Sensitivity of Source Apportionment of Ambient PM2.5-Bound Elements to Input Concentration Data
Abstract
:1. Introduction
2. Methodology
2.1. Data Collection, Screening, and Processing
2.2. Design of PMF Model Scenarios
3. Results and Discussion
3.1. PMF Scenario 1
3.2. PMF Scenario 2
3.3. PMF Scenario 3
3.4. PMF Scenario 4
3.5. PMF Scenario 5
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dabek-Zlotorzynska, E.; Dann, T.F.; Kalyani Martinelango, P.; Celo, V.; Brook, J.R.; Mathieu, D.; Ding, L.; Austin, C.C. Canadian National Air Pollution Surveillance (NAPS) PM2.5 speciation program: Methodology and PM2.5 chemical composition for the years 2003–2008. Atmos. Environ. 2011, 45, 673–686. [Google Scholar]
- Jeong, C.H.; Traub, A.; Huang, A.; Hilker, N.; Wang, J.M.; Herod, D.; Dabek-Zlotorzynska, E.; Celo, V.; Evans, G.J. Long-term analysis of PM2.5 from 2004 to 2017 in Toronto: Composition, sources, and oxidative potential. Environ. Pollut. 2020, 263, 114652. [Google Scholar]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. Mol. Clin. Environ. Toxicol. 2012, 101, 133–164. [Google Scholar]
- Health Canada (HC). Canadian Health Science Assessment for Fine Particulate Matter (PM2.5); Health Canada (HC): Ottawa, ON, Canada, 2022; ISBN 978-0-660-41742-4.
- Environment and Climate Change Canada (ECCC). Criteria Air Contaminants. 2017. Available online: https://www.ec.gc.ca/air/default.asp?162lang=En&n=7C43740B-1 (accessed on 20 July 2023).
- United States Environmental Protection Agency (USEPA). Criteria Air Pollutants. 2023. Available online: https://www.epa.gov/criteria-air-pollutants (accessed on 20 July 2023).
- CCME. Guidance Document on Achievement Determination Canadian Ambient Air Quality Standards for Fine Particulate Matter and Ozone; Canadian Council of Ministers of the Environment: Winnipeg, MB, Canada, 2012; ISBN 978-1-896997-91-9. [Google Scholar]
- Government of Canada. Canadian Environmental Protection Act. 1999. Available online: www.canada.ca/en/environment-climate-change/services/canadian-environmental-protection-act-registry/related-documents.html (accessed on 20 July 2023).
- Ministry of the Environment, Conservation and Parks (MECP). Air Quality Health Index and Air Quality Alert. 2019. Available online: https://www.ontario.ca/document/air-quality-ontario-2015-report/air-quality-health-index-and-air-quality-alerts#:~:text=On%20June%2024%2C%202015%2C%20in,the%20foundation%20of%20the%20AQI%20 (accessed on 4 July 2023).
- Ministry of the Environment, Conservation and Parks (MECP). Air Quality in Ontario 2020 Report. 2022. Available online: https://www.ontario.ca/document/air-quality-ontario-2020-report (accessed on 4 July 2023).
- World Health Organization (WHO). Ambient (Outdoor) Air Pollution. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health#:~:text=The%20WHO%20Global%20air%20quality,%2Dbased%20decision%2Dmaking%20process (accessed on 4 July 2023).
- MECP. Air Quality in Ontario 2020 Report. 2023. Available online: https://www.ontario.ca/document/air-quality-ontario-2020-report (accessed on 20 May 2023).
- Sofowote, U.M.; Di Federico, L.M.; Healy, R.M.; Debosz, J.; Su, Y.; Wang, J.; Munoz, A. Heavy metals in the near-road environment: Results of semi-continuous monitoring of ambient particulate matter in the greater Toronto and Hamilton area. Atmos. Environ. X 2019, 1, 100005. [Google Scholar]
- Zhang, T.; Su, Y.; Debosz, J.; Noble, M.; Munoz, A.; Xu, X. Continuous Measurements and Source Apportionment of Ambient PM2.5-Bound Elements in Windsor, Canada. Atmosphere 2023, 14, 374. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA). EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide. 2014. Available online: https://www.epa.gov/sites/default/files/2015-02/documents/pmf_5.0_user_guide.pdf (accessed on 20 May 2023).
