Variability of River Runoff in Poland and Its Connection to Solar Variability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
- -
- the linear regression for evaluating long-term trends (Equation (1)):
- -
- the 10 year moving average,
- -
- the standardized cumulative annual deviation (SCAD). The resulting cumulative charts inform about periods with values higher and lower than the long-term average. In the case of precipitation and river discharge, it shows the sequence of wet and dry years, and in the case of air temperature the sequence of warm and cold years.
- -
- average annual discharges of the analyzed rivers, air temperature and precipitation at Poznań station,
- -
- linear regressions of the analyzed hydro-meteorological variables,
- -
- deviations (differences) between the average river discharge in the subsequent 20 year sub-periods and the average values from 1901 to 2020. The statistical significance of these differences was checked with the t-test for paired samples. Each time, the hypothesis H0: μ = μ0 of the equality of expected values was tested against H1: μ ≠ μ0. Rejection of the hypothesis allows concluding about significant differences between the average discharges observed in 20 year periods and their average values from 1901 to 2020. In order to verify the hypothesis, a sample test based on the Student’s t-distribution was used, with n − 1 degrees of freedom (Equation (3)):
3. Results
3.1. Temporal Variability of Hydro-Meteorological Elements
3.2. Correlation between River Discharges and Sunspots
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dai, Z.J.; Du, J.Z.; Tang, Z.H.; Ou, S.Y.; Brody, S.; Mei, X.F.; Jing, J.T.; Yu, S.B. Detection of Linkage Between Solar and Lunar Cycles and Runoff of the World’s Large Rivers. Earth Space Sci. 2019, 6, 914–930. [Google Scholar] [CrossRef] [Green Version]
- Stojkovic, M.; Prohaska, S.; Plavsic, J. Stochastic structure of annual discharges of large European rivers. J. Hydrol. Hydromech. 2015, 63, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Pekarova, P.; Miklanek, P.; Pekar, J. Spatial and temporal runoff oscillation analysis of the main rivers of the world during the 19th–20th centuries. J. Hydrol. 2003, 274, 62–79. [Google Scholar] [CrossRef]
- Pekarova, P.; Miklanek, P.; Pekar, J. Long-term trends and runoff fluctuations of European rivers. Climate Variability and Change—Hydrological Impacts. In Proceedings of the 5th FRIEND World Conference, Havana, Cuba, 27 November–1 December 2006; p. 708. [Google Scholar]
- Gutry-Korycka, M.; Sadurski, A.; Kundzewicz, Z.W.; Pociask-Karteczka, J.; Skrzypczyk, L. Water resources and their use. Nauka 2014, 1, 77–98. (In Polish) [Google Scholar]
- Wrzesiński, D. Use of entropy in the assessment of uncertainty of river runoff regime in Poland. Acta Geophys. 2016, 64, 1825–1839. [Google Scholar] [CrossRef] [Green Version]
- Wrzesiński, D.; Sobkowiak, L. Detection of changes in flow regime of rivers in Poland. J. Hydrol. Hydromech. 2018, 66, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Wibig, J. Influence of Atmospheric Circulation on the Spatial Distribution of Temperature and Precipitation Anomalies in Europe; Wyd. Uniwersytetu Łódzkiego: Łódź, Poland, 2001; pp. 1–208. (In Polish) [Google Scholar]
- Kożuchowski, K. Circular climate factors in Poland. Czas. Geogr. 2003, 731, 93–105. (In Polish) [Google Scholar]
