Climate Change Impact on Sustainable Agricultural Growth: Insights from Rural Areas
Abstract
:1. Introduction
2. Literature Review and Theoretical Background
Theory of Change, Food Security, and Climate Change
3. Material and Methods
3.1. Study Area and Data Collection
3.2. Agricultural Production Technology
3.3. Inefficiency of Agricultural Production
4. Empirical Results and Discussion
4.1. Variable-Specific Decomposition
4.2. Tempo-Wise Decomposition
5. Conclusions, Policy Implications, and Limitations
5.1. Conclusions
5.2. Policy Implications
5.3. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CC | Climate change | GHG | Greenhouse gas |
ADB | Asian Development Bank | WB | World Bank |
CO2 | Carbon dioxide | GDP | Gross domestic product |
DEA | Data envelopment analysis | SBM | Slack-based model |
LCA | Life cycle assessment | KP | Khyber Pakhtunkhwa |
DMU | Decision-making unit | VRS | Variable returns to scale |
CRS | Constant returns to scale | IPCC | Intergovernmental Panel on Climate Change |
SDGs | Sustainable Development Goals |
References
- Habib-ur-Rahman, M.; Ahmad, A.; Raza, A.; Hasnain, M.U.; Alharby, H.F.; Alzahrani, Y.M.; Bamagoos, A.A.; Hakeem, K.R.; Ahmad, S.; Nasim, W. Impact of climate change on agricultural production; Issues, challenges, and opportunities in Asia. Front. Plant Sci. 2022, 13, 925548. [Google Scholar] [CrossRef]
- Yadav, S.; Lal, R. Vulnerability of women to climate change in arid and semi-arid regions: The case of India and South Asia. J. Arid. Environ. 2018, 149, 4–17. [Google Scholar] [CrossRef]
- Rao, N.; Lawson, E.T.; Raditloaneng, W.N.; Solomon, D.; Angula, M.N. Gendered vulnerabilities to climate change: Insights from the semi-arid regions of Africa and Asia. Clim. Dev. 2019, 11, 14–26. [Google Scholar] [CrossRef] [Green Version]
- Hasnat, G.; Kabir, M.A.; Hossain, M.A. Major Environmental Issues and Problems of South Asia, Particularly Bangladesh. In Handbook of Environmental Materials Management; Springer: Cham, Switzerland, 2018; pp. 1–40. [Google Scholar]
- Guo, H.; Bao, A.; Ndayisaba, F.; Liu, T.; Jiapaer, G.; El-Tantawi, A.M.; De Maeyer, P. Space-time characterization of drought events and their impacts on vegetation in Central Asia. J. Hydrol. 2018, 564, 1165–1178. [Google Scholar] [CrossRef]
- Thomas, A.; Baptiste, A.; Martyr-Koller, R.; Pringle, P.; Rhiney, K. Climate change and small island developing states. Annu. Rev. Environ. Resour. 2020, 45, 1–27. [Google Scholar] [CrossRef]
- Ahmed, A.U.; Appadurai, A.N.; Neelormi, S. Status of Climate Change Adaptation in South Asia Region. In Status of Climate Change Adaptation in Asia and the Pacific; Springer: Cham, Switzerland, 2019; pp. 125–152. [Google Scholar]
- Gouldson, A.; Colenbrander, S.; Sudmant, A.; Papargyropoulou, E.; Kerr, N.; McAnulla, F.; Hall, S. Cities and climate change mitigation: Economic opportunities and governance challenges in Asia. Cities 2016, 54, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Mi, Z.; Guan, D.; Liu, Z.; Liu, J.; Viguié, V.; Fromer, N.; Wang, Y. Cities: The core of climate change mitigation. J. Clean. Prod. 2019, 207, 582–589. [Google Scholar] [CrossRef]