- Pekney, N.J.; Davidson, C.I.; Robinson, A.; Zhou, L.; Hopke, P.; Eatough, D.; Rogge, W.F. Major Source Categories for PM2.5 in Pittsburgh using PMF and UNMIX. Aerosol Sci. Technol. 2006, 40, 910–924. [Google Scholar]
- Juda-Rezler, K.; Reizer, M.; Maciejewska, K.; Błaszczak, B.; Klejnowski, K. Characterization of atmospheric PM2.5 sources at a Central European urban background site. Sci. Total Environ. 2020, 713, 136729. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Cheng, I.; Yao, X.; Dabek-Zlotorzynska, E. Spatiotemporal trends of PM2.5 and its major chemical components at urban sites in Canada. J. Environ. Sci. 2021, 103, 1–11. [Google Scholar] [CrossRef]
- Shin, S.M.; Kim, J.Y.; Lee, J.Y.; Kim, D.S.; Kim, Y.P. Enhancement of modeling performance by including organic markers to the PMF modeling for the PM2.5 at Seoul. Air Qual. Atmos. Health 2022, 15, 91–104. [Google Scholar]
- Xie, M.; Hannigan, M.P.; Dutton, S.J.; Milford, J.B.; Hemann, J.G.; Miller, S.L.; Schauer, J.J.; Peel, J.L.; Vedal, S. Positive matrix factorization of PM2.5: Comparison and implications of using different speciation data sets. Environ. Sci. Technol. 2012, 46, 11962–11970. [Google Scholar]
- Li, W.; Qi, Y.; Qu, W.; Qu, W.; Shi, J.; Zhang, D.; Liu, Y.; Zhang, Y.; Zhang, W.; Ren, D.; et al. PM2.5 source apportionment identified with total and soluble elements in positive matrix factorization. Sci. Total Environ. 2023, 858, 159948. [Google Scholar] [PubMed]
- Lee, E.; Chan, C.K.; Paatero, P. Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong. Atmos. Environ. 1999, 33, 3201–3212. [Google Scholar]
- Sofowote, U.M.; Healy, R.M.; Su, Y.; Debosz, J.; Noble, M.; Munoz, A.; Jeong, C.-H.; Wang, J.M.; Hilker, N.; Evans, G.J.; et al. Understanding the PM2.5 imbalance between a far and near-road location: Results of high temporal frequency source apportionment and parameterization of black carbon. Atmos. Environ. 2018, 173, 277–288. [Google Scholar]
- Manchanda, C.; Kumar, M.; Singh, V.; Hazarika, N.; Faisal, M.; Lalchandani, V.; Shukla, A.; Dave, J.; Rastogi, N.; Tripathi, S.N. Chemical speciation and source apportionment of ambient PM2.5 in New Delhi before, during, and after the Diwali fireworks. Atmos. Pollut. Res. 2022, 13, 101428. [Google Scholar]
- United States Geological Survey (USGS). What Minerals Produce the Colors in Fireworks? 2022. Available online: https://www.usgs.gov/media/images/what-minerals-produce-colors-fireworks (accessed on 20 May 2023).
- Oliver, J. Fireworks Near Me: Detroit’s 4th of July 2021. Available online: https://patch.com/michigan/detroit/fireworks-near-me-detroits-4th-july-2021 (accessed on 20 May 2023).
- Michigan Live. July 4 Fireworks, Festivals and Other Events in Michigan. 2021. Available online: https://www.mlive.com/news/2021/06/july-4-fireworks-festivals-and-other-events-in-michigan.html (accessed on 20 May 2023).
