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Abstract: Conventional methods for monitoring ammonia (NH3) emissions from livestock farms have
several challenges, such as a poor environment for measurement, difficulty in accessing livestock,
and problems with long-term measurement. To address these issues, we applied various neural
network models for the long-term prediction of NH3 concentrations from sow farms in this study.
Environmental parameters, including temperature, humidity, ventilation rate, and past records of
NH3 concentrations, were given as inputs to the models. These neural network models took the
encoder or the feature extracting parts from the representative deep learning models, including Long
Short-Term Memory (LSTM), Convolutional Neural Network (CNN), and Transformer, to encode
temporal patterns of time series. However, all of these models adopted dense layers for the decoder
to format the task of long-term prediction as a regression problem. Due to their regression nature,
all models showed a robust performance in predicting long-term NH3 concentrations at a scale of
weeks or even months despite there being a relatively short period of input signals (a few days
to a week). Given one week of input, LSTM showed the minimum mean absolute errors (MAE)
of 1.83, 1.78, and 1.87 ppm for the prediction of one, two, and three weeks, respectively, whereas
Transformer performed best with a MAE of 1.73 ppm for a four-week prediction. In the long-term
estimation of spanning months, LSTM showed the minimum MAEs of 1.95 and 1.90 ppm when
trained on predicting two and three weeks of windows. At the same condition, Transformer gave
the minimum MAEs of 1.87 and 1.83 when trained on predicting one and four weeks of windows.
Overall, the neural network models can facilitate the prediction of national-level NH3 emissions,
the development of mitigation strategies for NH3-derived air pollutants, odor management, and
the monitoring of animal-rearing environments. Further, their integration of real-time measurement
devices can significantly prolong device longevity and offer substantial cost savings.

Keywords: ammonia; mechanical ventilation; neural network models; sow

1. Introduction

Ammonia (NH3), a colorless, toxic, corrosive, and odorous compound with high vis-
cosity, can form fine particulate matter when converted into secondary inorganic aerosols
(SIAs) such as ammonium sulfate ((NH4)2SO4) and ammonium nitrate (NH4NO3), which
are the predominant components of PM2.5 [1–6]. Many SIAs can negatively affect ecosys-
tems by causing visibility reduction, crop damage, and respiratory diseases [7–13]. NH3 is a
naturally occurring and dissipating gas; however, a significant portion is also emitted from
anthropogenic activities, with large-scale livestock farming, particularly animal husbandry
(manure management and fertilizer), being the primary contributor [14–20].
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To quantify NH3 emissions from the livestock industry, field workers and researchers
from various countries have previously proposed different methods for determining the
emission factors. However, owing to the unique gas-phase characteristics of NH3, its
continuous and accurate measurement has proven to be considerably more challenging
compared to that of other air pollutants. For example, when measuring NH3 emissions at a
pig farm using a device with a pump, the highly viscous NH3 may be adsorbed onto the
motor, interfering with the constant velocity suction. This can introduce inaccuracies in the
final concentration calculations, corrosion of the detector responsible for identifying the
target substance, and reduced signal sensitivity. Therefore, the measured concentrations
may significantly deviate from the actual values [21–23]. Furthermore, NH3 detectors tend
to be more expensive than those used for other pollutants, such as SOx and NOx. Further,
continuous monitoring often necessitates frequent replacement in case of equipment failure,
which imposes a substantial financial burden on farms and research institutes, often leading
to compromised measurement and monitoring practices. Because of these limitations, the
quantification of NH3 emission requires a method that employs rapidly evolving prediction
techniques relying on minimal actual measurements obtained using instruments.

Data collected from livestock farms have been extensively used to predict NH3 con-
centrations using traditional methods. Notably, one approach involves the application
of rigorously designed methodologies to farms capable of consistent production to deter-
mine the NH3 emission factor per unit of activity data, thereby predicting future NH3
emissions [24–30]. This approach predominantly hinges on the number of animals being
reared and is highly effective for farms that maintain a systematized livestock environment
along with comprehensive management systems. However, significant discrepancies can
arise in small-scale facilities and irregular breeding environments. Multivariate regression
models may be useful to quantify NH3 under these conditions. These equations leverage a
range of farm-collected data, including temperature, humidity, number of livestock being
reared, and quantity of feed provided, along with wind direction and speed, in cases of
natural ventilation [31–34]. This method can be highly effective if an equation optimized
for a specific farm is derived using suitable parameters. However, as mentioned previously,
this can be a costly and laborious task.

