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Abstract: Surface air temperature is a comprehensive function of aerosols in the atmosphere and various
weather factors. However, there is no real-time aerosol concentration feedback in most operational
numerical weather prediction (NWP) models. This raises a scientific question of how abnormal changes
in air pollutants in a short period of time will affect the temperature prediction skill of NWP models.
Thus, the study was carried out to investigate the possible influence of air pollution on the temperature
forecast skill based on the operational NWP model over the Beijing–Tianjin–Hebei (BTH) region during
January–February 2020. The results show that the average concentrations of PM2.5, SO2, NO2 and
CO over the BTH region in February were smaller than those in January by 38.5%, 35.1%, 48.0% and
33.1%, respectively. Simultaneously, the forecast skills for surface temperature in February from both
regional (RMAPS, Rapid-refresh Multi-scale Analysis and Prediction System) and global (ECMWF,
European Centre for Medium-Range Weather Forecasts) operational NWP models improved markedly
compared with that in January. In both models, the underestimation of maximum temperature and
the overestimation of minimum temperature in most cities over the BTH region in February were
significantly reduced. With the 24 h (24 h) forecast lead time, the RMSE (root mean square error) of
BTH daily mean, maximum and minimum temperature prediction in February based on RMAPS were
17.3%, 9.8% and 21.6% lower than that in January, respectively. These are generally consistent with the
other statistical indices such as deviation and regression coefficient. As the forecast lead time extended
to 48 h and 72 h forecast, the phenomena still existed and were also evident in the ECMWF model.
The improvement of temperature forecast skill of NWP models may be attributed to the unexpected
dramatical reduction of air pollutants. Less aerosols during the daytime allow more solar radiation
reaching the surface and cause a warming in the near-surface temperature, while less aerosols during
the nighttime favor the outgoing long-wave radiation and then lead to a cooling near the ground.

Keywords: air pollution; aerosol; temperature prediction; NWP; Beijing–Tianjin–Hebei

1. Introduction

The Beijing–Tianjin–Hebei (BTH) region is located in the north of the North China
Plain with approximately 110 million residents and 216,000 km2 in size. With the rapid
urbanization and industrial development over the past three decades, the BTH region
has become one of China’s most economically developed regions and the third economic
engine in China. However, with the heavy industrialization and rapid urbanization, as
well as high-population density and special terrain and meteorological conditions, the
BTH region has also become one of the most polluted hotspots in China [1–3]. Although
the unprecedented and nationwide environmental governances have been executed since
2013 to reduce air pollutants emission and the air quality in most Chinese cities have been
greatly improved, the BTH region is still one of the most polluted areas in China [4–7].
Air pollution or haze events in the BTH region, characterized by low visibility and high
concentration of aerosol particles in aerodynamic diameter less than 2.5 µm (PM2.5), greatly
threaten human health, traffic safety and ecosystems [8–11].
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Meteorological conditions play important roles in the formation and evolution of air
pollution. At the same time, they are also affected by aerosol pollution through direct or
indirect, physical or chemical effects. Therein, atmospheric aerosols are liquid or solid
particles suspended in the air, which are multi-facet agents that play great roles in visibility,
air quality, weather and climate and others through various mechanisms, such as atmo-
spheric radiation, cloud physics, and hydrologic cycle processes [12–17]. An important and
interesting question is whether atmospheric aerosol pollution would affect the forecast per-
formance of the real-time operational numerical weather prediction (NWP) model systems,
especially when the pollution status changes greatly and unexpectedly in a short period of
time. To date, this is still an open scientific problem that needs more exploration.

Because of the high cost of running a fully integrated air pollution system at the high
resolution of current NWP systems, the real-time coupling effects between atmosphere and
chemistry have not been taken into account in the mainstream operational NWP models.
They usually use the climatologically radiative transfer parameters based on the outdated
aerosol datasets instead of the realistic aerosol-radiation interactions [18,19]. Some studies,
mainly in North America and Europe, suggested that the numerical simulations with
aerosol feedback mechanism can generally improve the prediction skills of temperature,
relative humidity and other factors, especially near the large pollution sources [20–22].
Although some recent studies pointed out that, whether the feedback effect of real-time
air pollution is considered in numerical weather prediction models, may have a non-
negligible impact on the forecast bias of temperature and precipitation, and many weather
systems such as Madden–Julian oscillation (MJO), intertropical convergence zone (ITCZ)
and monsoon systems [23–26], there are fewer studies for understanding the specific impact
of air pollution on the regional or local weather forecast performance from the perspective
of real-time and operational NWP models, especially for the seriously polluted BTH region.