- Chou, C.L. Sulfur in coals: A review of geochemistry and origins. Int. J. Coal Geol. 2012, 100, 1–13. [Google Scholar] [CrossRef]
- Hao, Y.; Meng, X.; Yu, X.; Lei, M.; Li, W.; Shi, F.; Xie, S. Characteristics of trace elements in PM2.5 and PM10 of Chifeng, northeast China: Insights into spatiotemporal variations and sources. Atmos. Res. 2018, 213, 550–561. [Google Scholar]
- Wang, J.; Jiang, H.; Jiang, H.; Mo, Y.; Geng, X.; Li, J.; Mao, S.; Bualert, S.; Ma, S.; Li, J.; et al. Source apportionment of water-soluble oxidative potential in ambient total suspended particulate from Bangkok: Biomass burning versus fossil fuel combustion. Atmos. Environ. 2020, 235, 117624. [Google Scholar]
- Yu, Y.; He, S.; Wu, X.; Zhang, C.; Yao, Y.; Liao, H.; Wang, Q.; Xie, M. PM2.5 elements at an urban site in Yangtze River Delta, China: High time-resolved measurement and the application in source apportionment. Environ. Pollut. 2019, 253, 1089–1099. [Google Scholar]
- Farahani, V.J.; Soleimanian, E.; Pirhadi, M.; Sioutas, C. Long-term trends in concentrations and sources of PM2.5–bound metals and elements in central Los Angeles. Atmos. Environ. 2021, 253, 118361. [Google Scholar]
- Harrison, R.M.; Jones, A.M.; Gietl, J.; Yin, J.; Green, D.C. Estimation of the contributions of brake dust, tire wear, and resuspension to nonexhaust traffic particles derived from atmospheric measurements. Environ. Sci. Technol. 2012, 46, 6523–6529. [Google Scholar]
- Scerri, M.M.; Genga, A.; Iacobellis, S.; Delmaire, G.; Giove, A.; Siciliano, M.; Siciliano, T.; Weinbruch, S. Investigating the plausibility of a PMF source apportionment solution derived using a small dataset: A case study from a receptor in a rural site in Apulia-South East Italy. Chemosphere 2019, 236, 124376. [Google Scholar] [PubMed]
- Liu, W.; Xu, Y.; Liu, W.; Liu, Q.; Yu, S.; Liu, Y.; Wang, X.; Tao, S. Oxidative potential of ambient PM2. 5 in the coastal cities of the Bohai Sea, northern China: Seasonal variation and source apportionment. Environ. Pollut. 2018, 236, 514–528. [Google Scholar] [PubMed]
- Invest Ontario. Mining. 2022. Available online: https://www.investontario.ca/mining#intro (accessed on 20 May 2023).
- Michigan Government. Mining in Michigan: A Focus on Nonferrous Mineral Extraction. 2017. Available online: https://www.michigan.gov/-/media/Project/Websites/egle/Documents/Programs/OGMD/Mining/Guidebook.pdf?rev=3fa963fe017f40149063f83cf2f7a695#:~:text=Today%2C%20two%20iron%20mines%20remain,percent%20of%20the%20nation’s%20copper (accessed on 20 May 2023).
- The Diggings. Mining in Ohio. 2023. Available online: https://thediggings.com/usa/ohio (accessed on 20 May 2023).
- Research Triangle Institute (RTI). Evaluation of PM2.5 Emissions and Controls at Two Michigan Steel Mills and a Coke Oven Battery. 2006. Available online: https://www.epa.gov/sites/default/files/2015-06/documents/aqm_detroit_steel_report_final_20060207.pdf (accessed on 20 May 2023).
- Sugiyama, T.; Shimada, K.; Miura, K.; Lin, N.-H.; Kim, Y.P.; Chan, C.K.; Takami, A.; Hatakeyama, S. Measurement of ambient PAHs in Kumamoto: Differentiating local and transboundary air pollution. Aerosol Air Qual. Res. 2017, 17, 3106–3118. [Google Scholar]
- Liu, B.; Wu, J.; Zhang, J.; Wang, L.; Yang, J.; Liang, D.; Dai, Q.; Bi, X.; Feng, Y.; Zhang, Y.; et al. Characterization and source apportionment of PM2.5 based on error estimation from EPA PMF 5.0 model at a medium city in China. Environ. Pollut. 2017, 222, 10–22. [Google Scholar]
- The National Aeronautics and Space Administration (NASA). A Smoky May for North America. 2023. Available online: https://earthobservatory.nasa.gov/images/151384/a-smoky-may-for-north-america (accessed on 13 July 2023).
