapor pressure (hPa) at the barometric surface Pn.
Moreover, the water vapor pressure (hPa) at the barometric surface Pn (ePn ) can be

calculated using Equation (4) [36].

ePn =

(
RHPn

100

)
× ePn ,sat, (4)

where RHPn denotes relative humidity (%) at the barometric surface Pn, and ePn ,sat denotes
saturation water vapor pressure (hPa) at the barometric surface Pn.

Furthermore, the saturation water vapor pressure (hPa) at the barometric surface Pn
(ePn ,sat) can be calculated using Equation (5) [36].

ePn ,sat = 6.1078 × 10
7.5TPn

TPn+237.3 , (5)

where TPn denotes the temperature (°C) at the barometric surface Pn.
As the MSM-GPV barometric surface data include prediction values for relative hu-

midity and temperature at 12 barometric surfaces between 1000 and 300 hPa, Equations
(2)–(5) can be used to calculate the integrated water vapor amount from the ground surface
up to the 300-hPa barometric surface level. Moreover, in reproducing PW distributions
using the MSM-GPV data and the ASTER GDEM elevation data, PW distributions with a
spatial resolution of 90 m can be reproduced by considering the differences in elevation
within the 5-km grid squares of the MSM-GPV data using the ASTER GDEM data with a
spatial resolution of 90 m (Figure 2). Here the focus is only on the individual grid squares
Gmn in the MSM-GPV data and the individual pixels Dij in the ASTER data corresponding
to the interior of Gmn. The PW amount at Dij (PWDij ) can be calculated from the specific
humidity qDij and ground air pressure PDij at Dij, which can be estimated using both
MSM-GPV and ASTER GDEM data.

Assuming that air is an ideal gas and the temperature lapse rate is 6.5 K/km, the
elevation H Gmn of each MSM-GPV data grid square Gmn can be calculated using the
relational expression shown in Equation (6) [37].

HGmn =
TGmn + 273.15

0.0065

{(
PSL,Gmn

PGmn

) 1
5.257

− 1

}
, (6)

where TGmn denotes the surface temperature (°C), PGmn denotes the surface pressure (hPa),
and PSL,Gmn denotes the mean sea-level barometric pressure of Gmn (hPa).

Next, if the elevation at each DEM pixel Dij is hDij (m), the surface pressure at Dij
(PDij ) can be expressed using TGmn , PSL,Gmn , and hDij as follows [37]:

PDij = PSL,Gmn ×
(

1 −
0.0065hDij

TSL,Gmn + 273.15

)5.257

, (7)

where TSL,Gmn denotes the mean sea-level barometric pressure (°C).
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The value for TSL,Gmn can be derived from Equation (8) as follows:

TSL,Gmn = TGmn + 0.0065HGmn . (8)
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In addition, the specific humidity at Dij (qDij ) can be calculated using Equation (9) as
follows [38]:

qDij =
0.622(

PDij /eDij

)
− 0.378

. (9)

From Equations (4) and (5), the saturation water vapor pressure at Dij (eDij ) can be
calculated using Equation (10) as follows:

eDij =

(
RHDij

100

)
× 6.1094 × exp

{
17.625TDij /

(
243.04 + TDij

)}
, (10)

where TDij denotes the temperature (°C) at each DEM pixel Dij.
The value for TDij can be determined using Equation (11):

TDij = TSL,Gmn − 0.0065hDij . (11)

Finally, if PDij > 1000 hPa, it can be surmised that RHDij = RHGmn , and qDij can be
estimated using Equations (8)–(12).

If PDij > 1000 hPa, the PW amount at Dij (PWDij ) can be estimated using Equation (12).

PWDij =
100

g

[
qDij ,1000

(
PDij − P1000

)
+ q1000,975(P1000 − P975) + · · ·+ q400,300(P400 − P300)

]
. (12)
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If PDij ≤ 1000 hPa, qDij can be presumed to be equivalent to the specific humidity
qGmn of Gmn at the barometric surface Pn that is closest to Dij (in other words, the specific
humidity value calculated from the temperature and relative humidity at the barometric
surface Pn in the MSM-GPV data). As a result, if PDij ≤ 1000 hPa, PWDij can be estimated
using Equation (13).