- Wrzesiński, D. Entropy of river runoff in Poland. Studia i Prace z Geografii i Geologii 33; Bogucki Publishing House: Poznań, Poland, 2013; pp. 1–204. (In Polish) [Google Scholar]
- Wrzesiński, D. Uncertainty of flow regime characteristics of rivers in Europe. Quaest. Geogr. 2013, 32, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Michalczyk, Z.; Paszczyk, J. Changes in components to the water balance in the basins of the Vistula and Odra, 1901–2000. Czas. Geogr. 2011, 82, 49–68. (In Polish) [Google Scholar]
- Jokiel, P.; Kożuchowski, K. Changes in Selected Hydro-Climatic Characteristics of Poland in the Current Century. Dokumentacja Geograficzna; IGiPZ PAN: Warsaw, Poland, 1989; pp. 1–94. (In Polish) [Google Scholar]
- Stachý, J. Long-term runoff forecast of Polish rivers. Wiadomości Służby Hydrol.-Meteorol. 1969, 5, 5–64. (In Polish) [Google Scholar]
- Stachý, J. Long-term variability of runoff of Polish rivers. Pr. Państwowego Inst. Hydrol.-Meteorol. 1970, 97, 1–42. (In Polish) [Google Scholar]
- Gutry-Korycka, M.; Boryczka, J. Long-term changes in water balance elements in Poland and the Baltic Sea basin. Przegląd Geofiz. 1990, 35, 19–32. (In Polish) [Google Scholar]
- Wrzesiński, D. Changes of the hydrological regime of rivers of northern and central Europe in various circulation periods of the North Atlantic Oscillation. Quaest. Geogr. 2005, 24, 97–109. [Google Scholar]
- Wrzesiński, D. Regional differences in the influence of the North Atlantic Oscillation on seasonal river runoff in Poland. Quaest. Geogr. 2011, 30, 127–136. [Google Scholar] [CrossRef]
- Wrzesiński, D. Flow Regime Patterns and Their Changes. In Management of Water Resources in Poland; Zeleňáková, M., Kubiak-Wójcicka, K., Negm, A.M., Eds.; Springer Nature: Cham, Switzerland, 2021; pp. 163–180. [Google Scholar] [CrossRef]
- Wrzesiński, D.; Paluszkiewicz, R. Spatial differences in the impact of the North Atlantic Oscillation on the flow of rivers in Europe. Hydrol. Res. 2011, 42, 30–39. [Google Scholar] [CrossRef]
- Graf, R.; Wrzesiński, D. Relationship between Water Temperature of Polish Rivers and Large-Scale Atmospheric Circulation. Water 2019, 11, 1690. [Google Scholar] [CrossRef] [Green Version]
- Plewa, K.; Perz, A.; Wrzesiński, D. Links between Teleconnection Patterns and Water Level Regime of Selected Polish Lakes. Water 2019, 11, 1330. [Google Scholar] [CrossRef] [Green Version]
- Wrzesiński, D.; Ptak, M.; Plewa, K. Effect of the North Atlantic Oscillation on water level fluctuations in lakes of northern Poland. Geogr. Pol. 2018, 91, 243–259. [Google Scholar] [CrossRef]
- Wrzesiński, D.; Sobkowiak, L. Effects of Oceanic–Atmospheric Oscillations on Rivers. Water 2022, 14, 1245. [Google Scholar] [CrossRef]
- Marsz, A.A.; Styszyńska, A.; Krawczyk, E.W. The log-term fluctuations in annual flows rivers in Poland and their relationship with the North Atlantic Thermohaline Circulation. Przegląd Geogr. 2016, 88, 295–316. [Google Scholar] [CrossRef]
- Wrzesiński, D.; Marsz, A.A.; Styszyńska, A.; Sobkowiak, L. Effect of the North Atlantic Thermohaline Circulation on Changes in Climatic Conditions and River Flow in Poland. Water 2019, 11, 1622. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Iturbe, I.; Yevjevich, V. The Investigation of Relationship between Hydrologic Time Series and Sunspot Numbers; Colorado State University: Fort Collins, CO, USA, 1968. [Google Scholar]
- Dyer, T.G.J. On the 11-year Solar Cycle and River Flow. Water SA 1978, 4, 157–162. [Google Scholar]