- Gregorio, G.B.; Ancog, R.C. Assessing the Impact of the COVID-19 Pandemic on Agricultural Production in Southeast Asia: Toward Transformative Change in Agricultural Food Systems. Asian J. Agric. Dev. 2020, 17, 1–13. [Google Scholar] [CrossRef]
- Sitko, N.; Knowles, M.; Viberti, F.; Bordi, D. Assessing the Impacts of the COVID-19 Pandemic on the Livelihoods of Rural People: A Review of the Evidence; Food and Agriculture Organization: Rome, Italy, 2022. [Google Scholar]
- Ali, M.F.; Rose, S. Farmers’ perception and adaptations to climate change: Findings from three agro-ecological zones of Punjab, Pakistan. Environ. Sci. Pollut. Res. 2021, 28, 14844–14853. [Google Scholar] [CrossRef]
- Eckstein, D.; Künzel, V.; Schäfer, L.; Winges, M. Global Climate Risk Index 2020; Germanwatch: Bonn, Germany, 2019. [Google Scholar]
- Asif, M. Climatic Change, Irrigation Water Crisis and Food Security in Pakistan. Master’s Thesis, Uppsala University, Uppsala, Sweden, 2013. [Google Scholar]
- Shakoor, U.; Saboor, A.; Ali, I.; Mohsin, A. Impact of climate change on agriculture: Empirical evidence from arid region. Pak. J. Agric. Sci. 2011, 48, 327–333. [Google Scholar]
- Suleri, A.Q.; Javed, S.A.; Chatha, I.A.; Iqbal, M. Risk Management Practices of Small Farmers: A Feasibility Study for Introducing R4 Rual Resilience Initiative in Punjab; Sustainable Development Policy Institute: Islamabad, Pakistan, 2018. [Google Scholar]
- Salman, A.; Husnain, M.; Jan, I.; Ashfaq, M.; Rashid, M.; Shakoor, U. Farmers’ adaptation to climate change in pakistan: Perceptions, options and constraints. Sarhad J. Agric. 2018, 34, 963–972. [Google Scholar] [CrossRef]
- Adger, W.N.; Huq, S.; Brown, K.; Conway, D.; Hulme, M. Adaptation to climate change in the developing world. Prog. Dev. Stud. 2003, 3, 179–195. [Google Scholar] [CrossRef]
- Hassan, R.M.; Nhemachena, C. Determinants of African farmers’ strategies for adapting to climate change: Multinomial choice analysis. Afr. J. Agric. Resour. Econ. 2008, 2, 83–104. [Google Scholar]
- Kurukulasuriya, P.; Mendelsohn, R.O. How Will Climate Change Shift Agro-Ecological Zones and Impact African agriculture? In World Bank Policy Research Working Paper; World Bank Group: Washington, DC, USA, 2008. [Google Scholar]
- Jamil, I.; Jun, W.; Mughal, B.; Raza, M.H.; Imran, M.A.; Waheed, A. Does the adaptation of climate-smart agricultural practices increase farmers’ resilience to climate change? Environ. Sci. Pollut. Res. 2021, 28, 27238–27249. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Schmitz, M. Economic assessment of the impact of climate change on the agriculture of Pakistan. Bus. Econ. Horiz. BEH 2011, 4, 1–12. [Google Scholar] [CrossRef]
- Nastis, S.A.; Michailidis, A.; Chatzitheodoridis, F. Climate change and agricultural productivity. Afr. J. Agric. Res. 2012, 7, 4885–4893. [Google Scholar] [CrossRef]
- Ayers, J.M.; Huq, S. The value of linking mitigation and adaptation: A case study of Bangladesh. Environ. Manag. 2009, 43, 753–764. [Google Scholar] [CrossRef] [Green Version]
- Abid, M.; Scheffran, J.; Schneider, U.A.; Ashfaq, M. Farmers’ perceptions of and adaptation strategies to climate change and their determinants: The case of Punjab province, Pakistan. Earth Syst. Dyn. 2015, 6, 225–243. [Google Scholar] [CrossRef] [Green Version]