In a short period of time, an operational NWP system should be generally stable in its
forecasting skills. Theoretically speaking, without the real-time meteorology–chemistry
coupling effects, the NWP model is unlikely to adjust promptly to their forecasting capa-
bilities with the different air pollution levels in time. Due to the spread of coronavirus
disease (COVID-19), the strict industrial production and transportation restrictions and
quarantines were executed, approximately, since the end of January in most of China and
then many other countries, which led to an obvious reduction in pollutant emissions and
improvement of air quality [27,28]. The spaceborne NO2 column observations revealed
unprecedented decreases of NO2 over China, South Korea, Western Europe and the U.S. as
a result of public health measures enforced to contain the coronavirus disease outbreak in
January–April 2020 [29]. The concentrations of other pollutants such PM2.5, SO2 and CO
also decreased significantly during this period in China, especially in BTH, which will be
presented below based on the hourly station observations.

It is scientifically important to understand whether the unexpected significant decrease
in pollutants (especially the aerosols, i.e., PM2.5) would cause a discernable impact on
weather forecasts over the BTH region during this period. A systematic understanding of
the forecast bias driven by pollution is beneficial to improve the temperature prediction
skill, and even further to serve the accurate prediction of pollutant concentration based
on diverse forecasting methods, such as machine learning or AI (artificial intelligence)
models [30–32]. Therefore, the purpose of this study is to investigate the possible influence
of unexpected significant changes in pollutant concentration in a short period of time on the
temperature prediction skill in BTH based on the operational NWP models. The possible
associations between the meteorological condition, air pollutant and temperature forecast
are also preliminary explored in the study.

The rest of this paper is organized as follows. Section 2 describes the data and methods
used and the case selection. The pollutant concentration changes and the comparison of
temperature prediction performance based on different NWP models are presented in
Section 3. Section 4 discusses the possible physical links involved in the meteorological
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condition and temperature prediction skills. Finally, the main conclusions are summarized
in Section 5.

2. Data and Method
2.1. Research Area and Period

This study is focused on the BTH region (Figure 1) for mainly two reasons. One is
that BTH is one of the regions with the most serious air pollution in China and thus with
typical representativeness. The second is that BTH is the main service area of the regional
NWP model (RMAPS) operated by the author’s team, whose data of real-time forecast and
observations are readily accessible.
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In view of the main research objective, it is important that the research period or
case should be featured with the dramatically and unexpectedly changes (increase or
decrease) of atmospheric pollutant concentration in a short time. Due to the strict industrial
production and transportation restrictions and quarantines amid the sudden outbreak
of coronavirus disease (COVID-19), the air pollutant concentrations in BTH significantly
dropped in February than those in January 2020 [28,29]. Therefore, the comparative analysis
of this study is concentrated in January and February 2020.

2.2. NWP Forecast Data and Observations

RMAPS is an operational regional NWP model and has been running on the high-
performance computer of Beijing Meteorological Bureau since 2015. It was developed
by the Institute of Urban Meteorology in the China Meteorological Administration in
collaboration with the National Center for Atmospheric Research (NCAR). RMAPS is built
based on the advanced research WRF (ARW) model and WRF data assimilation (WRFDA)
of version 3.8.1 [33,34]. In addition to the temperature forecast data at different lead times
from the RMAPS operations, the daily updated temperature forecast data from European
Centre for Medium-Range Weather Forecasts (ECMWF, also use EC for short in the text)
were also examined for comparison.

