The Effect of Forest Growth Rate on Climate Change Impacts of Logging Residue Utilization
Abstract
:1. Introduction
2. Methods and Materials
2.1. Scenario Definition
2.2. Assessment of Climate Change Impacts
2.3. Simulation of Carbon Dynamics
2.3.1. Forest Growth Simulation
2.3.2. Decomposition of Logging Residues
3. Results
3.1. Fossil Fuel-Derived GHG Emissions
3.2. Biogenic CO2 Emissions and Biomass Regrowth for Compensation
3.3. The Difference in Carbon Sequestration
3.4. Life-Cycle Climate Change Impacts and Mitigation Effect
4. Discussion
4.1. Model Justification
4.2. Climate Change Impacts and Mitigation Effects
4.3. Limitations and Uncertainties
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Summary for Policymakers. In Climate Change 2023: Synthesis Report. A Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; in press; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Friedlingstein, P.; Jones, M.W.; O’Sullivan, M.; Andrew, R.M.; Bakker, D.C.E.; Hauck, J.; Le Quéré, C.; Peters, G.P.; Peters, W.; Pongratz, J.; et al. Global Carbon Budget 2021. Earth Syst. Sci. Data 2022, 14, 1917–2005. [Google Scholar] [CrossRef]
- UNFCCC. Paris Agreement. In Proceedings of the Paris Climate Change Conference, Paris, France, 12 December 2015. [Google Scholar]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. Climate Change 2021: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2021; pp. 3–32. [Google Scholar] [CrossRef]
- UN Department of Economic and Social Affairs. The 2030 Agenda for Sustainable Development; UN Department of Economic and Social Affairs: New York, NY, USA, 2015. [Google Scholar]
- Statistical Review of World Energy. Available online: https://www.energyinst.org/statistical-review (accessed on 31 July 2023).
- Hertel, T.W.; Golub, A.A.; Jones, A.D.; O’Hare, M.; Plevin, R.J.; Kammen, D.M. Effects of US Maize Ethanol on Global Land Use and Greenhouse Gas Emissions: Estimating Market-mediated Responses. BioScience 2010, 60, 223–231. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Khanna, M.; Önal, H.; Chen, X. Stacking low carbon policies on the renewable fuels standard: Economic and greenhouse gas implications. Energy Policy 2013, 56, 5–15. [Google Scholar] [CrossRef]
- Ebadian, M.; van Dyk, S.; McMillan, J.D.; Saddler, J. Biofuels policies that have encouraged their production and use: An international perspective. Energy Policy 2020, 147, 111906. [Google Scholar] [CrossRef]
- Liu, W.; Yu, Z.; Zhu, Q.; Zhou, X.; Peng, C. Assessment of biomass utilization potential of Caragana korshinskii and its effect on carbon sequestration on the Northern Shaanxi Loess Plateau, China. Land Degrad. Dev. 2019, 31, 53–64. [Google Scholar] [CrossRef]
- Staples, M.D.; Malina, R.; Barrett, S.R.H. The limits of bioenergy for mitigating global life-cycle greenhouse gas emissions from fossil fuels. Nat. Energy 2017, 2, 16202. [Google Scholar] [CrossRef]
- Goh, B.H.H.; Ong, H.C.; Cheah, M.Y.; Chen, W.-H.; Yu, K.L.; Mahlia, T.M.I. Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review. Renew. Sustain. Energy Rev. 2019, 107, 59–74. [Google Scholar] [CrossRef]
- Abt, R.C.; Abt, K.L. Potential Impact of Bioenergy Demand on the Sustainability of the Southern Forest Resource. J. Sustain. For. 2013, 32, 175–194. [Google Scholar] [CrossRef]
- Patel, M.; Zhang, X.; Kumar, A. Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review. Renew. Sustain. Energy Rev. 2016, 53, 1486–1499. [Google Scholar] [CrossRef]
- Reid, W.V.; Ali, M.K.; Field, C.B. The future of bioenergy. Glob. Change Biol. 2020, 26, 274–286. [Google Scholar] [CrossRef] [Green Version]
- IEA. Sustainable Production of Second-Generation Biofuels; IEA: Paris, France, 2010. [Google Scholar]