- Freeman, M.C.; Groom, B.; Zeckhauser, R.J. Better predictions, better allocations: Scientific advances and adaptation to climate change. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373, 20150122. [Google Scholar] [CrossRef] [Green Version]
- Organisation for Economic Co-operation and Development. The Economics of Adapting Fisheries to Climate Change; OECD Publishing: Paris, France, 2011. [Google Scholar]
- Bradshaw, B.; Dolan, H.; Smit, B. Farm-level adaptation to climatic variability and change: Crop diversification in the Canadian prairies. Clim. Change 2004, 67, 119–141. [Google Scholar] [CrossRef]
- Below, T.B.; Schmid, J.C.; Sieber, S. Farmers’ knowledge and perception of climatic risks and options for climate change adaptation: A case study from two Tanzanian villages. Reg. Environ. Change 2015, 15, 1169–1180. [Google Scholar] [CrossRef]
- Deressa, T.T. Measuring the Economic Impact of Climate Change on Ethiopian Agriculture: Ricardian Approach. In World Bank Policy Research Working Paper; World Bank Group: Washington, DC, USA, 2007. [Google Scholar]
- Ma, J.; Zhang, H.; Khan, N.; Tian, J.; Wang, L.; Wu, J.; Cheng, X.; Cheng, X.; Liu, Y.; He, Y.; et al. Economic Assessment of Food Legumes Breeding in China: Evidence Using a Provincial Level Dataset. Agronomy 2022, 12, 2297. [Google Scholar] [CrossRef]
- Bryan, E.; Ringler, C.; Okoba, B.; Roncoli, C.; Silvestri, S.; Herrero, M. Adapting agriculture to climate change in Kenya: Household strategies and determinants. J. Environ. Manag. 2013, 114, 26–35. [Google Scholar] [CrossRef]
- Khan, N.; Ma, J.; Kassem, H.S.; Kazim, R.; Ray, R.L.; Ihtisham, M.; Zhang, S. Rural Farmers’ Cognition and Climate Change Adaptation Impact on Cash Crop Productivity: Evidence from a Recent Study. Int. J. Environ. Res. Public Health 2022, 19, 12556. [Google Scholar] [CrossRef]
- Makate, C.; Makate, M.; Mango, N. Smallholder farmers’ perceptions on climate change and the use of sustainable agricultural practices in the Chinyanja Triangle, Southern Africa. Soc. Sci. 2017, 6, 30. [Google Scholar] [CrossRef] [Green Version]
- Deressa, T.T.; Hassan, R.M.; Ringler, C.; Alemu, T.; Yesuf, M. Determinants of farmers’ choice of adaptation methods to climate change in the Nile Basin of Ethiopia. Glob. Environ. Change 2009, 19, 248–255. [Google Scholar] [CrossRef] [Green Version]
- Bryan, E.; Deressa, T.T.; Gbetibouo, G.A.; Ringler, C. Adaptation to climate change in Ethiopia and South Africa: Options and constraints. Environ. Sci. Policy 2009, 12, 413–426. [Google Scholar] [CrossRef]
- Chaudhry, Q.U.Z. Climate Change Profile of Pakistan; Asian Development Bank: Mandaluyong City, Philippines, 2017. [Google Scholar]
- Abid, M.; Schneider, U.A.; Scheffran, J. Adaptation to climate change and its impacts on food productivity and crop income: Perspectives of farmers in rural Pakistan. J. Rural. Stud. 2016, 47, 254–266. [Google Scholar] [CrossRef]
- Chen, Z.; Wanke, P.; Antunes, J.J.M.; Zhang, N. Chinese airline efficiency under CO2 emissions and flight delays: A stochastic network DEA model. Energy Econ. 2017, 68, 89–108. [Google Scholar] [CrossRef]
- Mahdiloo, M.; Ngwenyama, O.; Scheepers, R.; Tamaddoni, A. Managing emissions allowances of electricity producers to maximize CO2 abatement: DEA models for analyzing emissions and allocating emissions allowances. Int. J. Prod. Econ. 2018, 205, 244–255. [Google Scholar] [CrossRef]