The recent success of deep learning has motivated researchers to train neural network
models to predict future time-series [35–43]. A typical setup frames time-series prediction
as a sequence-to-sequence problem wherein an input sequence is fed into a model, which is
then trained to predict the output sequence. Unlike traditional machine learning methods,
where features in a time series need to be engineered manually, deep learning models
take raw data and automatically discover hidden patterns or features during the training
process [44]. Thus, they have the advantage of discovering better data representations
that are often not straightforward in traditional feature engineering. Among various neu-
ral network architectures, the recurrent neural network (RNN), or its advanced version,
long short-term memory (LSTM) [45] or gated recurrent unit (GRU) [46], has been mostly
tested in time-series forecasting because of its natural sequence-to-sequence nature. Other
major neural network architectures such as convolutional neural networks (CNN) [47]
and transformers [48] have also been used to predict time series [49–51]. Although these
neural network models have been successful for certain settings in particular domains, their
performance and characteristics have not been fully tested in integrals for long-term fore-
casting of time series data such as NH3 concentrations. Therefore, we systematically trained
and compared these neural network models to determine their potential applicability in
predicting gas concentration time-series data.

In previous research, our team obtained high-resolution time-series data (at 2 h inter-
vals) over a year to calculate the NH3 emission factor of sow houses in Korea [52]. We used
these data to conduct multivariate analysis for a specific period, accounting for variables
such as temperature, relative humidity (RH), ventilation rate, and NH3 concentration,
and found that the characteristics and emission coefficients of NH3 in pigsties exhibited
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seasonal variations, underscoring the need for representative NH3 emission coefficients to
account for these differences.

The aim of this study is to identify the most reliable model among an array of time-
series deep learning models for predicting NH3 concentrations, leveraging previously
acquired datasets. Since existing NH3 emission studies have limitations such as poor
environment for measurement and difficulty in accessing livestock, it will be possible to
predict long-term concentrations through some measurement data and reliable modeling,
which will entail less effort and time in securing high-quality data. Given that the results
produced by a model can vary significantly based on the type of data, we experimented
with the application of the most commonly used models to a dataset collected from a sow
farm. Unlike fattening pigs, where NH3 concentration gradually increases as the fattening
period extends, sows do not show a consistent trend of either increasing or decreasing
NH3 concentration over time. This irregular pattern makes predictions challenging with
conventional models. Hence, we configured models capable of learning subtle environ-
mental changes through deep learning, enabling the prediction of NH3 concentration, and
evaluated the performance among these models. Subsequently, the validated model was
used to forecast future NH3 concentrations using a dataset with minimal measurement
frequency, thereby aiding its utility in real-world agricultural contexts.

2. Materials and Methods
2.1. Pig Farm

The ventilation rate, temperature, RH, and NH3 data used in this study were collected
from a sow house in Chungcheongbuk-do, South Korea. All data were collected from
25 March 2021, to 20 January 2022. The research methodology was the same as that
described by Park et al. [52]. Figure 1 presents the plan and cross-section of the experimental
pig pen. The internal structures of all the rooms were identical. The numbers of breeding
pigs in Rooms 1, 2, and 3 were 154, 154, and 156, respectively. Pigs with impending
farrowing were moved to a farrowing pen. After farrowing and nursing, they were
moved back to the sow pen. In the pigsty ventilation, air entered from the side through
the mid-ceiling and was then expelled through four exhaust vents (fans) located in the
interior ceiling (Figure S2). The pigsty floor comprised a 1:1 ratio of concrete to plastic-
slatted flooring, with livestock manure stored in pits beneath the plastic-slatted floor. A
specific amount of livestock manure was discharged every Saturday, and the slurry level
was maintained at approximately 70–80% of the total capacity. Table 1 shows the major
components of the feed provided to the pigs during the study period.
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Figure 1. (a) Top-view and (b) cross-section of the pig house, illustrating the sequence of NH3

measurements in this study. The NH3 inlet concentration was sampled and analyzed from the
mid-ceiling area of the pigsty.
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Table 1. Feed composition provided to sows during the measurement period.

Nutritional
Content

Crude
Protein

Crude
Fat Calcium Phosphorus Crude

Fiber
Crude
Ash Lysine

Percentage (%) ≤13.50 ≥3.00 ≥0.65 ≤1.50 ≤8.00 ≤8.00 ≥0.60

2.2. Measurements
2.2.1. NH3 Concentration

NH3 was measured in real-time using photoacoustic spectroscopy (LumaSense Tech-
nologies INNOVA 1512i, Ballerup, Denmark). A multi-sampler (LumaSense Technologies
INNOVA 1409 (24 ports), Ballerup, Denmark) was connected to the measuring instrument
to determine the concentration in each pig house (Rooms 1–3) and in the inlet air. The NH3
concentrations discharged from the four exhaust ports in each pigsty were also measured.
The NH3 concentration incorporated into the model was determined by subtracting the
inlet air concentration (average of 0.37 ppm) from the measurements acquired individually
from each room. To ensure accurate measurements, the instrument was calibrated prior to
the on-site data collection using high-purity nitrogen (Rigas 99.999%, Daejeon, Republic
of Korea) and NH3 standard gas (Rigas 12.5, 25, and 50 µmol/mol, Daejeon, Republic of
Korea). Consequently, the error rate between the reference point concentration and the
measured value was approximately 1.5%, the R2 value was 0.9998 (Figure S3), and the
method detection limit (MDL) of the measuring instrument was 0.2 ppm.