PWDij =
100

g

[
qDij ,1

(
PDij − PL1

)
+ qL1,L2(PL1 − PL2) + · · ·+ q400,300(P400 − P300)

]
,(

P400 < PL2 < PL1 < PDij ≤ 1000
) (13)

where PL1 denotes the barometric surface closest to PDij in the MSM-GPV data, and PL2
denotes the barometric surface closest to PL1 in the MSM-GPV data.

In this study, the PWDij value calculated using Equation (12) or (13) is referred to as
the MSM-PW.

The amount of water vapor in the atmosphere decreases as the elevation increases [39,40].
Accordingly, if there is a significant discrepancy between the elevation data used for MSM-
GPV data calculations and the elevation of the GNSS observation stations, this may result
in significant bias [41]. Therefore, to increase the accuracy of PW amounts reproduced from
the MSM-GPV data and DEM, the bias caused by the elevation differential must be removed
through elevation correction.

Based on previous research, elevation correction has been formalized as shown be-
low [28]:

PWECm ,Dij = PWDij −
(

am × hDij + bm

)
, (14)

where PWECm ,Dij denotes the PW amount at Dij after elevation correction, PWDij denotes
the PW amount at Dij before elevation correction, and am and bm denote monthly elevation
correction coefficients.

In this method, the elevation correction coefficients am and bm are presumed to be
constant throughout the month. The elevation correction coefficients are used to calculate
the MSM-PW at 3-h intervals for each month using Equations (12) and (13). The monthly
mean values for the difference (bias) between the MSM-PW and GNSS-PW amount at pixels
that include GNSS observation stations are calculated. Subsequently, the linear regression
expression for the monthly mean value for the bias at each GNSS observation station and
the elevation of each GNSS observation station is determined, and the inclination and
intercept are expressed as am and bm, respectively.

The PW amounts reproduced through elevation correction using this procedure will
be referred to as MSM high-resolution PW amounts.

2.3. Study of Methods for Improving Elevation Correction

In previous research [27], Equation (14) was used to perform an elevation correction
for all pixels within the target scope. For some GNSS observation stations in low-elevation
regions, however, the RMSE between the GNSS-PW amounts and the MSM high-resolution
PW amounts for pixels that included GNSS observation stations became worse after ele-
vation correction. Moreover, at low-elevation GNSS observation stations, the bias of the
GNSS-PW and MSM-PW amounts for pixels that included GNSS observation stations did
not fit the regression line of the monthly mean difference between the MSM-PW and GNSS-
PW amounts at each GNSS observation station and elevation at each GNSS observation
station very well. In other words, in high-elevation regions, it was possible to improve the
accuracy of reproduced values for PW amount through elevation correction; however, in
low-elevation regions, the reproduction accuracy of the PW amount was adversely affected
by overcorrection [27]. Accordingly, by conducting elevation correction only for regions,
where the elevation exceeds 200 m, it was possible to prevent the RMSE of low-elevation re-
gions from being adversely affected by overcorrection during elevation correction, whereas,
in high-elevation regions, it was possible to improve the reproduction accuracy of the
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PW amount [28]. However, the elevation value that should be used as the standard for
conducting elevation correction (200 m in previous studies) could not be determined.

In this study, the fact that the bias of GNSS-PW amounts corresponding to the MSM-
PW amounts for pixels that include GNSS observation stations increased at higher eleva-
tions was thought to be because of the significant impact of the presumption when the PW
amount was calculated using Equation (12). In high-elevation regions, PDij ≤ 1000 hPa,
and when the PW amount is calculated using Equation (12), the specific humidity qDij at
each ASTER GDEM pixel Dij “is assumed equal to the specific humidity value calculated
from the temperature and relative humidity at the barometric surface Pn in the MSM-GPV
data that is closest to Dij”. In other words, as in this case, differences in elevation within
the 5-km grid squares of the MSM-GPV data are not considered, and this is thought to
be a factor that affects reproduction accuracy in high-elevation regions. Accordingly, in
this study, based on Figure 2 and Equation (2), it is thought that in many cases WS,1000 = 0
when PDij ≤ 1000 hPa, a study was conducted to determine whether WS,1000 is equal to or
not equal to zero as the threshold value for performing elevation correction.