- Eggleston, S.; Buendia, L.; Miwa, K.; Negara, T.; Tanabe, K. IPCC 2006 Guidelines for National Greenhouse Gas Inventories; Global Environmental Strategies (IGES): Kanagawa, Japan, 2006. [Google Scholar]
- FAO. The State of Food and Agriculture 2008. Biofuels: Prospects, Risks and Opportunities; FAO: Rome, Italy, 2008. [Google Scholar]
- Cherubini, F.; Peters, G.P.; Berntsen, T.; StrØMman, A.H.; Hertwich, E. CO2 emissions from biomass combustion for bioenergy: Atmospheric decay and contribution to global warming. GCB Bioenergy 2011, 3, 413–426. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Yu, Z.; Xie, X.; von Gadow, K.; Peng, C. A critical analysis of the carbon neutrality assumption in life cycle assessment of forest bioenergy systems. Environ. Rev. 2018, 26, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Fargione, J.; Hill, J.; Tilman, D.; Polasky, S.; Hawthorne, P. Land clearing and the biofuel carbon debt. Science 2008, 5867, 1235–1238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Searchinger, T.D.; Hamburg, S.P.; Melillo, J.; Chameides, W.; Havlik, P.; Kammen, D.M.; Likens, G.E.; Lubowski, R.N.; Obersteiner, M.; Oppenheimer, M.; et al. Fixing a Critical Climate Accounting Error. Science 2009, 326, 527–528. [Google Scholar] [CrossRef]
- Daioglou, V.; Stehfest, E.; Wicke, B.; Faaij, A.; van Vuuren, D.P. Projections of the availability and cost of residues from agriculture and forestry. GCB Bioenergy 2016, 8, 456–470. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Hou, Y.; Liu, W.; Yang, M.; Yan, Y.; Peng, C.; Yu, Z. Global estimation of the climate change impact of logging residue utilization for biofuels. For. Ecol. Manag. 2020, 462, 118000. [Google Scholar] [CrossRef]
- Watanabe, M.D.B.; Cherubini, F.; Cavalett, O. Climate change mitigation of drop-in biofuels for deep-sea shipping under a prospective life-cycle assessment. J. Clean. Prod. 2022, 364, 132662. [Google Scholar] [CrossRef]
- Liu, W.; Xu, J.; Xie, X.; Yan, Y.; Zhou, X.; Peng, C. A new integrated framework to estimate the climate change impacts of biomass utilization for biofuel in life cycle assessment. J. Clean. Prod. 2020, 267, 122061. [Google Scholar] [CrossRef]
- Hao, H.; Dai, L.; Wang, K.; Xu, J.; Liu, W. An updated framework for climate change impact assessment of bioenergy and an application in poplar biomass. Appl. Energy 2021, 299, 117323. [Google Scholar] [CrossRef]
- Máté, D.; Rabbi, M.F.; Novotny, A.; Kovács, S. Grand Challenges in Central Europe: The Relationship of Food Security, Climate Change, and Energy Use. Energies 2020, 13, 5422. [Google Scholar] [CrossRef]
- Long, F.; Liu, W.; Jiang, X.; Zhai, Q.; Cao, X.; Jiang, J.; Xu, J. State-of-the-art technologies for biofuel production from triglycerides: A review. Renew. Sustain. Energy Rev. 2021, 148, 111269. [Google Scholar] [CrossRef]
- Hammar, T.; Ortiz, C.A.; Stendahl, J.; Ahlgren, S.; Hansson, P.-A. Time-Dynamic Effects on the Global Temperature When Harvesting Logging Residues for Bioenergy. BioEnergy Res. 2015, 8, 1912–1924. [Google Scholar] [CrossRef]
- Adetona, A.B.; Nhuchhen, D.R.; Layzell, D.B. Climate impact of diverting residual biomass to cement production. GCB Bioenergy 2023, 15, 710–730. [Google Scholar] [CrossRef]
- Liu, W.; Wang, K.; Hao, H.; Yan, Y.; Zhang, H.; Zhang, H.; Peng, C. Predicting potential climate change impacts of bioenergy from perennial grasses in 2050. Resour. Conserv. Recycl. 2023, 190, 106818. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, D.; Tian, J.; Yu, F.; Xie, Y.; Cheng, S.; Li, Q.; Li, W.; Peng, C.; Yan, Y. Climate change mitigation potential of kitchen waste utilization in China for combined heat and power production. Sci. Total Environ. 2023, 888, 164165. [Google Scholar] [CrossRef]
- Eng, A.G. 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy; Department of Energy Bioenergy Technologies Office: Washington, DC, USA, 2016.