2.2.2. Ventilation Rate

A small ventilation rate-measuring device (VelociCalc Air Velocity Meter 9535, TSI,
USA) was constructed in accordance with the standards of the American Society of Heating,
Refrigerating, and Air-Conditioning Engineers (ASHRAE). After attaching the device to a
fan (Vostermans Ventilation BV Multifan 4E50 (Ø630), Venlo, the Netherlands), the actual
flow rate (m3/h) for each pen was measured [53]. In the experimental pigsty, the ventilation
fan was not operated at <30%. The measured ventilation at the operating rates of 30%, 50%,
70%, and 100% was used to calculate the representative values [30]. Because the ventilation
fan in the pigsty operated in 1% increments, the logistic curve proposed by Jo et al. [30]
was applied to estimate the ventilation rate in the missing intervals (31–49%, 51–69%, and
71–99%) compared to that in the actual measurements.

2.2.3. Temperature and RH

For the internal temperature of the pigsty and the operating rate of the ventilation
fan, the 1 h average value of the data collected using the in-house sensor (1 reading/min)
installed in the pigsty was utilized. The dew point measured using photoacoustic spec-
troscopy was applied to the dew point-relative humidity conversion formula to determine
the final internal RH [54]. The conversion formula used is as presented in Equation (1).

Tdew =
λ×

{
ln
(

RH
100

)
+ β×T

λ+T

}
β−

{
ln
(

RH
100

)
+ β×T

λ+T

} (1)

T: Temperature in pig room (−45 ◦C < T < 60 ◦C);
RH: Relative humidity (%);
β: 17.62;
λ: 243.12 ◦C.
The NH3 concentration, ventilation rate, temperature, and relative humidity data are

detailed in the Supplementary Materials (Figure S1).
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2.3. Models

We first preprocessed the collected time-series data, set up baseline and neural network
models, and then cross-validated the models to estimate their performance on predicting
NH3 concentrations. The pipeline of our analysis is outlined in Figure 2.
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Figure 2. Pipeline of data analysis. Raw data are preprocessed with scaling, feature addition, and
temporal segmentation to data blocks. Then, each data block is sliced with sliding windows. Widows
of input and output data from different rooms are assigned one of training, validation, and test set for
cross-validation. Finally, test results are evaluated with metrics W-MAE and L-MAE (See Section 2.3.5
for definition of the metrics).

2.3.1. Data Preprocessing

Data blocks. All the data used were aggregated at 2 h intervals, which served as the
NH3 collection interval. For each room, the NH3 concentrations from multiple sensors
(four in Rooms 1 and 3, and three in Room 2) were averaged to obtain a single time
series. The entire time series was then divided into several pieces or “blocks.” A block of
data contained consecutive data points within a certain period. Of these multiple blocks,
the two longest blocks were chosen for subsequent analysis, and the rest were discarded.
The reason for this block selection was to ensure long consecutive data points for testing
long-term forecasting within each block. Figure 3 shows the average NH3 concentrations
of the two longest blocks (the summer and the winter blocks) in the three rooms. The
summer blocks spanned from late March to early October 2021, and the winter blocks
ranged from late October 2021 to late January 2022. The lengths (in terms of time points
of 2 h intervals) of the summer blocks were 2301, 2299, and 2298 for Room 1, 2, and 3,
respectively. The winter blocks were of the same length (991) in all the three rooms. The
presence of voids in the central region can be attributed to the remediation process of the
measurement apparatus.

Atmosphere 2023, 14, x FOR PEER REVIEW 6 of 19 
 

 

 

Figure 3. The averaged NH3 concentration in the summer block (left) and the winter block (right) 

of the three rooms. The red area denotes the duration of device maintenance and restoration. 

Data statistics. At each time point in the time series, four features were considered: 

the NH3 concentration, ventilation rate, temperature, and RH. Table 2 and Figure S4 sum-

marize the basic statistics for the values of these features. The statistics were calculated 

across the summer and the winter blocks for each room. 

Table 2. Data statistics of collected data, including average, minimum, maximum, and total data 

average values. The following values represent the calculated quantities obtained during the sum-

mer (25 March–7 October 2021) and the winter (29 October 2021–20 January 2022) periods. 

  

Collected Data from Pig House 

NH3 

(ppm) 

Ventilation Rate 

(m3/h) 

Temp. 