- Cecchini, L.; Venanzi, S.; Pierri, A.; Chiorri, M. Environmental efficiency analysis and estimation of CO2 abatement costs in dairy cattle farms in Umbria (Italy): A SBM-DEA model with undesirable output. J. Clean. Prod. 2018, 197, 895–907. [Google Scholar] [CrossRef]
- Iftikhar, Y.; Wang, Z.; Zhang, B.; Wang, B. Energy and CO2 emissions efficiency of major economies: A network DEA approach. Energy 2018, 147, 197–207. [Google Scholar] [CrossRef]
- Yang, M.; Hou, Y.; Ji, Q.; Zhang, D. Assessment and optimization of provincial CO2 emission reduction scheme in China: An improved ZSG-DEA approach. Energy Econ. 2020, 91, 104931. [Google Scholar] [CrossRef]
- Li, J.; Tian, Y.; Deng, Y.; Zhang, Y.; Xie, K. Improving the estimation of greenhouse gas emissions from the Chinese coal-to-electricity chain by a bottom-up approach. Resour. Conserv. Recycl. 2021, 167, 105237. [Google Scholar] [CrossRef]
- Whitmarsh, L.; Capstick, S.; Moore, I.; Köhler, J.; Le Quéré, C. Use of aviation by climate change researchers: Structural influences, personal attitudes, and information provision. Glob. Environ. Chang. 2020, 65, 102184. [Google Scholar] [CrossRef]
- McKune, S.L.; Borresen, E.C.; Young, A.G.; Ryley, T.D.A.; Russo, S.L.; Camara, A.D.; Coleman, M.; Ryan, E.P. Climate change through a gendered lens: Examining livestock holder food security. Glob. Food Secur. 2015, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Bizikova, L.; Jungcurt, S.; McDougal, K.; Tyler, S. How can agricultural interventions enhance contribution to food security and SDG 2.1? Glob. Food Secur. 2020, 26, 100450. [Google Scholar] [CrossRef]
- Kansiime, M.K.; Tambo, J.A.; Mugambi, I.; Bundi, M.; Kara, A.; Owuor, C. COVID-19 implications on household income and food security in Kenya and Uganda: Findings from a rapid assessment. World Dev. 2021, 137, 105199. [Google Scholar] [CrossRef] [PubMed]
- Jiliang, M.; Fan, L.; Zhang, H.J.; Khan, N. Commercial cash crop production and households’ economic welfare: Evidence from the pulse farmers in rural China. J. Integr. Agric. 2022, 21, 3395–3407. [Google Scholar]
- Badami, M.G.; Ramankutty, N. Urban agriculture and food security: A critique based on an assessment of urban land constraints. Glob. Food Secur. 2015, 4, 8–15. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Lovell, C.K.; Pasurka, C. Multilateral productivity comparisons when some outputs are undesirable: A nonparametric approach. Rev. Econ. Stat. 1989, 71, 90–98. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Pasurka, C.A., Jr. Environmental production functions and environmental directional distance functions. Energy 2007, 32, 1055–1066. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W.; Poh, K.L. Measuring environmental performance under different environmental DEA technologies. Energy Econ. 2008, 30, 1–14. [Google Scholar] [CrossRef]
- Fukuyama, H.; Weber, W.L. A directional slacks-based measure of technical inefficiency. Socio-Econ. Plan. Sci. 2009, 43, 274–287. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Tone, K.; Toloo, M.; Izadikhah, M. A modified slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2020, 287, 560–571. [Google Scholar] [CrossRef]