The hourly temperature observation data and other meteorological variables (e.g.,
relative humidity, wind speed and cloud cover) during January–February 2020 from
44 synoptic meteorological stations were obtained from China Meteorological Admin-
istration. Moreover, the hourly concentrations of air pollutants (including PM2.5, SO2,
NO2, and CO) at 76 environmental stations operated by the Ministry of Environmental
Protection of the People’s Republic of China were also used in the study. Most of these
environmental and meteorological stations are located in the urban areas of 13 cities in the
BTH region (Figure 1). Concretely, they are Beijing (BJ), Tianjin (TJ), Shijiazhuang (SJZ),
Baoding (BD), Langfang (LF), Tangshan (TS), Handan (HD), Hengshui (HS), Qinhuangdao
(QHD), Cangzhou (CZ), Xingtai (XT), Chengde (CD), and Zhangjiakou (ZJK), respectively.
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2.3. Method

Commonly used statistical methods, such as contrastive analysis and composite
analyses with a two-tailed Student’s t-test were applied in this research. In order to simply
characterize the deviation or bias of the prediction from the observed value, we defined a
PMO index, namely

PMO = Tprediction − Tobservation (1)

Here, Tpredicton and Tobservation indicate the predicted and observed temperatures,
respectively. The significance of the PMO index is that, positive PMO indicates the predicted
temperature is higher than the observed, namely the NWP model forecast overestimates
the temperature. On the contrary, negative PMO means that the predicted temperature is
lower than the observed, namely the NWP model forecast underestimates the temperature.

And then a dPMO index is designed to denote the difference of the mean PMO in
February and January,

dPMO = PMOFebruary − PMOJanuary (2)

Here, PMOJanuary and PMOFebruary indicate the mean PMO in January and February,
respectively. The dPMO index reflects the difference of the model’s temperature forecast
bias between February and January. When dPMO > 0, the forecast deviation in February
is greater than that in January. On the contrary, if dPMO < 0, the forecast deviation in
February is less than that in January.

In order to understand the change of forecast performance more intuitively, we further
calculated the root mean square error (RMSE) between the forecast temperature and
observation for the daily mean, maximum and minimum temperature at different lead
times, respectively. The calculation formula of RMSE is

RMSE =

√
1
N∑N

i=1 (T prediction − Tobservation

)2
(3)

where Tobservation and Tprediction denote the observed and predicted temperatures, respec-
tively. The difference of RMSE can comprehensively reflect the variation characteristics of
temperature prediction skill in January and February in the BTH region, without being
affected by positive or negative phase of the deviation.

In addition, a linear fitting equation based on the least square method is used to
reflect the response function between the predicted temperature and the observation. The
equation is as follows:

Tprediction = α × Tobservation + β (4)

where β is a constant, and α the regression coefficient. Generally, the closer to 1 α is, the
better the prediction effect is.

3. Results
3.1. Characteristics of Pollutant Concentration Changes over the BTH in January and
February 2020

Based on the hourly pollutant records at the 76 environmental stations, the monthly
mean PM2.5, SO2, NO2, and CO concentrations in BTH in January and February 2020 were
calculated. The results show that the mean PM2.5 concentrations in BTH were 99.0 µg/m3

(varying from 32.7 µg/m3 to 150.8 µg/m3 among the 13 cities) and 60.9 µg/m3 (varying
from 39.3 µg/m3 to 79.6 µg/m3) in January and February, respectively. The mean PM2.5
concentration of these cities in February was 38.5% lower than that in January. There were
few differences in the change of pollutant concentration between daytime and nighttime.
The variation characteristics of SO2 and CO concentration were basically the same as that
of PM2.5 concentration (Table 1). The mean SO2 and CO concentrations of these cities in
February were 35.1% and 33.1% lower than those in January, respectively. The reduction
in NO2 concentration was more dramatical, with the mean concentration of the 13 cities
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dropped by 48.0%. Moreover, the decrease of NO2 concentration in daytime (−50.2%)
was significantly greater than that in nighttime (−46.2%). This is likely because the NO2
concentration depends more on vehicle exhaust emissions, which is more concentrated in
the daytime due to people’s daily life.

Table 1. The monthly mean pollutant concentration and the percent change of that in February with
respect to January.