(°C) 

RH 

(%) 

Room 1 

Avg. 10.4 2387.4 22.6 65.7 

Min. 2.6 910.6 17.0 21.9 

Max. 36.1 4806.3 32.0 100.0 

Room 2 

Avg. 11.7 2598.8 22.7 63.5 

Min. 2.5 910.6 18.8 20.2 

Max. 40.4 4538.3 31.5 100.0 

Room 3 

Avg. 11.6 2809.0 23.4 65.4 

Min. 2.6 910.6 18.6 22.6 

Max. 40.1 5214.6 33.3 100.0 

Grand Average 11.2 2598.4 22.9 64.8 

Sliding windows. To generate multiple input–output pairs of data to train and test 

the deep learning forecast models, the sliding window technique was applied to each data 

block (Figure 4). A sliding window comprises a pair with an input window of length iw 

and an output window of length ow. A model was provided with the true ground values 

Figure 3. The averaged NH3 concentration in the summer block (left) and the winter block (right) of
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Data statistics. At each time point in the time series, four features were considered: the
NH3 concentration, ventilation rate, temperature, and RH. Table 2 and Figure S4 summarize
the basic statistics for the values of these features. The statistics were calculated across the
summer and the winter blocks for each room.

Table 2. Data statistics of collected data, including average, minimum, maximum, and total data
average values. The following values represent the calculated quantities obtained during the summer
(25 March–7 October 2021) and the winter (29 October 2021–20 January 2022) periods.

Collected Data from Pig House

NH3
(ppm)

Ventilation Rate
(m3/h)

Temp.
(◦C)

RH
(%)

Room 1
Avg. 10.4 2387.4 22.6 65.7
Min. 2.6 910.6 17.0 21.9
Max. 36.1 4806.3 32.0 100.0

Room 2
Avg. 11.7 2598.8 22.7 63.5
Min. 2.5 910.6 18.8 20.2
Max. 40.4 4538.3 31.5 100.0

Room 3
Avg. 11.6 2809.0 23.4 65.4
Min. 2.6 910.6 18.6 22.6
Max. 40.1 5214.6 33.3 100.0

Grand Average 11.2 2598.4 22.9 64.8

Sliding windows. To generate multiple input–output pairs of data to train and test
the deep learning forecast models, the sliding window technique was applied to each data
block (Figure 4). A sliding window comprises a pair with an input window of length iw
and an output window of length ow. A model was provided with the true ground values in
the input window and was required to predict every point of the NH3 concentration in the
output window. Within a block, a window slid according to the time step specified by the
stride. We used different combinations of iw–ow pairs to evaluate the forecasting model
performance. For the main analysis, we fixed the iw at 84 time points corresponding to one
week (7 × 12 time points) and varied the ow by two, three, and four times the length of iw,
corresponding to two, three, and four weeks, respectively. For all windows, the stride was
set to a single time step (2 h). We also tested the fine adjustment of the iw–ow combinations,
in which iw varied from 2 to 7 days and ow varied from 7 to 28 days with an increment
of one day (12 time points). The purpose of this secondary analysis was to investigate
the effect of the input length iw on the forecasting performance across various prediction
window lengths.
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Feature scaling and engineering. Because the original features (NH3 concentration,
ventilation rate, temperature, and RH) had different units and scales, these features were
min–max scaled between −1 and 1. Further, two new pairs of temporal features, daily sine
and cosine and yearly sine and cosine from the timestamp, were added to provide explicit
temporal information that changed daily and yearly. The formulas for these new features
are as follows:

day_sin = sin
(

timestamp× 2π
day_s

)
day_cos= cos

(
timestamp× 2π

day_s

)
year_sin= sin

(
timestamp× 2π

year_s

)
year_cos= cos

(
timestamp× 2π

year_s

)
(2)

where day_s is one day in seconds (=24× 60× 60 s), and year_s is one year (=365.2425× day_s).
Together with the scaled original features, all of these features are bound between −1 and
1, which helps accelerate the process of training the deep learning models.

2.3.2. Trainless Baseline Models

We evaluated the performance of two types of trainless baseline models for comparison
with the neural network models. The first type was the mean baseline, where the predicted
value in the output window was simply a constant of the mean NH3 concentration in
the input window. The second type of baseline was a repeated baseline, in which the
NH3 concentration in the input window was repeated to the length of the output window.
These baseline models did not require a training process to update the model parameters;
however, they did require the true ground values of the NH3 concentration in the input
window.

2.3.3. Neural Network Models

We formulated the forecasting task as a regression problem at every time point in the
output window. Compared to the more traditional sequence to sequence prediction, this
“one-shot” regression approach is more robust in the training process and can forecast for
the longer temporal horizon. Thus, regardless of the model type, all these neural networks
have their final layer as a dense layer, with the number of neurons equal to the length of
the output window (ow). The difference between the models arises from the manner in
which the input signal is encoded before being projected onto the final layer (Figure 5).

