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Abstract: It is increasingly recognized that the generic climate state is a macroscopic manifestation
of a nonequilibrium thermodynamic (NT) system characterized by maximum entropy production
(MEP)—a generalized second law. Through a minimal tropical/polar-band model, I show that
MEP would propel low clouds to polar bands to symmetrize the planetary albedo, a remarkable
observation that may now be explained. The prognosed polar albedo is consistent with the current
observation, which moreover is little altered during the ice age of more reflective land and the
early Triassic period of symmetric land, suggesting its considerable stability through Earth’s history.
Climate models have not replicated the observed albedo symmetry and, given the potency of MEP in
propelling clouds, it is suggested that to improve climate models, a higher premium be placed on
resolving eddies—thereby encapsulating the NT—than detailed cloud physics.

Keywords: albedo symmetry; cloud distribution; nonequilibrium thermodynamics; maximum
entropy production

1. Introduction

Despite skewed land partition between hemispheres, which would produce several
Wm−2 difference in the reflected shortwave (SW) flux, the observed one is more than an or-
der of magnitude smaller due to the compensating effect of clouds [1,2]. The compensation
amounts to albedo symmetrization to within 3× 10−4 or 0.1% of its global value, which
obviously cannot be incidental [3] but is likely propelled by some potent yet unsuspecting
physics. As the cloud is a primary regulator of the solar energy entering the climate system,
resolving this puzzle is not just of intellectual interest, but imperative to our ability in
predicting the climate [4]. Yet climate models fall far short of replicating the observed
albedo symmetry with intermodel spread exceeding that of the doubled pCO2 [1,5], raising
significant questions about their quantitative prediction of climate change.

Possible compensating mechanisms by clouds have been proposed, including a shift of
the Inter-Tropical Convergence Zone (ITCZ) and its accompanying cloud toward the darker
hemisphere [6–8]. The degree of the shift, however, depends on the convective scheme and
the mixed-layer depth, so it cannot explain the exactness of the compensation. While the
southern storm track is noted to be cloudier [2], no mechanism is offered for such local
concentration of clouds, nor for its symmetrization of the planetary albedo. Conjecture
has also been offered by [1], which is predicated on zero cross-equatorial heat flux and
symmetric surface temperature. Both, however, are assumed not argued. The observed
albedo symmetry thus remains an open question, which prompts the present inquiry.

Because of the inherent turbulence of planetary fluids, it is increasingly recognized
among climate theorists that the observed climate state is a macroscopic manifestation of a
nonequilibrium thermodynamic (NT) system hence characterized by maximum entropy
production (MEP)—a generalized second law. Readers are referred to [9,10] for reviews
of MEP, whose physical basis remains debated [11] but is significantly strengthened by its
recent linkage to the fluctuation theorem [12]—as the latter is of considerable mathematical
rigor and has been tested in the laboratory [13,14]. For computational supports, MEP has
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emerged from general circulation models [15–17], and a direct numerical simulation (DNS)
of horizontal convection [18] has reproduced its signature feature (a mid-latitude front)
absent from laminar models [19]. With these positive results, we are justified to explore its
possible resolution of the present puzzle.

Applying MEP in a global-mean model, [20] has demonstrated that the global cloud
would self-adjust to maintain a habitable planet—the latter being constrained by the
intrinsic water property (Clausius–Clapeyron relation), thus resolving the “faint young
Sun paradox” [21]. The prognosed low-cloud is substantial, spanning half the global
surface, as is the observed case; and with the global cloud deductively known, I shall now
apply MEP in a latitudinal model to examine its spatial tendency, particularly whether it
may symmetrize the hemispheric albedo. For a question as rudimentary as hemispheric
symmetry, it should be exploitable by a minimal box model, as attempted here. In the
following, I shall first set up the model in Section 2 and apply MEP sequentially to derive a
unique solution of symmetric albedo. In Section 3, I shall discern various model regimes in
prognosing the albedo and its parameter dependence. I conclude the paper in Section 4.