2.4. Study of Methods for Converting Temporal Resolutions to High-Resolution Values

As the temporal resolution of MSM-GPV data for each barometric surface is 3 h,
with the method described in Section 2.1, MSM high-resolution PW amounts can only be
reproduced at 3-h intervals. Accordingly, to convert the temporal resolution of MSM high-
resolution PW amounts to high-resolution values, the MSM-GPV data for each barometric
surface at 3-h intervals should be interpolated to data at 1-h intervals.

Many studies are currently underway to find methods for filling in the regular time
gaps in meteorological data [42–44]. “Regular gaps” refer to the 2-h-long gaps in 3-h
data [42]. Previous studies have attempted to use linear interpolation, Lagrange interpo-
lation, spline interpolation, and so on as methods to fill in these time gaps. The results
vary depending on the study in terms of the methods that show a high degree of accuracy;
however, in many cases, spline interpolation has exhibited more accurate results than
linear or Lagrange interpolation [42,43]. Anjomshoaa and Salmanzadeh reviewed previous
studies and concluded that linear interpolation and cubic spline interpolation are the most
commonly used methods for interpolating meteorological data, and in many cases, they
are the most accurate [42]. Moreover, Liu et al. demonstrated that, although the ideal
interpolation method differs depending on the season and the meteorological elements,
cubic spline interpolation and the Akima spline interpolation method are highly accurate
in most cases [44].

Cubic spline interpolation focuses on the monotonicity and unevenness of each in-
terval function and divides the interpolation interval into multiple partial segments for
interpolation. This results in the best approximation and ideal convergence, producing a
smooth interpolation curve and providing good interpolation results for meteorological
data [44]. The Akima spline interpolation method approximates each partial segment using
a cubic polynomial function. Only a portion of the adjacent data is used, the continuity of
the first derivation is ensured, and the smoothness, shape retention, and robustness of the
interpolation curve are better than those of cubic spline interpolation [44].

Accordingly, in this study, the cubic spline interpolation method and the Akima spline
interpolation method were used to construct barometric surface data at 1-h intervals from
the MSM-GPV data for each barometric surface at 3-h intervals, and these data were used
to calculate MSM high-resolution PW amounts. The method with the best reproduction
accuracy would be ultimately used subsequently.

2.5. Reproducibility in Near Real Time

With the method described in Section 2.2, the monthly elevation correction coefficients
are obtained after the MSM-PW amounts at 3-h intervals are calculated using the monthly
MSM-GPV data. As a result, with existing methods, it was difficult to reproduce the PW
distribution in near real time after MSM-GPV data at 3-h intervals had been obtained. In
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this study, we calculated the elevation correction coefficients for each month using existing
methods and reproduced the MSM high-resolution PW from 2019 to 2022. Subsequently,
the monthly mean value for the RMSE between the MSM high-resolution PW and GNSS-
PW amounts at each GNSS observation station is calculated for each year. The results are
compared with the results of the reproduction of MSM high-resolution PW from 2019 to
2022 using the averages of the monthly correction coefficients from 2014 to 2018. If the
difference between the monthly average of RMSE using the elevation correction coefficients
for each period and the monthly average of the elevation correction coefficients from 2014 to
2018 is small, it is thought that using the mean value for the monthly correction coefficient
for the past several years enables the PW distribution to be reproduced in near real time
after the acquisition of numerical prediction data.

3. Results and Discussion
3.1. Study of Methods for Improving Elevation Correction

First, MSM-GPV and ASTER GDEM data were used to calculate MSM-PW amounts
with a spatial resolution of 90 m. Figure 3 depicts the relationship between the monthly
mean value for the bias between the MSM-PW and GNSS-PW amount at each GNSS
observation station in 2014 prior to elevation correction and the elevation at each GNSS
observation station. Figure 4 depicts the relationship between the monthly mean RMSE for
the MSM-PW and GNSS-PW amounts at each GNSS observation station in 2014 and the el-
evation at each GNSS observation station. In this study, the bias and RMSE were calculated
using the GNSS-PW amount treated as the true value. As shown in Figures 3 and 4, the
monthly mean values for bias and RMSE at each GNSS observation station are greater for
GNSS observation stations at higher elevations. This suggests that the difference between
MSM-PW and GNSS-PW amounts prior to elevation correction is highly dependent on
elevation. This trend was the same from 2015 to 2022.