Linear regression model. The eight features (the original four features + two pairs
of the daily and yearly sin and cos) were flattened to form the input layer of the model
(Figure 5A), making the number of input neurons 8 × iw. The number of output neurons
was equal to ow (the same across all models). There were a total of 8× iw× ow connections
between the input and output layers. Although this model requires training, we consider
it a baseline model because it does not encode any mutual dependency inside the input
series and treats each time step and feature independently.

LSTM regression model. The LSTM cells [45] were used as hidden neurons to encode
temporal information (Figure 5B). The LSTM cells were updated with both the current
input and last hidden states. In this study, we set the number of hidden layers to three,
and the dimensions of the hidden units to 64. Unlike the traditional method of an LSTM
encoder, which retains only the last hidden state in the input sequence, we preserved and
flattened all the intermediate hidden states before connecting them to the final dense layer.
Thus, each hidden neuron at input time step t could encode all the previous time step
information. Finally, the neurons in the output layer receive information from each time
step in the input window via a dense connection.

CNN regression model. The 1D convolution [55] along the temporal dimension
captured the local temporal patterns across the entire input series (Figure 5C). We set
the kernel size to five and the number of kernels to 16 for the three 1D convolution
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layers. Without padding, the size of the input series decreases after passing through each
convolution layer. The output from the third convolution layer was then flattened to the
size of the reduced number of time steps multiplied by 16, that is, the hidden dimension. It
was then connected to the final dense layer as in the other models.

Transformer regression model. The same positional encoding as that in the original
study [48] was applied to the input data to encode the relative temporal order. Three
transformer encoder layers with self-attention captured the temporal patterns in the input
data. Each layer consisted of two heads, and the dimension of the hidden and feedforward
vectors was 32. The output from the third transformer encoder layer was then flattened
before being connected to the final output layer.
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Figure 5. Architecture of the four types of neural network models used for forecasting. All models
flatten the data before being connected to the final dense layer. Neurons in the final dense layer
represent the prediction values at each time point in the output window. (A) Linear regression.
Input and output neurons are densely and independently connected, treating each time and feature
independently. (B) Long Short-Term Memory (LSTM) regression. Hidden units are updated from both
the current input and the past hidden state, giving them the ability to encode temporal information.
(C) Convolutional Neural Network (CNN) regression. The 1D convolution kernel moves along the
temporal dimension, encoding local (short-term) temporal patterns. (D) Transformer regression.
Temporal encoding and self-attention encode mutual dependency among input values.

2.3.4. Model Training and Evaluation

To test the generalizability of the trained model to an unseen environment, we used a
three-fold cross-validation across the three rooms (Figure 6). Each room was designated as
a training, validation, and test set. Model parameters were updated from a training set; the
best model parameters were selected via an evaluation based on a validation set, and the
model performance metric was measured on a test set. The final model performance was
obtained by averaging the metrics of the three test sets from cross-validation.
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Across all neural network models, the mean-squared-error (MSE) loss function was
optimized using the AdamW optimizer [56] with a learning rate of 10−5 for the linear
model and 10−3 for the remaining models. The linear model was trained with a much
lower learning rate because the training process stopped prematurely when the same
learning rate as that of the other models was applied. The batch size was 64 (windows) and
the training epoch was 200. After each epoch, the model performance was measured using
the validation set, and the best-performing model parameters were updated throughout the
training process. After the training was completed, the best-performing model parameters
were retrieved and evaluated for the test set. For a specific training algorithm, refer to
Figure S5 of Supplementary Materials. Parameters for training, sliding windows, and
neural network hyperparameters are given in Table S2 of Supplementary Materials.

2.3.5. Performance Metrics

We adopted the mean absolute error (MAE) as a performance metric to assess the
model prediction error in terms of the original scale of NH3 concentration Equation (3) [43].

MAE =
1
n

n

∑
i=1
|Si −Oi| (3)

where Si represents the forecasted value, and Oi denotes the observed true value of the
NH3 concentration at time step i in the output window of length n. Because the output
values of each model were obtained from a scaled input, the model output values were
inverse-transformed to predict Si at the original scale of the NH3 concentration. MAE
measured at each output window level was named W-MAE (Window-MAE).