2. Box Model

Our box model is sketched in Figure 1 in which the coupled ocean/atmosphere is
divided by 30 degrees latitude into symmetric warm/cold bands of equal area. This
configuration represents a minimal description of the observed state with the ocean boxes
divided by the main thermocline that outcrops as the subtropical front, and the atmospheric
boxes corresponding to the tropical/polar airmasses separated by the polar front. The
two bands will be referred to as tropical/polar for convenience—recognizing that the
tropical band entails the customary tropical/subtropical zones, and the polar band, the
subpolar/polar zones. Physically, such box configuration emerges from the mixing of
planetary fluids when they are subjected to differential solar heating, which naturally
symmetrizes thermal properties, including cloud albedo, within the tropical band. More
puzzling, however, is the equal albedos of the polar bands, which are segregated from
each other to be deprived of direct dynamical connection; such spatial separation, however,
presents no hindrance to thermodynamic linkage as MEP is a global property.
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Figure 1. Model configuration in which the coupled ocean/atmosphere is divided into symmetric
tropical/polar-bands of equal area, tagged numerically by 1/0/2 proceeding north. The external
forcing is the symmetric incident SW flux (q∗), which is reflected by land (l) and cloud (c) before
absorbed by the ocean (q). The ocean heats the atmosphere differentially via the convective flux
(qc ) proportional to the sea/air temperature difference (T − Ta ) and the heat exits the system via
outgoing LW flux (qOLR ).
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As a minimal model, I retain only dominant heat balances, so the system is heated
differentially by symmetric incident SW flux (q∗, all symbols are listed in Appendix A),
which is reflected by land (l) and cloud (c) before being absorbed by the ocean (q); the ocean
heats the atmosphere differentially via convective flux (qc) proportional to the difference
of the sea-surface temperature (SST, T) and the surface-air temperature (SAT, Ta), and
the heat is lost to space via outgoing longwave (LW) flux ( qOLR). For simplicity, I have
neglected the atmospheric SW absorption, and the latitudinal variation of the surface and
outgoing LW fluxes, the latter being considerably smaller than the retained differential
fluxes (q and qc) [22] (their figures 8.4 and 8.19). In our convention, external variables
are starred, global-means and deviations are overbarred and primed, respectively, and
numerical subscripts 1/0/2 pertain to individual bands proceeding from south to north.

All areas are expressed in fractions of the global surface, so the albedo effect within
individual bands needs to be divided by their widths: 1/2 and 1/4 for the tropical and
polar bands, respectively. Subjected to the symmetric incident SW flux, the radiative forcing
(the absorbed SW flux) thus is

q0 = q∗0(1− 2a0), (1)

qi = q∗1(1− 4ai) i = 1, 2, (2)

where the planetary albedo ai consists of land/cloud components as

ai = rl li(1− εi) + rcci i = 0, 1, 2, (3)

with li/ci being land/cloud areas, rl/rc, their reflectance, and εi, the fractional land masked
by clouds, all are prescribed except the prognostic ci and εi. Given the terrestrial source of
the aerosol [23] (their figure 9a), its reflectance can be absorbed into the land reflectance,
which is assigned a single value, and I have neglected the secondary SW reflection from
the overcast land. We define the global-means (also for T and Ta)

q ≡ q0/2 + (q1 + q2)/4, (4)

and deviations
q′i ≡ qi − q i = 0, 1, 2, (5)

so that
2q′0 + q′1 + q′2 = 0, (6)

and, with δ being the variational operator,

2δq′0 + δq′1 + δq′2 = 0. (7)

Since MEP is a selection rule, it can be applied sequentially in the following sub-
sections to remove degrees-of-freedom (DOF) of the problem, culminating in the final
unique solution.

2.1. Surface-Air Temperature

We first apply MEP to the atmosphere to constrain the SAT (Ta). For a steady state, the
entropy produced by irreversible processes (σa) must exit the boundary via entropy flux
(heat flux divided by temperature), which consists of two components [24]:

σa = −
x

(q c/Ta − qr/Tr) dA, (8)

a convective flux (qc) entering at the SAT (Ta) and the atmospheric LW cooling (qr) at
the effective cooling temperature (Tr) that is approximately 0.8 Ta [25]. To determine the
differential SAT (T′a) that maximizes (8), we assume T′a � Ta to linearize 1/Ta and, with
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the previously stated energy balance, we need to consider only differential convective flux
given by

q′c = α∗
(
T′ − T′a

)
, (9)

where α∗ is the air/sea transfer coefficient augmented to include the latent heat [12].
Removing the global mean from (8) and applying the box approximation, the differential
entropy production thus varies as (henceforth the symbol ‘∼’)

σ′a ∼
1
2
(
T′0 − T′a,0

)
T′a,0 +

1
4∑2

i=1 (T
′
i − T′a,i

)
T′a,i. (10)

Maximizing this entropy flux with respect to T′a and applying the corresponding (7),
we derive