- Zanchettin, D.; Rubino, A.; Traverso, P.; Tomasino, M. Impact of variations in solar activity on hydrological decadal patterns in northern Italy. J. Geophys. Res. 2008, 113, D12102. [Google Scholar] [CrossRef] [Green Version]
- Cionco, R.G.; Abuin, P. On planetary torque signals and sub-decadal frequencies in the discharges of large rivers. Adv. Space Res. 2016, 57, 1411–1425. [Google Scholar] [CrossRef]
- Hajian, S.; Movahed, M.S. Multifractal Detrended Cross-Correlation Analysis of Sunspot Numbers and River Flow Fluctuations. Phys. A Stat. Mech. Its Appl. 2010, 389, 4942. [Google Scholar] [CrossRef] [Green Version]
- Briciu, A.-E.; Dumitru, M. Wavelet analysis of some rivers in SE Europe and selected climate indices. Environ. Monit. Assess. 2014, 186, 6263–6286. [Google Scholar] [CrossRef]
- Antico, A.; Torres, M.E. Evidence of a decadal solar signal in the Amazon River: 1903 to 2013. Geophys. Res. Lett. 2015, 42, 782–787. [Google Scholar] [CrossRef] [Green Version]
- Baker, J.C.A.; Gloor, M.; Boom, A.; Neill, D.A.; Cintra, B.B.L.; Clerici, S.J.; Brienen, R.J.W. Questioning theinfluence of sunspots on Amazon hydrology: Even a broken clock tells the right time twice a day. Geophys. Res. Lett. 2018, 45, 1419–1422. [Google Scholar] [CrossRef] [Green Version]
- Su, L.; Miao, C.Y.; Borthwick, A.G.L.; Duan, Q.Y. Wavelet-based variability of Yellow River discharge at 500-, 100-, and 50-year timescales. Gondwana Res. 2017, 49, 94–105. [Google Scholar] [CrossRef] [Green Version]
- Dobrica, V.; Demetrescu, C.; Mares, I.; Mares, C. Long-term evolution of the Lower Danube discharge and corresponding climate variations: Solar signature imprint. Theor. Appl. Climatol. 2018, 133, 985–996. [Google Scholar] [CrossRef]
- Yang, R.T.; Xing, B. Possible Linkages of Hydrological Variables to Ocean–Atmosphere Signals and Sunspot Activity in the Upstream Yangtze River Basin. Atmosphere 2021, 12, 1361. [Google Scholar] [CrossRef]
- Mares, I.; Dobrica, V.; Mares, C.; Demetrescu, C. Assessing the solar variability signature in climate variables by information theory and wavelet coherence. Sci. Rep. 2021, 11, 11337. [Google Scholar] [CrossRef]
- Mares, C.; Dobrica, V.; Mares, I.; Demetrescu, C. Solar Signature in Climate Indices. Atmosphere 2022, 13, 1898. [Google Scholar] [CrossRef]
- Liu, Y.; Wen, Y.; Zhao, Y.; Hu, H. Analysis of Drought and Flood Variations on a 200-Year Scale Based on Historical Environmental Information in Western China. Int. J. Environ. Res. Public Health 2022, 19, 2771. [Google Scholar] [CrossRef]
- Pociask-Karteczka, J. Geographical location of Poland against the background of Europe. In Hydrology of Poland; Jokiel, P., Marszalewski, W., Pociask-Karteczka, J., Eds.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2017. (In Polish) [Google Scholar]
- Wrzesiński, D.; Sobkowiak, L. Transformation of the Flow Regime of a Large Allochthonous River in Central Europe—An Example of the Vistula River in Poland. Water 2020, 12, 507. [Google Scholar] [CrossRef] [Green Version]
- Ilnicki, P.; Farat, R.; Górecki, K.; Lewandowski, P. Impact of climatic change on river discharge in the driest region of Poland. Hydrol. Sci. J. 2014, 59, 1117–1134. [Google Scholar] [CrossRef] [Green Version]
- Woś, A. Climate of Poland in the Second Half of the 20th Century; Wydawnictwo Naukowe UAM: Poznań, Poland, 2010. (In Polish) [Google Scholar]