January February Percentage

PM2.5

All day long 99.0 60.9 −38.5%

Daytime 93.4 57.4 −38.6%

Nighttime 104.6 64.4 −38.4%

SO2

All day long 17.4 11.3 −35.1%

Daytime 18.5 12.0 −35.3%

Nighttime 16.3 10.6 −34.9%

NO2

All day long 50.3 26.2 −48.0%

Daytime 45.6 22.7 −50.2%

Nighttime 55.1 29.7 −46.2%

CO

All day long 1.61 1.08 −33.1%

Daytime 1.58 1.06 −32.6%

Nighttime 1.65 1.09 −33.6%
Daytime indicates the hours from 8 a.m. to 19 p.m.; Nighttime indicates the time from 20 p.m. to 7 a.m.; all day
long means all 24 h of each day; the unit of PM2.5, SO2 and NO2 is µg/m3 while the unit of CO is mg/m3.

To understand the general variation characteristics of the pollutant concentration in
the BTH region during the period, we first examined the concentrations of PM2.5, SO2,
NO2 and CO in the 13 cities during the period January to February (Figure 2), respectively.
Firstly, combined with the spatial distribution of the 13 cities in BTH, it is shown that the
high concentrations were mainly concentrated in central and southern BTH in both January
and February. Secondly, from the perspective of day-by-day variations, most of the cities in
BTH region had a significant decrease in pollutant concentrations in February compared
with January, especially the concentration of PM2.5 (Figure 2a) and NO2 (Figure 2b). Among
them, the concentration of NO2 decreased the most, reaching −48.0%. As far as daytime and
nighttime are concerned, the percentage or magnitude of pollutant concentration changes
in February is roughly the same as that in January, although there are some differences or
exceptions (Table 2). One exception, for example, is that the PM2.5 concentration in Beijing
in February 2020 was slightly higher than that in January. In addition, both of PM2.5 and
CO concentrations in Zhangjiakou in February 2020 were higher than those in January.
These might be attributed to the heavy pollution caused by adverse weather conditions,
which are conducive to the accumulation of pollutants and the formation of secondary
aerosols and then causing an increase in PM2.5.
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Figure 2. The day-by-day variations of PM2.5 (a), NO2 (b), SO2 (c) and CO (d) concentrations in the
13 cities during 1 January to 28 February 2020.

Table 2. RMSE of the predicted Tmean, Tmax and Tmin against the observations in BTH region in
January and February at different lead times.

RMAPS vs. OBS EC vs. OBS

January (◦C) February
(◦C) Change* (%) January (◦C) February

(◦C) Change (%)

24 h

Tmean 1.31 1.08 −17.3 1.08 0.88 −18.5

Tmax 2.50 2.26 −9.8 2.02 1.73 −14.5

Tmin 2.37 1.86 −21.6 2.09 1.65 −20.9

48 h

Tmean 2.65 2.19 −17.4 2.33 1.95 −16.3

Tmax 3.84 3.38 −12.0 3.59 3.05 −15.0

Tmin 3.32 2.68 −19.3 2.75 2.25 −18.1

72 h

Tmean 3.77 3.25 −13.8 3.38 3.07 −9.3

Tmax 4.54 4.05 −10.8 5.10 4.65 −8.8

Tmin 3.62 3.02 −16.5 3.35 3.02 −9.7

(* indicate the percentage change of RMSE of temperature forecast in February relative to January).

Generally, despite some differences existing in the spatial distribution and magnitude
range of change, the mean PM2.5 and other pollutant concentrations in both daytime and
nighttime dropped dramatically in February due to the strict quarantine or lockdown
amid the outbreak of COVID-19. This is consistent with the results of other studies [27,28].
Therefore, the significant decrease of air pollutants in the BTH region in February 2020
compared with January can be considered as an unexpected change.

For an operational NWP system, the great difference of aerosol concentration in a
short time constitutes the different background conditions. Next, we will examine whether
it can cause some variation of the temperature prediction skills based on the regional NWP
system of RMAPS and the global NWP system of ECMWF.
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3.2. Differences in Temperature Forecast Skills between January and February 2020