In addition to evaluating the performance of the fixed-length (ow) output window, we
estimated the long-term forecasting performance of the models by introducing window-
sized autoregression (Figure 7). While ordinary autoregression shifts by a single time
step for continuous forecasting, window-sized autoregression shifts by a fraction of the
window size. After a trained model takes the input length iw and predicts the output
length ow, it continues to make predictions by taking the last iw steps from the predicted
values as new input. By repeating this method, we evaluated the long-term performance
of each model by forecasting the entire summer and winter blocks, each starting with an
initial ground-true value input of length iw. We measured the performance using the same
MAE metric as in Equation 3 but for a longer duration within each block, and named it
L-MAE (Long-MAE). For a detailed algorithm used in window-sized autoregression, see
Figure S6 of Supplementary Materials.
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3. Results
3.1. Sample Forecasting Plots

Figure 8 shows the model prediction results for two sample windows of iw = 84
(one week) and ow = 168 (two weeks) from Room 1 (when used as a test set), where each
column represents one sample window from the summer and winter blocks, respectively,
and each row corresponds to one of the six models tested (three baseline models and three
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neural network models). Note that the models used the ground-true values of the eight
features (four original + four sin/cos temporal features; not shown in the figure except for
the NH3 concentration) as input and predicted all eight features in the output window (only
the NH3 concentration is shown in the gray area of the figure). The MAE of the sample was
calculated using NH3 concentration alone. Qualitative observations indicate that neural
network models exhibit a superior performance compared with that of the simple baseline
models. The neural network models captured periodic fluctuations and general trends in
time series, whereas the baseline models failed. The LSTM model showed rather strong
temporal oscillatory patterns, while the CNN model had a tendency of “smoothing” the
temporal changes. The transformer model exhibited intermediate patterns between those
of the two models. These characteristics arise from the different encoding strategies of
the models.
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Figure 8. Forecasting plots for two sample windows, one (left column) from the 61st window in the
summer block and the other (right column) from the 61st window in the winter block of Room 1,
respectively. Each row shows the prediction of one of the six models tested (the three baseline
models and three neural network models). The black line in the white background indicates NH3

concentration in the input window. The black and red lines in the gray background indicate the
ground-true value and the model prediction of NH3 concentration, respectively, in the output window.
MAE (mean absolute error) was calculated within each output window (gray background).

Figure 9 shows a sample of long-term forecasting for 10× iw time steps (10 weeks) with
window-sized autoregression (See Section 2.3.5). The same models trained with window
lengths of iw = 84 (1 week)/ow = 168 (2 weeks) were used to generate the forecasting
plots. Note that only the initial input window of length iw (white background block on
the leftmost side) was provided to the model, while the remaining data were hidden.
Nevertheless, the neural network models managed to predict the long horizon reasonably
well, even though the signal variability decreased abruptly after mid-May. With window-
sized autoregression, the models can predict the arbitrarily long future, and we evaluated
the model performance for the entire summer and winter blocks of each room (see the next
section for the quantitative results).
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Figure 9. Long-term forecasting plots for the summer block of Room 1. Models received the input of
length iw (the leftmost block with the white background) and predicted for the remaining parts (the
gray background). The plot was cut at the length of 10 × iw time steps (=840, equal to 10 weeks) in
the output for visualization purposes, but the models actually predicted for the entire summer and
winter blocks. The dashed vertical lines separate the length of iw.

3.2. Performance Metrics

We calculated and averaged the MAEs from the output windows (Window-MAE, or
“W-MAE”) of the test sets in the cross-validation (Section 2.3.4), and from the long-term
forecasting (Long-MAE, or “L-MAE”) with window-sized autoregression (Section 2.3.5)
on the summer and the winter blocks of the three rooms. Table 3 summarizes the mean
MAEs across the three rooms, and Figure 10 shows the results. Given one week of input,
LSTM showed the minimum W-MAE of 1.83, 1.78, and 1.87 ppm for the prediction of one,
two, and three weeks, respectively, whereas Transformer performed best with a W-MAE of
1.73 ppm for four-week prediction. In long-term estimation of spanning months, LSTM
showed the minimum L-MAEs of 1.95 and 1.90 ppm when trained on predicting two and
three weeks of windows. At the same condition, Transformer gave the minimum L-MAEs
of 1.87 and 1.83 when trained on predicting one and four weeks of windows. Overall, the
neural network models (LSTM, CNN, and Transformer) performed better than the baseline
models (mean, repeat, and linear) across all conditions for both the W-MAE and L-MAE
metrics. The linear baseline model showed an intermediate performance between the neural
networks and the trainless baselines (mean and repeat). The performance gap between the
baseline models and neural network models further increased in the L-MAE (Figure 10).
The ratio of L-MAE over W-MAE, which estimates the relative error of long-term forecasting
against short-term window forecasting (larger is worse), was 1.89 and 1.76 for the mean and
the repeat baselines, respectively. For the linear, LSTM, CNN, and Transformer models, the
ratios were 1.13, 1.09, 1.08, and 1.05, respectively. These small ratios, close to 1, indicate that
the neural network models could perform long-term forecasting over a horizon far beyond
the relatively short periods on which they were trained (1 to 4 weeks). Among the three
neural network models tested with their specific configurations, the LSTM models usually
performed the best for short-term forecasting (W-MAE), and the Transformer models
performed well for long-term forecasting (L-MAE). However, the differences among the
neural network models were small compared with the baseline models. In addition, Taylor
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diagrams that compare the models with three metrics—standard deviation, correlation
coefficient, and centered root-mean-squared difference (RMSD)—show that LSTM, CNN,
and Transformer present performances comparable to each other’s in terms of these metrics
(See Figure S7 of Supplementary Materials) [57,58].