0 = ∑2
i=1[

(
T′0 − 2T′a,0

)
− (T ′i − 2T′a,i

)
]δT′a,i, (11)

which yields
T′0 − 2T′a,0 = T′i − 2T′a,i i = 1, 2. (12)

Summing the two equations of (12) and substituting its right-hand-side from the corre-
sponding (6), we derive that the two sides of (12) are identically zero or

T′a,i = T′i /2 i = 0, 1, 2. (13)

Since the differential convective flux (9) is what drives the atmospheric heat transport,
one expects the ratio T′a,i/T′i to lie in the range [0, 1] for a coupled system, it is nonetheless
interesting that MEP would select a mid-point value, which, as seen later, has a significant
implication on the poleward heat transport.

2.2. Sea-Surface Temperature

Having removed the DOF associated with the SAT, we next apply MEP to the ocean to
constrain the SST. Subjected to (9) and (13), the ocean heat flux is

q′i − q′c,i = q′i − α∗
(

T′i − T′a,i

)
= q′i − α∗

(
T′i /2

)
i = 0, 1, 2.

(14)

Since irreversible entropy production of the ocean equals the entropy flux exiting its upper
surface, applying the same approximations as the atmosphere, the ocean counterpart to
(10) is

σ′ ∼ 1
2
(
q′0 − α∗T′0/2

)
T′0 +

1
4∑2

i=1

(
q′i − α∗T′i /2)T′i . (15)

Varying this entropy flux with respect to T′i , setting it to zero on account of MEP, and
applying the corresponding global constraint (7) then yield

0 = ∑2
i=1[

(
q′0 − α∗T′0

)
− (q ′i − α∗T′i)]δT′i , (16)

so that
q′0 − α∗T′0 = q′i − α∗T′i i = 1, 2. (17)

Applying again the global constraint (6) on q′i and T′i , the two sides of (17) are identically
zero so that

q′i − α∗T′i = 0 i = 0, 1, 2, (18)

or
T′i = q′i/α∗ i = 0, 1, 2. (19)

The MEP thus yields a differential SST linear in the forcing. For a cursory check,
setting the air/sea transfer coefficient α∗ = 15 Wm−20C−1 [12], a differential forcing range
of 300 Wm−2 would produce a temperature range of 20 ◦C, which is commensurate with
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that observed [26] (their figure 8.8a). As a further observational test, we note that (9), (13)
and (19) yield

q′c,i = α∗
(
T′i − T′a,i

)
= α∗T′i/2 = q′i/2, (20)

and, subjected to the global balance

q = qc = qOLR, (21)

the heat transport of the ocean into the polar band is

Fo,i = qc,i − qi = q′c,i − q′i = −q′i/2, (22)

and that of the atmosphere is

Fa,i = qOLR − qc,i = −q′c,i = −q′i/2 (23)

noting that q′OLR = 0 (Section 2). The total poleward heat transport at mid-latitudes thus is
equi-partitioned between ocean and atmosphere, in broad agreement with observation [26]
(their figure 13.19).

2.3. Albedo Symmetry

Having removed the DOF associated with the SST, the differential entropy flux (15)
contains only the forcing

σ′ ∼ 2 q′0
2
+ q′1

2
+ q′2

2. (24)

Defining the hemispheric asymmetry by the symbol ∆ so that, as a place setter,

∆q′ ≡ q′1 − q′2, (25)

(24) can be expressed as, applying the global constraint (6),

σ′ ∼ 4 q′0
2
+ ∆q′2/2, (26)

with the constraint that ∣∣∆q′
∣∣ ≤ 2q′0 (27)

since polar forcings are lower than the global mean. Regardless of ∆q′, (26) implies that a
maximum σ′ is predicated on a maximized tropical forcing q′0 or

δq′0 = 0. (28)

Subjected to this constraint, a stationary MEP state yields additionally

δσ′ = ∆q′δ∆q′ = 0, (29)

which implies
∆q′ = 0. (30)

We have thus shown that a stationary MEP state should be characterized by both maximized
tropical forcing (28) and equalized polar forcings (30).

Now that the incident SW flux is symmetric, (2) leads immediately to

a1 = a2. (31)

That is, regardless of the asymmetric land, so long as there is sufficient cloud (see Section 3),
it would exactly compensate this asymmetry to equalize the polar albedos. Physically, with
the tropical forcing already maximized by MEP and an entropy production quadratic in the
polar forcing (24), the MEP state can be maintained only if the polar forcing is symmetric.
This remarkable observation thus may be explained by MEP, the main thrust of the study.