Figure 3 examines the average PMO of the daily mean temperature (Tmean), max-
imum temperature (Tmax) and minimum temperature (Tmin) with the forecast lead of
24 h (24 h for short) at the 13 cities in BTH in January and February. In January, the spatial
distribution of Tmean PMO showed large spatial variability (Figure 3a); Tmax was gen-
erally underestimated except at the two southernmost cities (Figure 3b) while Tmin was
overestimated at all 13 cities (Figure 3c). Concretely, the PMO of Tmax in January varied
from −2.17 to 0.23 ◦C with an average of −1.15 ◦C. In contrast, the PMO of Tmin in January
varied from 0.06 to 3.36 ◦C with an average of 1.46 ◦C.
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In February, there was no distinct spatial consistency for the positive or negative bias
of both Tmean, Tmax and Tmin (Figure 3d–f) prediction based on RMAPS. That is, the
distinct systematic bias shown in the temperature prediction based on RMAPS model
in BTH in January was markedly reduced in February, where the model bias was city
dependent. Quantificationally, the PMO of Tmax (Tmin) in February varied from −2.91
(−0.61) to 0.20 (1.72) ◦C with an average of −0.62 (0.46) ◦C.

Table 2 presents the root mean square error (RMSE) between the predicted temperature
and the observed temperature to eliminate the effect of bias signs. The RMSE of Tmean,
Tmax and Tmin in January were 1.31 ◦C, 2.50 ◦C and 2.37 ◦C, respectively, while they
were 1.08 ◦C, 2.26 ◦C and 1.86 ◦C in February. That is to say, the RMSE of the daily
mean, maximum and minimum temperature prediction based on RMAPS model in BTH
in February 2020 were 17.3%, 9.8% and 21.6% lower than that in January. Generally, the
absolute deviation and the RMSE of the maximum and minimum temperature prediction
in February were smaller than those in January. Moreover, for the forecasts with longer
lead time (i.e., 48 h and 72 h forecast in advance), this feature is still evident (Table 2).

The PMO of Tmean, Tmax and Tmin in the 24 h forecast at the 13 cities in BTH in
January and February based on the EC model was also examined. As shown in Figure 4,
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the systematic forecast bias of Tmax in January based on the EC model is quite different
from that based on the RMAPS model. However, the overestimation of Tmin in January is
in agreement with RMAPS, except for the underestimation of several cities in the south.
Statistically, the RMSEs of Tmean, Tmax and Tmin based on the EC model were 1.08 ◦C,
2.02 ◦C and 2.09 ◦C in January, respectively, and then decreased to 0.88 ◦C, 1.73 ◦C and
1.65 ◦C in February (i.e., a reduction by 18.5%, 14.5% and 20.9%), respectively. As the
forecast time extended to 48 and 72 h, this phenomenon was also still evident, although
there are slight differences in degree (Table 2). That is, the distinct comparison character-
istics of the bias and RMSE in the two months are generally consistent with those in the
RMAPS model.
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In order to better understand the NWP performance change of temperature forecast
skills in February 2022 relative to that in January and its physical significance, we further
examined the dPMO of the Tmean, Tmax and Tmin with the forecast lead of 24 h (Figure 5),
48 h (Figure 6), and 72 h (Figure 7) based on both the RMAPS and EC models. First of all, it
can be seen that all cities are dominated by negative dPMO of Tmin in the BTH region, and
most of them are significant at 95% confidence level (Figure 5c). However, most of the cities
in BTH are covered by the positive dPMO of Tmax (Figure 5b). For the mean temperature,
almost all the cities are featured by negative dPMO (Figure 5a), but the absolute values
are generally lower than that in the minimum temperature. The negative (positive) dPMO
indicates that the PMO in February is smaller (larger) than that in January, namely the
RMAPS-based temperature forecast deviation was decreased (increased) in February.
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On the other hand, the obvious difference between Figures 3 and 5 is that the PMO of
Tmin in the whole BTH region is positive (Figure 3c), while the dPMO of Tmin is negative
(Figure 5c). As mentioned above, the positive of PMO in Figure 3 suggests that the RMAPS
model overestimated the minimum temperature in January. Thus, the negative value of
dPMO in Figure 5c indicates that, compared with January, the overestimation of the Tmin
by RMAPS was decreased significantly in February. That is, the prediction skill of daily
minimum temperature in February based on RMAPS has been improved. Meanwhile, the
prediction of Tmax based on RMAPS in BTH in January was basically underestimated
(Figure 3b) and was improved generally in February, especially in the central part of BTH
region (Figure 5b). The spatial distribution characteristics and the comparisons of PMO
and dPMO are basically similar when the forecast lead increases to 48 h (Figure 6) and 72 h
(Figure 7).