- Wang, S.; Hu, G.; Yan, Y.; Wang, S.; Yu, R.; Cui, J. Source apportionment of metal elements in PM2.5 in a coastal city in Southeast China: Combined Pb-Sr-Nd isotopes with PMF method. Atmos. Environ. 2019, 198, 302–312. [Google Scholar]
- Chi, R.; Li, H.; Wang, Q.; Zhai, Q.; Wang, D.; Wu, M.; Liu, Q.; Wu, S.; Ma, Q.; Deng, F.; et al. Association of emergency room visits for respiratory diseases with sources of ambient PM2.5. J. Environ. Sci. 2019, 86, 154–163. [Google Scholar]
- Ontario Environment and Energy (OEE). The End of Coal. 2021. Available online: https://www.ontario.ca/page/end-coal (accessed on 20 May 2023).
- United States Energy Information Administration (USEIA). Michigan State Energy Profile. 2022. Available online: https://www.eia.gov/state/print.php?sid=MI#:~:text=Michigan%20Quick%20Facts&text=In%202021%2C%20coal%20provided%20the,three%2Dfifths%20of%20that%20power (accessed on 20 May 2023).
- Sofowote, U.M.; Su, Y.; Dabek-Zlotorzynska, E.; Rastogi, A.K.; Brook, J.; Hopke, P.K. Sources and temporal variations of constrained PMF factors obtained from multiple-year receptor modeling of ambient PM2. 5 data from five speciation sites in Ontario, Canada. Atmos. Environ. 2015, 108, 140–150. [Google Scholar]
- Choi, S.; Park, J.-H.; Kim, W.; Kim, S.W.; Lee, K.-H.; Chung, T.; Park, J.; Ryu, S.-H.; Shin, J.; Koh, D.-H.; et al. Black Carbon Exposure Characteristics in Diesel Engine Vehicle-related Jobs. Aerosol Air Qual. Res. 2021, 21, 200675. [Google Scholar]
- Chen, R.; Zhao, Y.; Tian, Y.; Feng, X.; Feng, Y. Sources and uncertainties of health risks for PM2.5-bound heavy metals based on synchronous online and offline filter-based measurements in a Chinese megacity. Environ. Int. 2022, 164, 107236. [Google Scholar]
- Landis, M.S.; Lewis, C.W.; Stevens, R.K.; Keeler, G.J.; Dvonch, J.T.; Tremblay, R.T.F. McHenry tunnel study: Source profiles and mercury emissions from diesel and gasoline powered vehicles. Atmos. Environ. 2007, 41, 8711–8724. [Google Scholar]
- Balakrishna, G.; Pervez, S.; Bisht, D.S. Source apportionment of arsenic in atmospheric dust fall out in an urban residential area, Raipur, Central India. Atmos. Chem. Phys. 2011, 11, 5141–5151. [Google Scholar]
- Hsu, C.Y.; Chiang, H.C.; Chen, M.J.; Chuang, C.Y.; Tsen, C.M.; Fang, G.C.; Tsai, Y.I.; Chen, N.T.; Lin, T.Y.; Lin, S.L.; et al. Ambient PM2.5 in the residential area near industrial complexes: Spatiotemporal variation, source apportionment, and health impact. Sci. Total Environ. 2017, 590, 204–214. [Google Scholar] [PubMed]