Atmosphere 2023, 14, 1243 6 of 14

2.4. Cloud Partition

Subjected to (30), Equations (1), (2), (4) and (5) yield a tropical forcing of

q′0 ∼ q∗0(1− 2 a0)− q∗1(1− 4a1), (32)

whose maximization (28) has two immediate consequences. First, it minimizes the tropical
albedo (a0), so other than those generated by local processes, such as in the ITCZ and over
the cooler eastern subtropical ocean, low-clouds that dominate the cloud albedo would be
expelled to polar bands. As such, their polar-total

c∗ = c1 + c2 (33)

may be regarded as known from global balance (Section 1). Recalling that our polar bands
consist of areas poleward of 30 latitudinal degrees, this deduction is highly discernable
from observed stratus distribution [27] (their figure 2). Second, it maximizes the polar
albedo (a1), so the overlapped land/cloud areas

εi are minimized i = 1, 2. (34)

That is, high-latitude stratus would saturate the ocean area before they mask the land,
a deduction discernible from observation as well [28] (their figure 4).

3. Model Regimes

Having deduced the above tendency of cloud, I shall next prognose the quantitative
albedo to be tested against observation. For this purpose, I summarize in Figure 2 the
model regimes when the polar-total cloud increases from zero. The solid bars represent
southern and (larger) northern lands, the open fluffy bars are clouds, and the two columns
are their albedos and areas, respectively.

It is seen that only when the polar-total cloud albedo exceeds the asymmetry of the
land albedo would the planetary albedo be symmetric, as indicated by the aligned dashed
lines in the albedo column; the combined land/cloud areas (or ‘combined areas’ for short),
however, remain unequal because of their differing reflectances. The symmetric regime
is subdivided into three regimes depending on cloud-masking of the land (stripped): ‘un-
masked’, ‘uni-masked’ (only the northern land) and ‘bi-masked’ (both polar lands), which
are separated by their onset thresholds. Only in bi-masked regime when combined areas
have saturated the band areas (that is, 1/4) would they be equal.

Like the cloud cover (33), we define the polar-total land by

l∗ ≡ l1 + l2, (35)

and, based on following derivations, construct a regime diagram (Figure 3) spanned by
the polar-total cloud/land areas l∗/c∗ for the standard case [rl , rc, ∆l] = [0.3, 0.6,−0.1] (see
Section 3.5). The four regimes and their dividing thresholds (thick solid lines) correspond
to that depicted in Figure 2, and the calculated polar-total albedo a∗ and masking fractions
εi are shown in thin solid/dashed lines, respectively. For the polar-total albedo, its 0.3 value
overlies the right ordinate, and for the masking fraction, its zero/unity values align with
the respective regime boundary and the right ordinate, respectively. The solid rectangle
represents the current case, and the shaded region lies outside the model domain.
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and the shaded region lies outside the model domain.
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3.1. Asymmetric Regime

As seen in Figure 2a, the asymmetric regime is when the polar-total cloud albedo is
smaller than the asymmetry of the land albedo, or

rcc∗ ≤ rl |∆l|. (36)

Defining the reflectance ratio
r ≡ rl/rc, (37)

the threshold for the onset of the symmetric (un-masked) regime thus is

c∗un = r|∆l|, (38)

and, without the masked land, the polar-total albedo is simply

a∗ = rl l∗ + rcc∗, (39)

as plotted in Figure 3. For the standard case, the asymmetric regime is seen to be limited to
cloud cover of less than 0.05, which is an order of magnitude smaller than the observed
one, so for all practical purposes the polar albedo should be symmetric, which thus is a
robust feature of MEP.

3.2. Un-Masked Regime

In the un-masked regime, the symmetric albedo (Figure 2b) implies

∆a = rl∆l + rc∆c = 0, (40)

so that
∆c = −r∆l, (41)

or the asymmetric land albedo is wholly removed by the opposite asymmetry in the cloud
albedo. The polar-total albedo (39) is shown in thin lines, which expectedly increases
linearly with increasing polar-total cloud and land areas, but more strongly with the former
because of the higher cloud reflectance.