Figures 8–10 further examine the difference of forecast skills of Tmax and Tmin in BTH
in January and February based on RMAPS using scatter diagrams and fitting equations. It
can be seen that, in both January and February, the dispersion of forecast and observation
increased with the extension of the forecast lead time. That is to say, with the extension
of the forecast lead time, the forecast skills of the model for both Tmax and Tmin were
generally decreased. However, it can be quantitatively known from the fitting equations
whether Tmax or Tmin and the regression coefficients in February are closer to 1 and greater
than those of January. Taking Tmin as an example, for the forecast lead of 24 h, 48 h and
72 h, the regression coefficients of the fitting equation in February are 0.83, 0.77 and 0.68,
respectively, significantly larger than the counterparts in January (0.77, 0.67 and 0.53). This
undoubtedly shows that the forecast skill of the RMAPS model for the daily maximum and
minimum temperatures in the region in February was better than that in January.
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in 48 h forecast lead time in advance.
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We also examine the model’s forecast performance of the temperature diurnal variation
in January and February. Firstly, the observed and RMAPS-predicted temperature diurnal
variations averaged over the 13 cities in BTH in January and February are presented for
different forecast lead times in Figure 11a, Figure 11b and Figure 11c, respectively. Shown
in Figure 11a, an obvious feature is that the RMAPS forecast temperature in January was
significantly higher at 0–10 a.m. (local time) and lower at 1–7 p.m. than the observation.
In contrast, the forecast and observed temperature diurnal variations in February are
intuitively consistent, and the deviations at all times are much smaller than those in January.
With the extension of the forecast lead (Figure 11b,c), although there is a slight difference in
the magnitude of the specific changes, this phenomenon was still evident.

Figure 10. Scatter plots of the observed Tmax (a) and Tmin (b) versus the predicted by RMAPS model
in 72 h forecast lead time in advance.

We also examine the model’s forecast performance of the temperature diurnal variation
in January and February. Firstly, the observed and RMAPS-predicted temperature diurnal
variations averaged over the 13 cities in BTH in January and February are presented for
different forecast lead times in Figure 11a, Figure 11b and Figure 11c, respectively. Shown
in Figure 11a, an obvious feature is that the RMAPS forecast temperature in January was
significantly higher at 0–10 a.m. (local time) and lower at 1–7 p.m. than the observation.
In contrast, the forecast and observed temperature diurnal variations in February are
intuitively consistent, and the deviations at all times are much smaller than those in January.
With the extension of the forecast lead (Figure 11b,c), although there is a slight difference in
the magnitude of the specific changes, this phenomenon was still evident.

The second row in Figure 11 shows the diurnal variation of PMO (Tprediction − Tobservation)
in January and February at the different forecast lead times. It is clear that the RMAPS model
overestimated the nighttime temperature and underestimated the daytime temperature in
January. The turning points were around 11 o’clock in the morning and 20 o’clock in the night,
respectively. In February, the RMAPS model mainly underestimated the average temperature
of the 13 cities throughout the day, with only a few positive deviations around 9 o’clock in the
morning. The deviation mode in February is significantly different from that in January. It is
worth noting that the absolute deviation of the temperature forecast in February is much smaller
than that in January, especially at night.

Meanwhile, it is interesting to note that, regardless of whether the forecast period is
24 h, 48 h, or 72 h, the positive dPMO only appeared from 13 to 17 or 18 o’clock in the
afternoon, and the rest was dominated by negative dPMO. Here, the positive values reflect
the improvement of the underestimation of the daytime temperature forecast, while nega-
tive values indicate the improvement of the overestimation of the nighttime temperature
forecast. That is, the diurnal variation characteristics of dPMO also suggested that the
forecast skill of the RMAPS model for temperature over the BTH region in February was
significantly improved than that in January. These results are basically consistent with
those based on the EC model.
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Figure 11. Diurnal variation of the temperature (a–c) and PMO (d–f) and dPMO (g–i) in BTH region
based on the observation and RMAPS model (the error bars in a, b and c indicate the hourly standard
deviation of 13 cities in BTH region).