- Miao, Z.; Chen, X.; Baležentis, T.; Sun, C. Atmospheric environmental productivity across the provinces of China: Joint decomposition of range adjusted measure and Luenberger productivity indicator. Energy Policy 2019, 132, 665–677. [Google Scholar] [CrossRef]
Variables Names | Year | Mean | Standard Deviation |
---|---|---|---|
Investment in fixed assets (I, PKR 100 million) | 2010 | 147.87 | 118.64 |
2015 | 262.86 | 201.04 | |
2020 | 346.99 | 236.01 | |
Labor force (L, 104 people) | 2010 | 2411.77 | 1660.99 |
2015 | 2200.37 | 1487.37 | |
2020 | 1977.90 | 1308.97 | |
Seeded areas (S, 103 hectares) | 2010 | 5015.73 | 3539.60 |
2015 | 5115.47 | 3785.93 | |
2020 | 5381.59 | 4076.24 | |
Machinery (M, 104 Kilowatts) | 2010 | 2206.38 | 2305.30 |
2015 | 2992.92 | 2886.79 | |
2020 | 3604.13 | 3296.88 | |
Fertilizer consumption (F, 104 tons) | 2010 | 153.75 | 128.53 |
2015 | 179.41 | 146.84 | |
2020 | 194.28 | 153.98 | |
CO2 emissions (C, 104 tons) | 2010 | 3.681 | 2.610 |
2015 | 3.710 | 2.181 | |
2020 | 4.353 | 3.052 | |
Value added (Y, PKR 100 million) | 2010 | 1316.48 | 1009.81 |
2015 | 2185.91 | 1648.17 | |
2020 | 3286.89 | 2333.91 | |
Disaster areas (D, PKR 100 million) | 2010 | 644.07 | 435.45 |
2015 | 598.00 | 510.57 | |
2020 | 412.67 | 377.31 |
Province Name | District Name | IE | I | L | S | M | F | Y | C | D |
---|---|---|---|---|---|---|---|---|---|---|
KP | Swat | 0.22 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.20 |
Mansehra | 0.60 | 0.07 | 0.00 | 0.00 | 0.06 | 0.05 | 0.00 | 0.00 | 0.42 | |
D.I. Khan | 0.82 | 0.12 | 0.11 | 0.04 | 0.12 | 0.08 | 0.00 | 0.14 | 0.21 | |
Mardan | 0.50 | 0.12 | 0.06 | 0.00 | 0.12 | 0.04 | 0.00 | 0.00 | 0.15 | |
Charsadda | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | |
Swabi | 0.58 | 0.12 | 0.02 | 0.00 | 0.09 | 0.06 | 0.00 | 0.00 | 0.29 | |
Peshawar | 0.69 | 0.07 | 0.01 | 0.00 | 0.02 | 0.05 | 0.00 | 0.07 | 0.46 | |
Buner | 0.46 | 0.09 | 0.05 | 0.07 | 0.04 | 0.03 | 0.00 | 0.00 | 0.19 | |
Nowshera | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Haripur | 0.85 | 0.08 | 0.07 | 0.01 | 0.03 | 0.05 | 0.00 | 0.00 | 0.62 | |
Kohat | 0.40 | 0.01 | 0.02 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.33 | |
Abbottabad | 0.88 | 0.09 | 0.07 | 0.04 | 0.07 | 0.07 | 0.00 | 0.04 | 0.48 | |
Balochistan | Ziarat | 0.68 | 0.06 | 0.04 | 0.00 | 0.04 | 0.06 | 0.00 | 0.00 | 0.48 |
Loralai | 0.79 | 0.11 | 0.08 | 0.04 | 0.08 | 0.05 | 0.00 | 0.14 | 0.30 | |
Killa Saifullah | 0.70 | 0.09 | 0.08 | 0.04 | 0.08 | 0.07 | 0.00 | 0.00 | 0.34 | |
Hernai | 0.91 | 0.11 | 0.09 | 0.06 | 0.09 | 0.09 | 0.00 | 0.00 | 0.46 | |
Pishin | 0.59 | 0.10 | 0.10 | 0.01 | 0.02 | 0.07 | 0.00 | 0.00 | 0.29 | |
Zhob | 0.58 | 0.12 | 0.11 | 0.01 | 0.06 | 0.04 | 0.00 | 0.00 | 0.24 | |
Musa Khel | 0.81 | 0.11 | 0.08 | 0.00 | 0.06 | 0.08 | 0.00 | 0.00 | 0.48 | |
Quetta | 0.88 | 0.10 | 0.07 | 0.05 | 0.08 | 0.08 | 0.00 | 0.25 | 0.25 | |
Kalat | 0.52 | 0.10 | 0.03 | 0.00 | 0.05 | 0.08 | 0.00 | 0.02 | 0.24 | |
Sibi | 0.44 | 0.02 | 0.01 | 0.00 | 0.01 | 0.01 | 0.00 | 0.01 | 0.37 | |
Nasir Abad | 0.80 | 0.12 | 0.11 | 0.06 | 0.06 | 0.07 | 0.00 | 0.01 | 0.37 | |
Jaffar Abad | 0.69 | 0.08 | 0.07 | 0.04 | 0.06 | 0.00 | 0.00 | 0.09 | 0.34 | |