Moreover, in Figures 3 and 4, the point configuration differs depending on whether the
value for WS,1000 is equal to zero. Figures 3 and 4 show that, for GNSS observation stations
where WS,1000 is equal to 0, the difference between MSM-PW and GNSS-PW amounts is
strongly dependent on elevation, whereas, for GNSS observation stations where WS,1000 is
not equal to 0, the difference between MSM-PW and GNSS-PW amounts is not dependent
on elevation. This suggests that regardless of whether WS,1000 is equal to or not equal to 0,
it can be used as the standard for performing elevation correction.

Next, the MSM-PW at 3-h intervals was calculated for each month using Equations (12)
and (13), and at GNSS observation stations where WS,1000 is equal to 0, the monthly mean
bias with the GNSS-PW amount was calculated. Subsequently, a linear regression expres-
sion (Figure 3) was determined for the monthly mean bias of the GNSS observation stations
where WS,1000 is equal to zero and the elevation at each GNSS observation station, and the
inclination and intercept were expressed as monthly elevation correction coefficients am
and bm, respectively (Table 3). All am elevation correction coefficients were statistically sig-
nificant with a significance level of 5%. Moreover, Table 4 shows the adjusted coefficient of
determination for the linear regression expression for the monthly mean bias of each GNSS
observation station from 2014 to 2022 and the elevation of each GNSS observation station.
Although the target regions for analysis differed, the value of the adjusted coefficient of
determination for the regression expression increased compared with elevation correction
with a 200-m elevation as the threshold, and the fit of the regression expression in this
study was improved [28]. When elevation correction was performed using an elevation of
200 m as the threshold, the coefficient of determination decreased to 0.5 or lower in winter
when the PW amount was low. However, when elevation correction was performed using
WS,1000 as the threshold, the coefficient of determination did not decrease even in winter
and was constant throughout the year at 0.8 or higher.
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Figure 3. Relationship between monthly mean difference (bias) between MSM-PW and GNSS-PW
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to or not equal to zero. The straight line indicates the linear regression expression for the monthly
mean bias of the GNSS observation stations, where the value of Ws,1000 is equal to 0, and the elevation
of each GNSS observation station.
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Figure 4. Relationship between monthly mean RMSE for MSM-PW and GNSS-PW amounts at each GNSS
observation station in 2014 prior to elevation correction and elevation at each GNSS observation station.

Elevation correction was performed for GNSS observation stations where the value
for WS,1000 was zero with Equation (14) using the monthly elevation correction coefficients
am and bm shown in Table 3. Figure 5 shows the relationship between elevation and
the monthly difference (bias) of the MSM-PW and GNSS-PW amounts at each GNSS
observation station in 2014. Figure 3 shows that even in the target region of this study, it
is possible to visually determine that when the elevation of the GPS observation point is
greater than 200 m, the bias value also increases, so it is possible to set the elevation-based
threshold value at 200 m in May to October 2014. On the other hand, Figure 3 shows that
the value of bias appears to be almost constant until the elevation of the GPS observation
point is approximately 400 m, so it is appropriate to set the threshold based on elevation
at 400 m in January to April and December 2014. Thus, it can be seen that determining
the threshold based on elevation is difficult and can be arbitrary. This study used whether
WS,1000 is equal to or not equal to zero as the threshold value for performing elevation
correction. Figure 5 shows that the elevation dependence of bias between MSM-PW and
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GNSS-PW amounts with respect to the monthly mean absolute value almost completely
disappeared, even for GNSS observation stations where the value of WS,1000 became zero
because of elevation correction. This trend was the same from 2015 to 2022. This shows that
the water vapor amount WS,1000 included between the ground and the 1000-hPa isobaric
surface can be used in place of elevation as a threshold value for the appropriate application
range for elevation correction.

Table 3. Monthly elevation correction coefficient am (mm/m) and bm (mm) from 2014 to 2022. The
elevation correction coefficient am and bm indicate the slope and intercept of the regression expression
for the monthly bias at each GNSS observation station and the elevation of the GNSS observation
station, respectively. All values for elevation correction coefficient am are statistically significant with
a significance level of 5%.