Based on the differences in bias, RMSE, spatial distribution and diurnal variation
characteristics of the temperature forecast in January and February over the BTH region, it
can be concluded that the temperature prediction skills in the BTH region, based on both
RMAPS and EC models, were generally improved in February 2020 compared with those
in January, especially for the minimum temperature prediction in nighttime, although the
changes are model- and city-dependent to some extent. In order to understand the possible
association between the improved temperature prediction skills and the reduced aerosol
pollution, the changes and climatology characteristics of temperature, relative humidity,
wind speed, cloud cover in January and February in BTH are discussed in the following.

4. Discussion

Why did the NWP performance in the temperature forecast over the BTH region differ
greatly between January and February 2020? Generally speaking, in a relatively short period,
without major upgrades or changes in an operational NWP system, the ability to predict a
certain meteorological element should be basically the same. The significant change in the
forecast skill might be related to the abnormal external influence. Therefore, it is necessary to
explore whether this phenomenon is related to the response of meteorological conditions to
the unexpected and significant changes in air pollutant concentrations.
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Figure 12 examines the mean air temperature at 2 m (T2) of January and February
in 2020 and 2010–2019 and their differences are based on the hourly observations at the
44 synoptic meteorological stations located in the 13 cities. Whether in all day time (A),
daytime (D) or nighttime (N), the climatological temperature in February and the tempera-
ture in February 2020 are higher than that of January. For the climatological temperature,
the mean daytime (nighttime) T2 in January is −1.6 (−5.5) ◦C with the standard deviation
of 1.9 (1.7) ◦C; while the mean daytime (nighttime) T2 in February is 1.9 (−2.4) ◦C with
the standard deviation of 1.4 (1.3) ◦C, respectively. For the temperature in 2020, the mean
daytime and nighttime T2 were 0.2 and −4.0 ◦C in January, and 3.8 and −0.2 ◦C in February,
respectively. The increase of the monthly mean temperature in February relative to January
is a climatic feature due to the seasonal variations of the solar radiation. On the other hand,
both daytime and nighttime temperatures in January and February 2020 are significantly
higher than the climatic means, which is likely to be attributed to the background of global
and regional climate warming.
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Figure 12. Then, mean T2 in January (a) and February (b) in 2020 (red dots) and their climatological
values (grey histograms), and the differences of T2 in January and February (c) (A, D and N denote
All day long, Daytime and Nighttime, respectively; Jan and Feb are abbreviations of January and
February, respectively; Feb-Jan means the temperature difference between February and January; the
red dots represent the temperature in 2020; the blue squares indicate the temperature anomaly of
2020 relative to the climatic state; the error bars of the gray histogram represent temperature variance
of the 13 cities in BTH).

Therefore, it is necessary to exclude the effects of seasonal variations and climate
warming when examining the differences of the temperature anomalies in January and
February. Concretely, the anomaly daytime T2 of January and February 2020 were 1.63 and
2.30 ◦C, respectively, while the anomaly nighttime T2 of January and February 2020 were
1.54 and 1.50 ◦C, respectively. The anomaly daytime T2 deviation from February to January
in 2020 was 0.67 ◦C, and the anomaly nighttime T2 deviation from February to January in
2020 was −0.04 ◦C.

The variations of the temperature anomaly in February and January are probably
related to the changes in synoptic-scale weather factors, including relative humidity (RH),
wind speed (WS), cloud cover (CLOCov), as well as chemical composition of the atmo-
sphere. In addition, the variation of surface ground temperature in January and February
2020 also showed the similar comparative characteristics. The relatively high daytime
temperature anomaly in February 2020 is likely related to the significant reduction of air
pollutant concentration caused by epidemic controls [27,29]. A possible mechanism is
that, the improvement of air quality largely means the decrease of aerosol concentration
(i.e., PM2.5) in the atmosphere and thus less scattering and reflection of solar shortwave
radiation, which is conducive to the increase of near-surface temperature. Although the
temperature anomaly at night in February changed little compared with that in January,
only −0.04 ◦C, it seemed to be consistent with the interaction mechanism of air pollution
and temperature. Due to the decrease of aerosols, the blocking and absorption effects of the
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near-surface atmosphere on the outgoing longwave radiation (OLR) from ground at night
will be weakened, thus reducing the ground temperature at night.