- Taghvaee, S.; Sowlat, M.H.; Mousavi, A.; Hassanvand, M.S.; Yunesian, M.; Naddafi, K.; Sioutas, C. Source apportionment of ambient PM2.5 in two locations in central Tehran using the Positive Matrix Factorization (PMF) model. Sci. Total Environ. 2018, 628, 672–686. [Google Scholar] [PubMed]
Scenario 1 (Base Case) | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 | |
---|---|---|---|---|---|
Explanatory notes for the input datasets | Replacing data below MDLs with ½ MDLs | Excluding BrC1 and BrC2 | The episode on 3–5 July 2021 | The episode on 20 July 2021 | Excluding the two episodes |
Number of samples | 4362 | 4362 | 72 | 24 | 4266 |
Number of species | 27 | 25 | 27 | 27 | 27 |
Factor | Initial Case (Zhang et al. [14]) | Scenario 1 (Base Case) | Scenario 2 (Excluding BrC1 and BrC2) | Scenario 3 (The Episode on 3–5 July 2021) | Scenario 4 (The Episode on 20 July 2021) | Scenario 5 (Excluding the Two Episodes) |
---|---|---|---|---|---|---|
Coal/heavy oil burning | 33% | 33% | 36% | 34% | ||
Vehicular exhaust | 28% | 30% | 29% | 27% | 21% | 30% |
Metal processing | 20% | 19% | 17% | 19% | ||
Crustal dust | 16% | 15% | 15% | 17% | 14% | |
Vehicle tire and brake wear | 3% | 3% | 3% | 3% | ||
Fireworks | 38% | |||||
Coal burning and metal processing | 24% | 22% | ||||
Crustal dust, vehicle tire and brake wear | 11% | |||||
Heavy oil burning and metal processing | 17% | |||||
Mineral dust | 23% |
Species | Initial Case (Zhang et al. [14]) | Scenario 1 (Base Case) | Scenario 2 (Excluding BrC1 and BrC2) | Scenario 3 (The Episode on 3–5 July 2021) | Scenario 4 (The Episode on 20 July 2021) | Scenario 5 (Excluding the Two Episodes) |
---|---|---|---|---|---|---|
BC | 0.73 | 0.78 | 0.79 | 0.80 | 0.94 | 0.78 |
BrC1 | 0.59 | 0.54 | 0.84 | 0.88 | 0.51 | |
BrC2 | 0.87 | 0.85 | 0.90 | 0.93 | 0.85 | |
Ag | 0.02 | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 |
As | 0.11 | 0.10 | 0.10 | 0.67 | 0.88 | 0.08 |
Ba | 0.05 | 0.06 | 0.07 | >0.99 | 0.95 | 0.19 |
Br | 0.44 | 0.42 | 0.42 | 0.72 | 0.50 | 0.46 |
Ca | 0.88 | 0.88 | 0.88 | 0.85 | 0.95 | 0.88 |
Cd | 0.01 | 0.01 | 0.01 | 0.18 | 0.20 | 0.01 |
Co | 0.02 | 0.03 | 0.03 | 0.06 | 0.95 | <0.01 |
Cr | 0.08 | 0.09 | 0.09 | 0.94 | 0.64 | 0.10 |
Cu | 0.14 | 0.15 | 0.15 | >0.99 | 0.88 | 0.40 |
Fe | 0.36 | 0.35 | 0.35 | 0.92 | 0.77 | 0.62 |
Hg | 0.23 | 0.23 | 0.24 | 0.01 | 0.72 | 0.21 |
K | 0.09 | 0.10 | 0.09 | >0.99 | 0.98 | 0.42 |
Mn | 0.61 | 0.59 | 0.58 | 0.73 | 0.86 | 0.64 |
Ni | 0.07 | 0.09 | 0.07 | 0.21 | 0.76 | 0.07 |
Pb | 0.08 | 0.08 | 0.08 | 0.74 | 0.17 | 0.07 |
Rb | 0.02 | 0.02 | 0.02 | 0.89 | 0.12 | 0.02 |
S | 0.70 | 0.72 | 0.69 | 0.95 | 0.44 | 0.71 |
Se | 0.21 | 0.21 | 0.22 | 0.74 | 0.67 | 0.21 |
Si | 0.62 | 0.62 | 0.66 | 0.45 | 0.88 | 0.62 |