Month Coefficient 2014 2015 2016 2017 2018 2019 2020 2021 2022

January am 3.92 × 10−3 4.26 × 10−3 4.57 × 10−3 4.12 × 10−3 4.11 × 10−3 4.16 × 10−3 5.06 × 10−3 4.04 × 10−3 3.14 × 10−3

bm −1.22 −1.23 −1.76 −1.39 −1.64 −1.73 −1.84 −1.15 −0.62

February am 4.15 × 10−3 4.26 × 10−3 4.37 × 10−3 4.19 × 10−3 3.53 × 10−3 4.79 × 10−3 4.53 × 10−3 4.24 × 10−3 3.17 × 10−3

bm −0.97 −1.05 −1.57 −1.20 −1.45 −1.65 −1.67 −1.14 −0.54

March
am 5.10 × 10−3 5.32 × 10−3 5.22 × 10−3 4.41 × 10−3 5.27 × 10−3 5.03 × 10−3 5.02 × 10−3 5.70 × 10−3 5.08 × 10−3

bm −0.82 −1.63 −1.37 −1.17 −1.52 −1.23 −1.23 −0.99 −0.65

April am 5.90 × 10−3 7.69 × 10−3 7.11 × 10−3 6.84 × 10−3 6.63 × 10−3 6.30 × 10−3 4.92 × 10−3 6.06 × 10−3 6.81 × 10−3

bm −1.04 −1.98 −1.44 −1.39 −1.15 −0.91 −0.41 −1.02 −1.31

May am 7.20 × 10−3 8.17 × 10−3 8.62 × 10−3 8.14 × 10−3 8.13 × 10−3 7.08 × 10−3 8.60 × 10−3 8.72 × 10−3 7.48 × 10−3

bm −0.98 −1.79 −1.42 −1.58 −0.63 −0.91 −0.43 −0.90 −0.48

June am 1.08 × 10−2 1.07 × 10−2 1.12 × 10−2 9.84 × 10−3 1.06 × 10−2 1.04 × 10−2 1.04 × 10−2 1.04 × 10−2 1.04 × 10−2

bm −0.69 −1.51 −0.94 −1.20 −0.62 0.06 0.97 0.00 0.77

July am 1.26 × 10−2 1.30 × 10−2 1.34 × 10−2 1.36 × 10−2 1.33 × 10−2 1.22 × 10−2 1.28 × 10−2 1.25 × 10−2 1.27 × 10−2

bm −0.62 −1.59 −1.37 −1.01 0.02 0.26 −0.13 0.42 1.20

August am 1.33 × 10−2 1.32 × 10−2 1.21 × 10−2 1.30 × 10−2 1.22 × 10−2 1.24 × 10−2 1.32 × 10−2 1.28 × 10−2 1.32 × 10−2

bm −1.07 −1.75 0.14 −0.19 0.12 0.50 0.06 0.75 0.96

September am 1.05 × 10−2 1.13 × 10−2 1.29 × 10−2 1.09 × 10−2 1.20 × 10−2 1.29 × 10−2 1.14 × 10−2 1.20 × 10−2 1.20 × 10−2

bm −1.51 −2.13 −1.45 −1.57 −1.14 −0.58 −0.11 −0.42 −0.04

October
am 8.96 × 10−3 7.50 × 10−3 1.01 × 10−2 1.01 × 10−2 8.57 × 10−3 9.89 × 10−3 8.52 × 10−3 8.80 × 10−3 8.47 × 10−3

bm −1.59 −2.16 −2.45 −2.78 −1.55 −1.31 −1.49 −1.04 −1.23

November
am 6.97 × 10−3 8.56 × 10−3 7.14 × 10−3 6.40 × 10−3 6.41 × 10−3 6.74 × 10−3 6.94 × 10−3 6.16 × 10−3 6.85 × 10−3

bm −1.87 −2.54 −1.99 −2.18 −2.16 −2.35 −1.97 −0.99 −1.04

December
am 4.35 × 10−3 5.74 × 10−3 5.40 × 10−3 4.03 × 10−3 5.48 × 10−3 5.31 × 10−3 4.52 × 10−3 4.41 × 10−3 4.03 × 10−3

bm −1.32 −1.94 −1.85 −1.65 −2.01 −1.88 −1.37 −0.87 −0.95

Table 4. Adjusted coefficient of determination for regression expression for monthly bias at each
GNSS observation station from 2014 to 2022 and elevation of GNSS observation station.