- Liu, W.; Zhang, Z.; Xie, X.; Yu, Z.; von Gadow, K.; Xu, J.; Zhao, S.; Yang, Y. Analysis of the Global Warming Potential of Biogenic CO2 Emission in Life Cycle Assessments. Sci. Rep. 2017, 7, 39857. [Google Scholar] [CrossRef] [Green Version]
- Cherubini, F.; Strømman, A.H.; Ulgiati, S. Influence of allocation methods on the environmental performance of biorefinery products—A case study. Resour. Conserv. Recycl. 2011, 55, 1070–1077. [Google Scholar] [CrossRef]
- Wang, M.; Elgowainy, A.; Lee, U.; Thathiana, P.; Benavides, P.B.; Burnham, A.; Kingsbury, K.; Kwon, H.; Li, Y.; Liu, X.; et al. Summary of Expansions and Updates in GREET® 2021; U.S. Department of Energy: Washington, DC, USA, 1 October 2021.
- Richards, F.J. A Flexible Growth Function for Empirical Use. J. Exp. Bot. 1959, 2, 290–301. [Google Scholar] [CrossRef]
- Von Bertalanffy, L. Quantitative laws in metabolism and growth. Q. Rev. Biol. 1957, 3, 217–231. [Google Scholar] [CrossRef]
- Pienaar, L.V.; Turnbull, K. The Chapman-Richards Generalization of Von Bertalanffy’s Growth Model for Basal Area Growth and Yield in Even-Aged Stands. For. Sci. 1973, 19, 2–22. [Google Scholar]
- Yan, Y. Integrate carbon dynamic models in analyzing carbon sequestration impact of forest biomass harvest. Sci. Total Environ. 2018, 615, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Holtsmark, B. Quantifying the global warming potential of CO2 emissions from wood fuels. GCB Bioenergy 2015, 7, 195–206. [Google Scholar] [CrossRef]
- Asante, P.; Armstrong, G.W.; Adamowicz, W.L. Carbon sequestration and the optimal forest harvest decision: A dynamic programming approach considering biomass and dead organic matter. J. For. Econ. 2011, 17, 3–17. [Google Scholar] [CrossRef]
- Ziche, D.; Gruneberg, E.; Hilbrig, L.; Hohle, J.; Kompa, T.; Liski, J.; Repo, A.; Wellbrock, N. Comparing soil inventory with modelling: Carbon balance in central European forest soils varies among forest types. Sci. Total Environ. 2019, 647, 1573–1585. [Google Scholar] [CrossRef] [PubMed]
- Viskari, T.; Pusa, J.; Fer, I.; Repo, A.; Vira, J.; Liski, J. Calibrating the soil organic carbon model Yasso20 with multiple datasets. Geosci. Model Dev. 2022, 15, 1735–1752. [Google Scholar] [CrossRef]
- Viskari, T.; Laine, M.; Kulmala, L.; Mäkelä, J.; Fer, I.; Liski, J. Improving Yasso15 soil carbon model estimates with ensemble adjustment Kalman filter state data assimilation. Geosci. Model Dev. 2020, 13, 5959–5971. [Google Scholar] [CrossRef]
- Guest, G.; Cherubini, F.; Strømman, A.H. The role of forest residues in the accounting for the global warming potential of bioenergy. GCB Bioenergy 2013, 5, 459–466. [Google Scholar] [CrossRef] [Green Version]
- Giuntoli, J.; Agostini, A.; Caserini, S.; Lugato, E.; Baxter, D.; Marelli, L. Climate change impacts of power generation from residual biomass. Biomass Bioenergy 2016, 89, 146–158. [Google Scholar] [CrossRef]