Sn | 0.02 | 0.03 | 0.02 | 0.95 | <0.01 | <0.01 |
Sr | 0.03 | 0.03 | 0.03 | >0.99 | 0.94 | 0.12 |
Ti | 0.61 | 0.60 | 0.61 | >0.99 | 0.93 | 0.67 |
V | 0.06 | 0.05 | 0.05 | 0.10 | 0.82 | 0.05 |
Zn | 0.85 | 0.86 | 0.87 | 0.47 | 0.75 | 0.87 |
Total elements | 0.82 | 0.83 | 0.80 | 0.99 | 0.94 | 0.87 |
Species | Initial Case (Zhang et al. [14]) | Scenario 1 (Base Case) | Scenario 2 (Excluding BrC1 and BrC2) | Scenario 3 (The Episode on 3–5 July 2021) | Scenario 4 (The Episode on 20 July 2021) | Scenario 5 (Excluding the Two Episodes) |
---|---|---|---|---|---|---|
BC 1 | 40 | 37 | 36 | 28 | 15 | 37 |
BrC1 | 114 | 125 | 37 | 52 | 111 | |
BrC2 | 36 | 39 | 24 | 28 | 36 | |
Ag | 59 | 53 | 53 | 66 | 73 | 52 |
As | 491 | 393 | 391 | 120 | 63 | 406 |
Ba | 473 | 465 | 464 | 11 | 36 | 177 |
Br | 60 | 62 | 62 | 32 | 93 | 58 |
Ca | 54 | 54 | 53 | 32 | 13 | 55 |
Cd | 48 | 57 | 57 | 60 | 41 | 57 |
Co | 491 | 64 | 65 | 30 | 48 | 28 |
Cr | 939 | 747 | 748 | 60 | 282 | 635 |
Cu | 192 | 199 | 199 | 6 | 52 | 65 |
Fe | 174 | 175 | 175 | 44 | 85 | 94 |
Hg | 93 | 89 | 88 | 115 | 103 | 86 |
K | 215 | 223 | 223 | 16 | 13 | 43 |
Mn | 141 | 144 | 144 | 94 | 45 | 131 |
Ni | 306 | 307 | 308 | 117 | 104 | 292 |
Pb | 203 | 201 | 201 | 41 | 152 | 205 |
Rb | 98 | 67 | 67 | 44 | 63 | 58 |
S | 52 | 50 | 52 | 21 | 19 | 51 |
Se | 159 | 157 | 156 | 50 | 48 | 158 |
Si | 33 | 34 | 32 | 28 | 11 | 34 |
Sn | 2074 | 104 | 105 | 43 | 14 | 23 |
Sr | 414 | 426 | 426 | 12 | 30 | 138 |
Ti | 65 | 66 | 66 | 13 | 12 | 58 |
V | 258 | 226 | 226 | 216 | 68 | 227 |
Zn | 96 | 89 | 85 | 132 | 55 | 87 |
Total elements | 29 | 29 | 30 | 10 | 20 | 23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Su, Y.; Debosz, J.; Noble, M.; Munoz, A.; Xu, X. Sensitivity of Source Apportionment of Ambient PM2.5-Bound Elements to Input Concentration Data. Atmosphere 2023, 14, 1269. https://doi.org/10.3390/atmos14081269
Zhang T, Su Y, Debosz J, Noble M, Munoz A, Xu X. Sensitivity of Source Apportionment of Ambient PM2.5-Bound Elements to Input Concentration Data. Atmosphere. 2023; 14(8):1269. https://doi.org/10.3390/atmos14081269
Chicago/Turabian StyleZhang, Tianchu, Yushan Su, Jerzy Debosz, Michael Noble, Anthony Munoz, and Xiaohong Xu. 2023. "Sensitivity of Source Apportionment of Ambient PM2.5-Bound Elements to Input Concentration Data" Atmosphere 14, no. 8: 1269. https://doi.org/10.3390/atmos14081269
APA StyleZhang, T., Su, Y., Debosz, J., Noble, M., Munoz, A., & Xu, X. (2023). Sensitivity of Source Apportionment of Ambient PM2.5-Bound Elements to Input Concentration Data. Atmosphere, 14(8), 1269. https://doi.org/10.3390/atmos14081269