Month 2014 2015 2016 2017 2018 2019 2020 2021 2022

January 0.86 0.87 0.89 0.88 0.86 0.90 0.91 0.92 0.83
February 0.87 0.88 0.92 0.91 0.86 0.92 0.91 0.92 0.80

March 0.91 0.89 0.92 0.87 0.89 0.93 0.81 0.93 0.87
April 0.89 0.92 0.89 0.90 0.89 0.89 0.93 0.96 0.90
May 0.91 0.89 0.90 0.88 0.91 0.88 0.95 0.93 0.85
June 0.92 0.90 0.91 0.88 0.89 0.90 0.93 0.91 0.92
July 0.92 0.94 0.90 0.88 0.91 0.88 0.95 0.93 0.89

August 0.93 0.92 0.87 0.88 0.87 0.88 0.94 0.94 0.92
September 0.91 0.91 0.92 0.90 0.92 0.91 0.94 0.94 0.92
October 0.90 0.9 0.90 0.93 0.92 0.92 0.94 0.95 0.92

November 0.91 0.92 0.92 0.90 0.90 0.90 0.93 0.96 0.90
December 0.90 0.90 0.88 0.87 0.94 0.88 0.92 0.93 0.87
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3.2. Study of Methods Converting Temporal Resolution Values to High Resolutions

To convert the temporal resolutions of MSM high-resolution PW amounts to high-
resolution values, the cubic spline interpolation method and the Akima spline interpolation
method were used to construct barometric surface data at 1-h intervals from the MSM-GPV
data for each barometric surface at 3-h intervals. Subsequently, the barometric surface data
at 1-h intervals were used to reproduce individual MSM high-resolution PW distributions,
and the GNSS-PW amounts were used to assess the reproduction accuracy (Figure 6).
Figure 6 depicts the RMSE for the MSM high-resolution PW amount at 3-h intervals (mid-
night, 3 a.m., 6 a.m., 9 a.m., noon, 3 p.m., 6 p.m., and 9 p.m.) at each GNSS observation
station, and the RMSE for the MSM high-resolution PW amount at 1-h intervals (1 a.m.,
2 a.m., 4 a.m., 5 a.m., 7 a.m., 8 a.m., 10 a.m., 11 a.m., 1 p.m., 2 p.m., 4 p.m., 5 p.m., 7 p.m.,
8 p.m., 10 p.m., and 11 p.m.), estimated using the barometric surface data and ground
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surface data created using the two spline interpolation methods. With regard to the accu-
racy of the MSM high-resolution PW amount at 3-h intervals reproduced using the ground
surface data and barometric surface data at 3-h intervals from the MSM-GPV data, the
RMSE 75 percentile values reveal that the RMSE is approximately 2.5 mm or less. Fur-
thermore, even for stations with the worst reproduction accuracy (RMSE is 2.5 mm or less
for 75% of all GNSS observation stations in the Shikoku region), the RMSE was 3.8 mm.
In contrast, with the MSM high-resolution PW amount at 1-h intervals reproduced using
the MSM-GPV ground surface data at 1-h intervals and the barometric surface data at 1-h
intervals created using the two spline interpolation methods with MSM-GPV barometric
surface data at 3-h intervals, the RMSE 75 percentile values were approximately 2.3 mm
or less, suggesting that for 75% of all GNSS observation stations in the Shikoku region,
reproduction was possible with an RMSE for each station of 2.3 mm or less. Moreover,
even for stations with the worst reproduction accuracy, the RMSE value was 3.6 mm or
less. This suggests that, even when barometric surface data created using the two spline
interpolation methods are used, PW amounts can be reproduced with equivalent or bet-
ter accuracy than when using only barometric surface data directly calculated through
numerical predictions. In addition, the mean RMSE value for all GNSS observation sta-
tions in the Shikoku region was 2.13 mm for the Akima spline interpolation method and
2.15 mm for the cubic spline interpolation method. Accordingly, in this study, the Akima
spline interpolation method, which had slightly higher accuracy, was adopted, and an MSM
high-resolution PW distribution at 1-h intervals was reproduced by creating barometric
surface data at 1-h intervals from the MSM-GPV barometric surface data at 3-h intervals.
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Figure 6. Comparison of accuracy of MSM high-resolution PW at 3-h intervals (midnight, 3 a.m.,
6 a.m., 9 a.m., noon, 3 p.m., 6 p.m., and 9 p.m.) and accuracy of MSM high-resolution PW at 1-h
intervals (1 a.m., 2 a.m., 4 a.m., 5 a.m., 7 a.m., 8 a.m., 10 a.m., 11 a.m., 1 p.m., 2 p.m., 4 p.m., 5 p.m.,
7 p.m., 8 p.m., 10 p.m., and 11 p.m.) estimated with barometric surface data and ground surface data
created using two spline interpolation methods. (The “×” symbol indicates the mean value for all
GNSS observation stations.).