The un-masked regime terminates when the larger sum of land/cloud areas has
saturated the polar band, so the cloud, being confined to the polar band by MEP, would
begin to mask the land. Because the cloud has smaller asymmetry than the land (41), this
masking occurs first in the polar band with larger land (the northern one in the standard
case). Since individual land/cloud areas can be expressed as

l1,2 = (l∗ ± ∆l)/2, (42)

and
c1,2 = (c∗ ± ∆c)/2, (43)

the cloud threshold for the onset of ‘uni’-masked regime thus satisfies

(l∗ + |∆l|)/2 + (c∗uni − |∆c|)/2 = 1/4, (44)

or, substituting from (41),

c∗uni = 1/2− l∗ − (1− r)|∆l|, (45)

as indicated by the thick line separating the uni-masked from the un-masked regimes.
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3.3. Uni-Masked Regime

In the uni-masked regime, the masking fraction ε2 satisfies (see Figure 2c)

(1− ε2)l2 + c2 = 1/4, (46)

with the corresponding polar albedo

a2 = rl(1− ε2)l2 + rcc2. (47)

Since the southern land remains unmasked, its albedo is

a1 = rl l1 + rcc1. (48)

Eliminating masking fraction from (46) and (47) and equating (47) and (48) yields

∆c =
r

1− r/2

[
1
4
−

(
l1 +

1
2

c∗
)]

, (49)

which allows the calculation of c1 and c2 from (43), ε2 from (46) and polar-total albedo from
twice of (48), as shown in Figure 3. From this expression, we see that an expanding cloud
would be increasingly apportioned to the northern band to shade the excess land.

The uni-masked regime terminates when the sum of the southern land and cloud
areas also attains 1/4 to enter the bi-masked regime. To derive this threshold, it is easier to
first solve for the bi-masked regime and then determine its lower boundary.

3.4. Bi-Masked Regime

In the bi-masked regime, the southern masking fraction ε1, as its northern counterpart
(46), satisfies

(1− ε1)l1 + c1 = 1/4, (50)

with the corresponding albedo

a1 = rl(1− ε1)l1 + rcc1. (51)

Eliminating both masking fractions from (47) and (51) yields

ai = rl/4 + (rc − rl)ci i = 1, 2, (52)

and equating them on account of the symmetry yields

∆c = 0, (53)

so that
ci = c∗/2 i = 1, 2. (54)

That is, since both polar bands are saturated by the combined area, the albedo symmetry
demands the same cloud and exposed land areas, as seen in Figure 2d. As the cloud is
now evenly partitioned between polar bands, its removal of the land asymmetry is not by
opposite asymmetry, as in the un-masked regime, but by its equalization of the exposed
land area. The masking fractions of the two bands can be calculated from (46) and (50) and
polar-total albedo from (52), as shown in Figure 3. Since the asymmetric land has dived
under cloud, the polar-total albedo no longer senses the land asymmetry, as seen in its
vertical orientation.

Setting ε1 = 0 in (50), we derive the cloud threshold for the onset of the bi-masked regime

c∗bi = 1/2− l∗ + |∆l|. (55)
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In contrast to uni-masked threshold (45), it is a function only of the smaller polar land (l1),
independent of the reflectance: the smaller this land, the greater the cloud threshold before
it is masked.

3.5. Parameter Dependence

The solid rectangle in Figure 3 represents the current condition based on the following
sources. From [29] (their figure 1.12), we set the land partitions [l0, l1, l2] = [0.1, 0.05, 0.15],
so the land occupies 30% of the global surface with a polar-total of l∗ = 0.2; the northern
polar land is three times the southern one, so the hemispheric asymmetry is ∆l = −0.1, as
seen in the blocked-out domain (the land area cannot be negative). With the cloud albedo
dominated by stratus, we set its polar-total c∗ = 0.4 gleaned from [27] (their figure 2) and
its reflectance rc = 0.6 [29] (their table 3.2). We set the land reflectance rl = 0.3, which
consists of 0.2 from land [29] (their table 4.2) and 0.1 from aerosol [30].

These ‘standard’ values would produce a clear-sky asymmetry of 10 Wm−2 in the re-
flected SW flux (smaller if we use the higher reflectance of Antarctica), which is observed to
be removed by clouds to within 0.3 Wm−2 of the above flux or 10−4 in the planetary albedo.
Such precision obviously cannot be due to the atmospheric dynamics given its vagaries, but
rather, as I contend, reflects an inexorable march toward MEP by thermodynamics. Since
the standard case falls around the bi-masked threshold, the cloud cover would be evenly
divided between polar bands, so its mitigation of the land asymmetry is largely through
shading the excess northern land. On the other hand, given the crudeness of the model, the
standard case could veer into the uni-masked regime to render a slightly cloudier southern
hemisphere, as seems the observed case [2], which, according to our model, however is
insufficient to symmetrize the albedo without shading the land.