Table 3. Mean absolute error (MAE). W-MAE was obtained from the output windows of size ow and
L-MAE was obtained from the summer and the winter blocks with window-sized autoregression. All
performance metrics were calculated for the test set in the three-fold cross-validation and the results
were averaged to give the values presented in the table. The value of the best-performing model for
each condition (iw & ow combination) is shown in bold. Note that iw and ow are expressed in the unit
of week (“w”).

iw = 1 w, ow = 1 w iw = 1 w, ow = 2 w iw = 1 w, ow = 3 w iw = 1 w, ow = 4 w

W-MAE L-MAE W-MAE L-MAE W-MAE L-MAE W-MAE L-MAE

Mean 2.20 4.56 2.33 4.56 2.43 4.52 2.54 4.26
Repeat 2.47 4.90 2.71 4.90 2.85 4.82 2.98 4.58
Linear 2.15 2.59 2.24 2.55 2.20 2.34 2.15 2.42
LSTM 1.83 2.13 1.78 1.95 1.87 1.90 1.79 1.96
CNN 2.02 2.09 1.92 2.12 1.89 1.98 1.87 2.09

Transformer 1.89 1.87 1.90 2.07 1.87 1.97 1.73 1.83
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Figure 10. Model performance comparison. All metrics were measured and averaged across the
test sets in the 3-fold cross-validation. LSTM, Long Short-Term Memory; CNN, Convolutional
Neural Network.

Figure 11 compares model performance with different input window lengths in the
range of 2≤ iw≤ 7 days. For each iw, the output range ow varied from 7 to 28 days (by one-
day increments), and the MAEs were averaged over these output ranges. Both the W-MAE
and L-MAE results showed that the neural network models had very little performance
dependence on the input window length, indicating that even a short-length input of
two days was sufficient for long-term (scale of months, measured by L-MAE) forecasting.
However, the linear model performed worse with shorter-length inputs, and the overall
errors were larger than those of the neural network models for all input length ranges
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tested. The trainless baseline models (mean and repeat) were not tested here because they
were not trained on the input data and, thus, they did not have input-length dependency
by design.
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4. Discussion

Across all types of models used in the analysis, we selected regression or “one-shot”
prediction that predicts all time points at once instead of iterative sequence prediction that
predicts each time point one by one, recursively. One of the reasons for this choice was
better stability in the training process because this method does not depend on previous
predictions when predicting the next value, as opposed to the more traditional recursive
sequence prediction [36,37]. This advantage is particularly important for long sequence
prediction because small errors in early sequence prediction can accumulate and result in
an unstable performance in the latter part of the sequence if recursive prediction is applied.
However, a mere regression between the input and output sequences cannot encode the
temporal interdependency among different time points in the input sequence because of
the independency assumption of the regression, as can be observed in the linear model.

To encode this temporal dependency in the input sequence, we adopted the architec-
tures of the following three representative neural networks: LSTM, CNN, and Transformer.
These neural network models capture temporal information from the input sequence in
their own designed manner (i.e., relational inductive bias [59]) and project the encoded rep-
resentation onto the output sequence to make a prediction. The LSTM encoder updates the
hidden states after each iteration in the input sequence to track temporal changes. The CNN
encoder uses one-dimensional convolution along the temporal dimension to recognize
local temporal patterns. The Transformer encoder applies multiheaded self-attention [48]
to the input sequence to discover temporal dependency across all pairs of input time points.
Regardless of the specific encoding schemes, all these neural network models showed
a superior performance compared to that of the linear regression model, which did not
assume any interdependency inside the input sequence. Performance differences among
the three neural network models were minute compared with the gap between the linear
and baseline models.

Therefore, we claim that the regression of the output variable (NH3 concentration)
from the input features and temporal encoding of the input sequence is crucial for stable
and efficient forecasting. A disadvantage of window-based regression forecasting is that it
can only predict fixed output lengths. We overcome this limitation by applying window-
sized autoregression (WSAR). Unlike traditional point-wise autoregression, window-sized
autoregression predicts the window length output simultaneously. Therefore, it does not
suffer from unstable performance fluctuations and enables arbitrary long-range (multiples
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of the output length) forecasting. However, this approach must have the ground-true
values of the initial input sequence when first applied to a certain data block. Therefore,
estimating the length of the input required for a reliable prediction is important. Our
additional analysis results in Figure 11 show that as short a time period as two days of
input (equal to 24 time points) was sufficient for the neural network models to yield mid-
to-long-term prediction on a scale of weeks to months. Thus, while CNN performance
was quite close, LSTM and Transformers were the best models for short- and long-term
predictions overall. We believe that the temporal encoding nature of all inputs, not just
local patterns as CNN does, of LSTM and Transformer encoders provided them with the
better prediction performance.