Figure 7 shows the reproduction accuracy of MSM high-resolution PW amounts at 1-h
intervals, reproduced using barometric surface data at 1-h intervals generated from MSM-
GPV barometric surface data at 3-h intervals using the Akima spline interpolation method.
Figure 7 uses box plots to illustrate the monthly mean RMSE at each GNSS observation
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station from 2014 to 2018. The red box plots show the RMSE values before the elevation
correction. The blue box plots show the RMSE values after elevation correction, conducted
using WS,1000 = 0 for the water vapor amount (WS,1000), included between the ground and
the 1000-hPa barometric surface, as the threshold for the application range of elevation
correction. From the RMSE values in this figure for 75% of the GNSS observation stations
in the Shikoku region (in other words, the RMSE 75 percentile values), it was possible
to reproduce the PW amount at 1-h intervals from 2014 to 2018 with an RMSE value of
approximately 3 mm or lower throughout the year.
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Figure 7. Monthly mean RMSE at each GNSS observation station from 2014 to 2018. Red indicates
the RMSE before the elevation correction. Blue indicates the RMSE after elevation correction. The
“×” and “+” symbols indicate the mean value for all GNSS observation stations.

3.3. Possibility of Reproduction in Near Real Time

Figure 8 depicts the monthly mean RMSE at each GNSS observation station from 2019
to 2022, shown as box plots. First, the monthly elevation correction coefficients am and bm
were determined for each year from 2019 to 2022 (Tables 2 and 3), and elevation correction
was conducted. Then, the MSM high-resolution PW was reproduced, and the mean value
for the RMSE of the MSM high-resolution PW and the GNSS-PW amounts at each GNSS
observation station was calculated; these values are shown as red box plots. Next, the values
am and bm (Table 5), which are the mean values for monthly elevation correction coefficients
for each year from 2014 to 2018, were used as elevation correction coefficients to perform
elevation correction for each year from 2019 to 2022 to reproduce the MSM high-resolution
PW. Subsequently, the RMSE values for the MSM high-resolution PW and GNSS-PW amounts
at each GNSS observation station were calculated; these values are shown as blue box plots.
As shown in Figure 8, when the mean values for 2014–2018 are used as elevation correction
coefficients, the mean RMSE for each GNSS observation station from June to September
tended to be slightly worse. However, a comparison of the RMSE 75 percentile values shows
that the degree of worsening of the RMSE values at 75% of all GNSS observation stations in
the Shikoku region for a year was extremely small, with the difference in the mean RMSE
value at most 0.25 mm (July 2022). Accordingly, this suggests that even if the monthly mean
elevation correction coefficients for the past few years are used, the reproduction accuracy of
the MSM high-resolution PW would barely worsen. These results show that using the mean
value for monthly correction coefficients allows for the reproduction of the PW distribution in
near real time following the acquisition of numerical prediction data.
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Table 5. Mean values for monthly elevation correction coefficients from 2014 to 2018.

Month
Mean

Slope (am) Intercept (bm)

January 4.19 × 10−3 −1.45
February 4.01 × 10−3 −1.25

March 5.05 × 10−3 −1.30
April 6.84 × 10−3 −1.40
May 8.05 × 10−3 −1.28
June 1.06 × 10−2 −0.99
July 1.32 × 10−2 −0.91

August 1.28 × 10−2 −0.55
September 1.15 × 10−2 −1.56

October 9.04 × 10−3 −2.10
November 7.10 × 10−3 −2.15
December 5.00 × 10−3 −1.76

4. Conclusions

This study considered (1) the threshold value for the application range of elevation
correction, (2) methods for converting temporal resolutions to high-resolution values, and
(3) the possibility of reproducing PW distributions in near real time, with the aim of using
numerical prediction data with high temporal resolutions and elevation data with high
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spatial resolutions to reproduce PW distributions with high spatiotemporal resolutions (90
m, 1 h). The results are as follows.