- Wrzesiński, D.; Perz, A. Detection of Changes in the Flow Regime of Rivers in Poland. Physiogr. Res. West. Pol. Ser. A–Phys. Geogr. 2016, 67, 289–304. (In Polish) [Google Scholar] [CrossRef] [Green Version]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Ganguly, A.R.; Bandyopadhyay, S.; Saigal, S.; Erickson III, D.J.; Protopopescu, V.; Ostrouchov, G. Nonlinear statistics reveals stronger ties between ENSO and the tropical hydrological cycle. Geophys. Res. Lett. 2006, 33, L24402. [Google Scholar] [CrossRef] [Green Version]
- Vu, T.M.; Mishra, A.K.; Konapala, G. Information entropy suggests stronger nonlinear associations between hydro-meteorological variables and ENSO. Entropy 2018, 20, 38. [Google Scholar] [CrossRef] [Green Version]
- Mares, I.; Mares, C.; Dobrica, V.; Demetrescu, C. Comparative study of statistical methods to identify a predictor for discharge at Orsova in the Lower Danube Basin. Hydrol. Sci. J. 2020, 65, 371–386. [Google Scholar] [CrossRef]
- Labat, D. Recent advances in wavelet analyses: Part 1. A review of concepts. J. Hydrol. 2005, 314, 275–288. [Google Scholar] [CrossRef]
- Fu, C.; James, A.L.; Wachowiak, M.P. Analyzing the combined influence of solar activity and El Niño on streamflow across southern Canada. Water Resour. Res. 2012, 48, W05507. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Schulte, J. Global Wavelet Coherence, MATLAB Central File Exchange. Available online: https://www.mathworks.com/matlabcentral/fileexchange/54682-global-wavelet-coherence (accessed on 14 May 2023).
- Schulte, J.; Najjar, R.G.; Li, M. The influence of climate modes on streamflow in the Mid-Atlantic region of the United States. J. Hydrol. Reg. Stud. 2016, 5, 80–99. [Google Scholar] [CrossRef] [Green Version]
- Maraun, D.; Kurths, J.; Holschneider, M. Nonstationary Gaussian processes in wavelet domain: Synthesis, estimation, and significance testing. Phys. Rev. E 2007, 75, 016707. [Google Scholar] [CrossRef] [Green Version]
- Fal, B.; Bogdanowicz, E. Surface water resources of Poland. Wiadomości IMGW 2002, 26, 3–38. (In Polish) [Google Scholar]
- Mares, I.; Dobrica, V.; Demetrescu, C.; Mares, C. Hydrological response in the Danube lower basin to some internal and external climate forcing factors. Hydrol. Earth. Syst. Sci. Discuss. 2016; preprint. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Si, B.C. Technical Note: Improved partial wavelet coherency for understanding scale-specific and localized bivariate relationships in geosciences. Hydrol. Earth Syst. Sci. 2021, 25, 321–331. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wrzesiński, D.; Sobkowiak, L.; Mares, I.; Dobrica, V.; Mares, C. Variability of River Runoff in Poland and Its Connection to Solar Variability. Atmosphere 2023, 14, 1184. https://doi.org/10.3390/atmos14071184
Wrzesiński D, Sobkowiak L, Mares I, Dobrica V, Mares C. Variability of River Runoff in Poland and Its Connection to Solar Variability. Atmosphere. 2023; 14(7):1184. https://doi.org/10.3390/atmos14071184
Chicago/Turabian StyleWrzesiński, Dariusz, Leszek Sobkowiak, Ileana Mares, Venera Dobrica, and Constantin Mares. 2023. "Variability of River Runoff in Poland and Its Connection to Solar Variability" Atmosphere 14, no. 7: 1184. https://doi.org/10.3390/atmos14071184
APA StyleWrzesiński, D., Sobkowiak, L., Mares, I., Dobrica, V., & Mares, C. (2023). Variability of River Runoff in Poland and Its Connection to Solar Variability. Atmosphere, 14(7), 1184. https://doi.org/10.3390/atmos14071184