These findings have profound implications for designing future national NH3 inven-
tory projects. Currently, in many nations, measurements taken from a limited selection of
farms are frequently deemed representative of the overall NH3 emissions of the country;
however, this practice is driven by constraints on measurement device ownership and
the scarcity of appropriate research spaces. However, implementation of deep learning
models, such as LSTM, CNN, and Transformer, allows the generation of highly accurate
predictions using a minimal number of measurements, independent of the size of the
facilities or environmental conditions. By increasing the sample size, we can obtain a more
precise estimation of the NH3 emissions from livestock farming, which closely mirror the
actual quantities. Accurate quantification of NH3 emissions can substantially improve
the predictive accuracy of air quality indices, such as PM2.5, in populated areas. Honing
of predictions to minute-by-minute precision can facilitate proactive strategies to reduce
odorous substances in response to predicted surges in NH3 concentration. Furthermore,
neural network models are indispensable for the real-time prediction and management of
health conditions in livestock, including the animals, on farms. These models can rapidly
detect changes in farm environments, equipping livestock farmers with crucial insights to
guide the necessary interventions.

In the future, we plan to scale up experiment to a larger number of farms with more
livestock species such as cows and chickens. With a larger scale of data available and
combined with various environmental factors, we hope to advance the neural network
models by training and testing on more challenging yet diverse data, perusing to their
limits to be able to apply for various real-world scenarios.

5. Conclusions

Overall, we predicted NH3 concentrations using various models and data collected
from sow farms. Parameters such as temperature, humidity, ventilation rate, and NH3
concentration were gathered, and a comparative evaluation of the baseline, linear regres-
sion, LSTM, CNN, and Transformer models was performed across three pig houses under
identical environmental conditions. Consequently, the LSTM, CNN, and Transformer
models demonstrated superior performance relative to that of the other models, with
negligible differences between them. Further analysis, performed to consider the minimum
number of required measurements, indicates that the input from two days is sufficient
for medium-to-long-term predictions over several weeks. Neural network models enable
real-time feedback, rapid responses, and automation, enhancing efficiency in monitoring
and problem detection. Specifically, by extracting important features from time-series
data, neural network models are more easily generalizable to a novel, unseen environ-
ment. Nevertheless, potential drawbacks exist. If the model lacks adequate support from
environmental engineering for emission characteristics, it can become complex, requiring
significant manpower and resources for maintenance. Furthermore, the acquisition of a
substantial quantity of high-quality data remains a prerequisite for achieving the desired
level of model reliability. However, addressing these shortcomings in long-term prediction
can lead to various environmental and policy advantages, such as accurately measuring
national NH3 emissions in the future, establishing strategies for air pollutants generated by
NH3, and reducing odor in livestock farms. Additionally, if these techniques are integrated
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into real-time measurement devices, the device lifespan can be extended, thereby providing
a significant cost advantage to farm owners.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/atmos14081248/s1, Table S1: Pearson correlation coefficient of NH3
concentration, ventilation rate, temperature, and relative humidity. Temperature exhibits a strong
positive correlation with both ventilation and humidity. Table S2: Parameter table for training, sliding
window, and the three neural network models—LSTM, CNN, and Transformer. Figure S1: Time
series graphs of NH3 concentration (black line), ventilation rate (green line), temperature (red line),
and relative humidity (blue line) in (a) Room A, (b) Room B, and (c) Room C. Figure S2: Floor plan
depicting rooms utilized in the study. The flooring consists of plastic slatted and concrete materials.
Four fans are strategically positioned, each equipped with a dedicated sampling channel. Figure S3:
NH3 calibration curve of the equipment (INNOVA 1512i). Figure S4: The figure presents box plots
for three rooms. The boxes illustrate the interquartile range (25–75%) of samples, with the whiskers
extending to depict the minimum and maximum range. The horizontal line within each box indicates
the median, while each individual dot within the box symbolizes the mean of parameters for the
corresponding room. Figure S5: Algorithm for training on slid windows. The algorithm describes
a training process for the training set. The same algorithm works without the line 18 (update part)
when applied to the validation and test sets. Figure S6: Algorithm for window-sized autoregression.
The algorithm describes how to concatenate model predictions to make a long-term forecasting.
Figure S7: Taylor diagrams of the three models applied to (A) Room 1, (B) Room 2, and (C) Room 3.
RMSD represents centered root-mean-squared difference. “Ref” means the original data. The models
were trained with iw = 1 week and ow = 1 week.
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