(1) Using the amount of water vapor included between the ground and the 1000-hPa
isobaric surface as a threshold value for the application range for elevation correction in
place of elevation enabled elevation correction with equivalent or better accuracy than
using elevation as the threshold. When the elevation is used as the threshold, it is difficult
to determine the reference elevation value. Moreover, with the method used in this study,
the coefficient of determination for the regression expression used to derive the eleva-
tion correction coefficient increased compared with the use of elevation as the threshold.
Accordingly, it is thought to be appropriate to use the amount of water vapor included
between the ground and the 1000-hPa isobaric surface as the threshold for the application
range of elevation correction.

(2) The cubic spline interpolation method and the Akima spline interpolation method
were used to create barometric surface data at 1-h intervals from the MSM-GPV data for
each barometric surface at 3-h intervals, and these data were used to reproduce individual
MSM high-resolution PW distributions; subsequently, GNSS-PW amounts were used to
assess the reproduction accuracy. The results showed that reproduction was possible with
equivalent or better accuracy than when using barometric surface data at 3-h intervals,
even in the periods where PW amounts were reproduced using the barometric surface
data at 1-h intervals interpolated using the Akima spline interpolation method. For 75%
of the GNSS observation stations in the Shikoku region, it was possible to reproduce PW
amounts at 1-h intervals with an RMSE of 2.5 mm or less throughout the year. This suggests
that using the Akima spline interpolation method to create barometric surface data at 1-h
intervals from MSM-GPV barometric surface data at 3-h intervals enables the reproduction
of MSM high-resolution PW distributions at 1-h intervals.

(3) To investigate the possibility of reproducing PW distributions in near real time,
in this study, a comparison of accuracy was performed for the results of (a) calculation of
monthly elevation correction coefficients for each year from 2019 to 2022 and reproduction
of individual PW distributions and (b) using the mean values for monthly elevation cor-
rection coefficients from 2014 to 2018 to reproduce the individual PW distributions from
2019 to 2022. The results showed that using the mean values from 2014 to 2018 as elevation
correction coefficients slightly degraded reproduction accuracy. However, the degree of
degradation of the reproduction accuracy was minute over a year, with the degradation of
the RMSE value at most approximately 0.25 mm. This shows that using the mean values
for monthly correction coefficients for the past few years enables the reproduction of PW
distributions in near real time following the acquisition of numerical prediction data.

The above results suggest that, with our proposed method, numerical prediction data
and elevation data can be used to reproduce PW distributions in near real time at a spatial
resolution of 90 m and a temporal resolution of 1 h, with an RMSE value of 3 mm or less
throughout the year.

The method proposed in this study is applicable to the entire range of MSM-GPV data.
However, caution is required when applying the elevation correction coefficients of this
study to areas other than the target region of this study. It should be mentioned that the
spatial versatility of the elevation correction coefficients in this study needs to be evaluated
by applying them to areas other than those covered by this study. In that case, it would be
better if the entire MSM-GPV data could be analyzed at once instead of narrowing down
the target region to a certain region, but it is expected that it would take an enormous
amount of processing time to reproduce the PW distribution over the entire region at 90 m
resolution. Therefore, reducing processing time to reproduce PW distributions is also a
future task, and for this purpose, it is necessary to examine the spatial resolution of the
PW distribution sufficient to evaluate the spatial variation of atmospheric water vapor
amount. In a study by Vogelmann et al. [25], the scale of spatial variability of atmospheric
water vapor amount was noted to be several kilometers, which means that reproducing
PW distribution with a spatial resolution coarser than 90 m may be sufficient for evaluating
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spatial variability of atmospheric water vapor amount. Therefore, if the spatial resolution
of the PW distribution sufficient to evaluate the spatial variability of atmospheric water
vapor amount becomes clear, processing time for reproducing PW distributions can be
reduced. This will enable the analysis of a wider area, so it is expected that spatially
versatile elevation correction coefficients can be obtained.
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