The anomaly of temperature may also be related to relative humidity, wind speed,
cloud cover, and other factors. Here, the variations of RH, WS, and CLOCov in daytime
and nighttime in January and February are also examined, respectively. In terms of the
climatological statistics, the daytime RH in February in BTH is lower than that in January,
and the change at night is not obvious; and both the daytime and nighttime WS and
CLOCov in February were higher than those in January (gray bars in Figure 13).
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Figure 13. Differences of CLOCov (a), WS (b) and RH (c) in February compared to January (the red
circles represent the observations in 2020; the blue squares indicate the anomaly of 2020 relative to
the climatic state; the error bars of the gray histogram represent variance of the 13 cities in BTH).

As for the actual observed cloud cover in 2020, the cloud cover was slightly larger
during the daytime and smaller during the nighttime in February than that in January (red
dots in Figure 13). However, from the comparison of monthly anomalies (blue squares in
Figure 13), the daytime clouds and night clouds in February 2022 were obviously fewer
than those in January 2020. The possible mechanism of the cloud on the surface temperature
is likely consistent with that of aerosols-temperature relations, although there are a lot of
uncertainties in aerosol and cloud feedbacks [35,36]. Moreover, the increases of northerlies
in nighttime and southerlies in daytime can cause a cooling in nighttime and warming
in daytime, respectively (Figure 13b). And a reduction of RH in nighttime can be also
beneficial to the increase of OLR and the surface cooling (Figure 13c).

Generally, the anomalous warming in daytime and cooling in nighttime in February
2020 are well consistent with changes of aerosol and meteorological factors in BTH, although
the causal relationship between temperature variability and meteorological conditions is
complex and highly uncertain. In theory, the effects of air pollutant concentrations on
temperature can be achieved by an online-coupling meteorology–chemistry model, such as
the WRF-Chem. Therefore, based on the online-coupling meteorology–chemistry model
and the near authentic pollutant emission data, and with the assimilation of aerosol or not, a
series of sensitivity numerical simulations are required to uncover the possible mechanism
behind this phenomenon and improve the temperature forecasting skills.

5. Conclusions

Due to the strict industrial production and transportation restrictions and quarantines
amid the outbreak of coronavirus disease (COVID-19), the air pollutant concentrations
in BTH significantly dropped in February 2020 compared with that in January. This
study is to explore whether this sudden significant background change will affect the
NWP performance prediction. Based on a large number of air quality and meteorological
observations, as well as the forecast data derived from a regional (RMAPS) and global
(ECMWF) real-time operational NWP models, a series of quantitative and qualitative
analyses were performed. The main conclusions are summarized as follows.

(1) The air pollutant concentrations over the BTH in February 2020 were dramati-
cally lower than that in January. For example, the concentrations of PM2.5 and NO2 were
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decreased by 38.5% and 48.0%, respectively. Simultaneously, after removing the clima-
tological signal, the BTH region experienced an anomalous warming in daytime and an
anomalous cooling in nighttime in February, respectively. The warming and cooling trends
are generally consistent with changes of cloud cover, wind speed and relative humidity.

(2) The forecast performance of NWP models for daily maximum (Tmax) and min-
imum (Tmin) temperature over the BTH in February 2020 was significantly improved
compared with that in January. In 24 h forecast lead time in advance, the root mean square
errors (RMSE) of Tmax and Tmin prediction based on RMAPS in February were 9.8% and
21.6% lower than those in January, respectively. This phenomenon basically existed when
the forecast lead time extended to 48 h and 72 h. And a similar result was also presented in
the operational global ECMWF model.

(3) It is suggested that the temperature forecasting skill based on NWP models in
February 2020 was generally improved, and this might be partly attributed to the significant
reduction of aerosol pollutant concentrations in a short period of time, although the specific
effect of aerosols on temperature prediction is likely to be regional- and model-dependent.
The possible links deduce that less aerosols in daytime are beneficial to more solar radiation
and a warming in the near-surface temperature. Contrarily, less aerosols in nighttime are
not conducive to stop the outgoing long-wave radiation and lead to a cooling near the
ground. The response mechanism of these meteorological conditions to the changes of
aerosol concentrations is likely to be the reason for the improvement of NWP model’s
temperature prediction skills in February. Therefore, a further study with a series of
sensitivity numerical simulations based on an online-coupling meteorology–chemistry
model is warranted for better understanding of the detailed mechanism.
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