The calculated polar albedo is 0.27, to which cloud contributes 0.24 and land 0.03,
where the latter represents a halving of its clear-sky value to render an order of magnitude
difference between the two contributions. With the deduced cloud tendency, the tropical
albedo is due primarily to land (high clouds over the ITCZ has little reflectance, [22]) hence
has a value of rl l0 = 0.03 to yield a total albedo of 0.3. All these values are commensurate
with observed ones [1,5], which is somewhat surprising considering the crudeness of our
box model.

To assess parameter dependence of the modelled albedo, I consider two extreme cases,
which nonetheless are realized in paleohistory hence of practical relevance. The first is the
ice age when the polar land is as reflective as the cloud. Setting rl = 0.6, the regime diagram
is shown in Figure 4, which can be compared with the current interglacial shown in Figure 3.
Expectedly, the augmented land reflectance has rotated the albedo lines counterclockwise
to become more diagonal, and the albedo attains a uniform value (0.3) in masked regimes.
While the icy surface has raised the planetary albedo, the increase is only 10% since the
exposed land is relatively small compared with the cloud cover (0.1 vs. 0.4). Since the
symmetric regimes are characterized by equalized albedos as well as combined areas, the
uni-masked threshold is slightly higher, but the bi-masked threshold remains unchanged.
As such, only the northern land is slightly less masked, but the southern land remains
largely exposed.

The second extreme case is when the polar land is symmetric, which can be representa-
tive of Pangea in the early Triassic period when it extends from pole to pole [31]. Setting the
land partitions [l0, l1, l2] = [0.1, 0.1, 0.1], the regime diagram is shown in Figure 5. Naturally,
all vestiges of asymmetry are eliminated, including the disappearance of the asymmet-
ric and uni-masked regimes. Compared with the standard case, the albedo retains the
same value (0.27) and has the same land/cloud contributions, but the southern masking is
strongly expanded to equal the northern one.
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Based on the model solution of these extreme cases, the present polar albedo is only
slightly augmented during the ice age of more reflective land and remains unchanged
during the early Triassic of symmetric land. Although the polar albedo is relatively stable
because of its dominance by vast low-clouds, the global albedo can be strongly altered by
the varying tropical land not considered here.

4. Conclusions

I posit that the climate, with clouds as its internal component, is a macroscopic
manifestation of a NT system to be governed by MEP, a generalized second law. Through
a minimal box model, I show that low-clouds, which dominate the cloud albedo, would
be expelled to high latitudes to equalize the hemispheric planetary albedo—a remarkable
observation, which may now be explained. Moreover, because of vastness of the low-clouds,
their compensation of the land asymmetry is not by an opposite asymmetry but primarily
by masking the excess land, a deduction consistent with observation. When the model is
applied to the ice age of highly reflective land and the early Triassic period of symmetric
land, the polar albedo is only slightly altered from the present, suggesting its considerable
stability through Earth’s history.

Climate models fall far short in replicating the observed albedo symmetry and the
intermodel spread of calculated clouds has not narrowed in past decades despite much
expanded physics [32]. With the demonstrated potency of MEP in propelling the cloud,
the present study suggests an alternative strategy in improving climate models, namely by
reappropriating computing resources from detailed physics to resolving eddies, thereby
encapsulating the NT.
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Appendix A

ai Planetary albedo
ci Cloud area
c∗ Polar-total cloud area
∆c Asymmetry of cloud area
c∗un Un-masked threshold
c∗uni Uni-masked threshold
c∗bi Bi-masked threshold
Fa,i Atmosphere heat transport
Fo,i Ocean heat transport
li Land area
l∗ Polar-total land area
∆l Asymmetry of land area
q∗i Incident SW flux
qi Absorbed SW flux
q Global mean of qi
q′i Deviation of qi (≡ qi − q)

q′c,i Deviation of convective flux
∆q′ Asymmetry of absorbed SW flux

r Reflectance ratio (≡ rl/rc)
rc Cloud reflectance
rl Land reflectance
T′i Deviation of SST
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T′a,i Deviation of SAT
α∗ Air/sea transfer coefficient
εi Masked land area
σ Ocean entropy production
σ′ Deviation of σ

σa Atmospheric entropy production
σ′a Deviation of σa
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