Average | 0.62 | 0.09 | 0.05 | 0.02 | 0.06 | 0.05 | 0.00 | 0.05 | 0.29 |
Province | District Name | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
KP | Swat | 0.00 | 0.00 | 0.00 | 0.09 | 0.69 | 0.92 | 0.47 | 0.05 | 0.00 | 0.00 | 0.00 |
Mansehra | 0.56 | 0.67 | 0.62 | 0.54 | 0.54 | 0.89 | 0.94 | 0.00 | 0.97 | 0.86 | 0.00 | |
D.I. Khan | 0.87 | 0.89 | 0.74 | 0.86 | 0.81 | 0.83 | 0.85 | 0.74 | 0.83 | 0.77 | 0.74 | |
Mardan | 0.50 | 0.39 | 0.67 | 0.35 | 0.14 | 0.44 | 0.60 | 0.62 | 0.63 | 0.67 | 0.64 | |
Charsadda | 0.06 | 0.00 | 0.00 | 0.30 | 0.00 | 0.00 | 0.22 | 0.00 | 0.27 | 0.00 | 0.00 | |
Swabi | 0.36 | 0.46 | 0.91 | 0.74 | 0.41 | 0.62 | 0.85 | 0.77 | 0.78 | 0.35 | 0.46 | |
Peshawar | 0.00 | 0.47 | 0.84 | 0.85 | 0.57 | 0.74 | 0.88 | 0.88 | 0.88 | 0.84 | 0.80 | |
Buner | 0.00 | 0.30 | 0.88 | 0.58 | 0.00 | 0.67 | 0.74 | 0.64 | 0.38 | 0.75 | 0.57 | |
Nowshera | 0.00 | 0.00 | 0.49 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Haripur | 0.79 | 0.69 | 0.74 | 0.89 | 0.85 | 0.91 | 0.84 | 0.80 | 0.92 | 0.91 | 0.86 | |
Kohat | 0.20 | 0.59 | 0.81 | 0.26 | 0.57 | 0.84 | 0.63 | 0.36 | 0.00 | 0.52 | 0.00 | |
Abbottabad | 0.80 | 0.86 | 0.91 | 0.85 | 0.91 | 0.88 | 0.94 | 0.86 | 0.87 | 0.93 | 0.87 | |
Balochistan | Ziarat | 0.45 | 0.00 | 0.66 | 0.87 | 0.78 | 0.49 | 0.87 | 0.76 | 0.83 | 0.92 | 0.86 |
Loralai | 0.74 | 0.74 | 0.58 | 0.71 | 0.78 | 0.74 | 0.83 | 0.85 | 0.77 | 0.85 | 0.85 | |
Killa Saifullah | 0.00 | 0.00 | 0.90 | 0.94 | 0.79 | 0.81 | 0.91 | 0.89 | 0.88 | 0.92 | 0.84 | |
Hernai | 0.86 | 0.90 | 0.86 | 0.89 | 0.86 | 0.91 | 0.93 | 0.94 | 0.94 | 0.87 | 0.98 | |
Pishin | 0.54 | 0.45 | 0.50 | 0.00 | 0.75 | 0.66 | 0.66 | 0.67 | 0.62 | 0.82 | 0.76 | |
Zhob | 0.53 | 0.58 | 0.00 | 0.00 | 0.75 | 0.58 | 0.66 | 0.74 | 0.48 | 0.71 | 0.79 | |
Musa Khel | 0.83 | 0.65 | 0.77 | 0.66 | 0.89 | 0.90 | 0.93 | 0.89 | 0.78 | 0.80 | 0.76 | |
Quetta | 0.86 | 0.84 | 0.55 | 0.87 | 0.90 | 0.86 | 0.86 | 0.90 | 0.93 | 0.85 | 0.90 | |
Kalat | 0.56 | 0.77 | 0.65 | 0.43 | 0.60 | 0.50 | 0.00 | 0.58 | 0.49 | 0.33 | 0.88 | |
Sibi | 0.37 | 0.00 | 0.00 | 0.36 | 0.68 | 0.00 | 0.29 | 0.00 | 0.84 | 0.85 | 0.96 | |
Nasir Abad | 0.72 | 0.63 | 0.62 | 0.79 | 0.80 | 0.77 | 0.80 | 0.87 | 0.83 | 0.88 | 0.92 | |
Jaffar Abad | 0.74 | 0.46 | 0.74 | 0.51 | 0.74 | 0.55 | 0.62 | 0.87 | 0.65 | 0.81 | 0.93 | |
Average | 0.47 | 0.47 | 0.67 | 0.57 | 0.63 | 0.65 | 0.69 | 0.64 | 0.67 | 0.68 | 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, N.; Ma, J.; Zhang, H.; Zhang, S. Climate Change Impact on Sustainable Agricultural Growth: Insights from Rural Areas. Atmosphere 2023, 14, 1194. https://doi.org/10.3390/atmos14081194
Khan N, Ma J, Zhang H, Zhang S. Climate Change Impact on Sustainable Agricultural Growth: Insights from Rural Areas. Atmosphere. 2023; 14(8):1194. https://doi.org/10.3390/atmos14081194
Chicago/Turabian StyleKhan, Nawab, Jiliang Ma, Huijie Zhang, and Shemei Zhang. 2023. "Climate Change Impact on Sustainable Agricultural Growth: Insights from Rural Areas" Atmosphere 14, no. 8: 1194. https://doi.org/10.3390/atmos14081194
APA StyleKhan, N., Ma, J., Zhang, H., & Zhang, S. (2023). Climate Change Impact on Sustainable Agricultural Growth: Insights from Rural Areas. Atmosphere, 14(8), 1194. https://doi.org/10.3390/atmos14081194