- Huusko, K.; Tarvainen, O.; Saravesi, K.; Pennanen, T.; Fritze, H.; Kubin, E.; Markkola, A. Short-term impacts of energy wood harvesting on ectomycorrhizal fungal communities of Norway spruce saplings. ISME J. 2015, 9, 581–591. [Google Scholar] [CrossRef] [Green Version]
- de Jong, J.; Akselsson, C.; Egnell, G.; Löfgren, S.; Olsson, B.A. Realizing the energy potential of forest biomass in Sweden—How much is environmentally sustainable? For. Ecol. Manag. 2017, 383, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Ranius, T.; Hamalainen, A.; Egnell, G.; Olsson, B.; Eklof, K.; Stendahl, J.; Rudolphi, J.; Stens, A.; Felton, A. The effects of logging residue extraction for energy on ecosystem services and biodiversity: A synthesis. J. Environ. Manag. 2018, 209, 409–425. [Google Scholar] [CrossRef] [PubMed]
- Hagenbo, A.; Anton-Fernandez, C.; Bright, R.M.; Rasse, D.; Astrup, R. Climate change mitigation potential of biochar from forestry residues under boreal condition. Sci. Total Environ. 2022, 807, 151044. [Google Scholar] [CrossRef] [PubMed]
- Jeswani, H.K.; Chilvers, A.; Azapagic, A. Environmental sustainability of biofuels: A review. Proc. R. Soc. A 2020, 476, 20200351. [Google Scholar] [CrossRef] [PubMed]
- Parton, W.J. The Century Model; Springer: Berlin/Heidelberg, Germany, 1996; pp. 283–291. [Google Scholar]
- Peng, C.; Liu, J.; Dang, Q.; Apps, M.J.; Jiang, H. TRIPLEX: A generic hybrid model for predicting forest growth and carbon and nitrogen dynamics. Ecol. Model. 2002, 1, 109–130. [Google Scholar] [CrossRef]
- Dixon, G.E. Essential FVS: A User’s Guide to the Forest Vegetation Simulator; Department of Agriculture, Forest Service, Forest Management Service Center: Fort Collins, CO, USA, 2002; 226p.
- Joos, F.; Roth, R.; Fuglestvedt, J.S.; Peters, G.P.; Enting, I.G.; von Bloh, W.; Brovkin, V.; Burke, E.J.; Eby, M.; Edwards, N.R.; et al. Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: A multi-model analysis. Atmos. Chem. Phys. 2013, 5, 2793–2825. [Google Scholar] [CrossRef] [Green Version]
Forest Types | Forest Growth Rates | Citation | |||
---|---|---|---|---|---|
Boreal coniferous forests | Slow | 103.1 | 0.0245 | 2.69 | Holtsmark [42] |
Temperate continental forests | Medium | 198.6 | 0.0253 | 2.64 | Holtsmark [42] |
Tropical rainforests | Fast | 428.0 | 0.0253 | 2.64 | Asante et al. [43] |
Forest Types | Five Chemical Components (%) | ||||
---|---|---|---|---|---|
A | W | E | N | H | |
Boreal coniferous forests | 0.668 | 0.018 | 0.006 | 0.308 | 0.000 |
Temperate continental forests | 0.466 | 0.021 | 0.080 | 0.433 | 0.000 |
Tropical rainforests | 0.466 | 0.021 | 0.080 | 0.433 | 0.000 |
Forest Growth Rate | Collection Intensity | Biomass-Derived CO2 Emissions (kg CO2 eq/ha) | GWPbio | Biogenic CO2 Emission (kg CO2 eq) | Regrowth for Compensation (kg CO2 eq) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Bioethanol | Bio-Diesel | Bioethanol | Bio-Diesel | ||||||||
1 GJ | 1 ha | 1 GJ | 1 ha | 1 GJ | 1ha | 1 GJ | 1 ha | ||||
Slow-growing | High (71%) | 23,437.5 | 0.27 | 56.6 | 23,163.4 | 52.1 | 23,163.4 | 94.2 | 38,551.3 | 86.7 | 38,551.3 |
Mid (52%) | 17,165.5 | 0.24 | 51.0 | 15,283.9 | 46.9 | 15,283.9 | 99.9 | 29,955.1 | 91.9 | 29,955.1 | |
Low (32%) | 10,563.4 | 0.21 | 43.7 | 8063.1 | 40.2 | 8063.1 | 108.2 | 19,953.6 | 99.5 | 19,953.6 | |
Medium-growing | High (71%) | 20,352.1 | 0.20 | 41.9 | 14,900.8 | 38.6 | 14,900.8 | 110.4 | 39,244.5 | 101.6 | 39,244.5 |
Mid (52%) | 14,905.7 | 0.18 | 38.1 | 9916.4 | 35.1 | 9916.4 | 115.4 | 30,042.6 | 106.2 | 30,042.6 | |
Low (32%) | 9172.8 | 0.16 | 33.0 | 5287.5 | 30.4 | 5287.5 | 122.9 | 19,675.4 | 113.0 | 19,675.4 | |
Fast-growing | High (71%) | 16,102.0 | 0.15 | 31.1 | 8752.9 | 28.6 | 8752.9 | 125.9 | 35,388.8 | 115.8 | 35,388.8 |
Mid (52%) | 11,793.0 | 0.14 | 28.5 | 5867.6 | 26.2 | 5867.6 | 130.4 | 26,853.7 | 120.0 | 26,853.7 | |
Low (32%) | 7257.2 | 0.12 | 25.0 | 3171.1 | 23.0 | 3171.1 | 137.1 | 17,371.4 | 126.1 | 17,371.4 |
Forest Growth Rates | Collection Intensity | Bioethanol (kg CO2 eq) | Bio-Diesel (kg CO2 eq) | ||
---|---|---|---|---|---|
1 GJ | 1 ha | 1 GJ | 1 ha | ||
Slow-growing | High (71%) | −103.9 ± 26.3 | −42,505.3 ± 10,774.6 | −95.5 ± 24.2 | −42,505.3 ± 10,774.6 |
Mid (52%) | −103.9 ± 26.3 | −31,130.7 ± 7891.3 | −95.5 ± 24.2 | −31,130.7 ± 7891.3 | |
Low (32%) | −103.9 ± 26.3 | −19,157.3 ± 4856.2 | −95.5 ± 24.2 | −19,157.3 ± 4856.2 | |
Medium-growing | High (71%) | −124.3 ± 9.8 | −44,154.1 ± 3465.8 | −114.3 ± 9.0 | −44,154.1 ± 3465.8 |
Mid (52%) | −124.3 ± 9.8 | −32,338.2 ± 2538.4 | −114.3 ± 9.0 | −32,338.2 ± 2538.4 | |
Low (32%) | −124.3 ± 9.8 | −19,900.4 ± 1562.1 | −114.3 ± 9.0 | −19,900.4 ± 1562.1 | |
Fast-growing | High (71%) | −180.0 ± 1.1 | −50,616.4 ± 302.9 | −165.6 ± 1.0 | −50,616.4 ± 302.9 |
Mid (52%) | −180.0 ± 1.1 | −37,071.2 ± 221.8 | −165.6 ± 1.0 | −37,071.2 ± 221.8 | |
Low (32%) | −180.0 ± 1.1 | −22,813.0 ± 136.5 | −165.6 ± 1.0 | −22,813.0 ± 136.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gan, X.; Guo, B.; Ma, Z.; Fang, M.; Yan, Y.; Liu, W. The Effect of Forest Growth Rate on Climate Change Impacts of Logging Residue Utilization. Atmosphere 2023, 14, 1270. https://doi.org/10.3390/atmos14081270
Gan X, Guo B, Ma Z, Fang M, Yan Y, Liu W. The Effect of Forest Growth Rate on Climate Change Impacts of Logging Residue Utilization. Atmosphere. 2023; 14(8):1270. https://doi.org/10.3390/atmos14081270
Chicago/Turabian StyleGan, Xiaofan, Bingqian Guo, Zemeng Ma, Mingjie Fang, Yan Yan, and Weiguo Liu. 2023. "The Effect of Forest Growth Rate on Climate Change Impacts of Logging Residue Utilization" Atmosphere 14, no. 8: 1270. https://doi.org/10.3390/atmos14081270
APA StyleGan, X., Guo, B., Ma, Z., Fang, M., Yan, Y., & Liu, W. (2023). The Effect of Forest Growth Rate on Climate Change Impacts of Logging Residue Utilization. Atmosphere, 14(8), 1270. https://doi.org/10.3390/atmos14081270