N2O Emissions from Aquatic Ecosystems: A Review
Abstract
:1. Introduction
2. Mechanisms Involved in N2O Production
2.1. Biological Pathways
2.2. Abiotic Pathways
3. Assessment of Aquatic N2O Budget
3.1. N2O Flux Measurements
3.2. Estimation Based on Emission Factor (EF)
3.3. Model Simulation
3.4. Uncertainties
4. N2O Source Partitioning with Stable Isotope Technique
4.1. Stable Isotopes of N2O
4.2. Isotopic Characteristics of Biological Processes
4.3. Isotopic Characteristics of Abiotic Processes
N2O Sources | Reaction Type | δ15N-N2O (‰) | δ18O-N2O (‰) | SP (‰) | Ref. |
---|---|---|---|---|---|
Ocean | - | 8.8 | 60.7 | 35.7 | [138] |
- | −6~21 | - | - | [139] | |
Biotic | 3.5~5.5 | 35.5~41.5 | 0–8 | [33] | |
Natural or agricultural soil | Biotic | −38~6 | - | - | [139] |
Antarctic soil | Biotic + Abiotic | −82 ± 1 | 23 ± 1 | 22 ± 1 | [62] |
11 rivers in southern Ontario, Canada | - | −22.6~10.7 | 47.4~51.5 | - | [101] |
Estuarine salt marsh | Biotic | −1.41~2.99 | 39.66~50.38 | 4.09~13.69 | [129] |
Troposphere | - | 7.0 ± 0.6 | 43.7 ± 0.9 | 18.7 ± 2.2 | [140] |
Stratosphere | - | 11.4 | 48.3 | 21.3 | |
Weighted average of marine and land sources | Biotic + Abiotic | −25.5~1.0 | 9.8~37.4 | −0.5 ~15.1 |
Reaction Process | N2O Sources | δ15N-N2O (‰) | δ18O-N2O (‰) | SP (‰) | Ref. |
---|---|---|---|---|---|
Biotic | Oxidation of NH2OH and NH4+ | - | - | 32~35 | [132] |
Denitrification of NO2− and NO3− | - | - | 0 | ||
NO2− reduction | −90~2 | 13~35 | −11~0 | [6] | |
NH2OH oxidation | - | −10 | - | [41] | |
−68~19 | 22~24.5 | 13~37 | [6] | ||
- | - | 32.5~35.6 | [132] | ||
Nitrification | −5.1 ± 12.0 | - | - | [131] | |
−56.6 ± 7.3 | - | - | [131] | ||
Bacterial denitrification | - | - | 23.3 ± 4.2, −5.1 ± 1.8 | [134] | |
Fungal denitrification | - | 37.3 ± 1.3, 31.5 ± 0.5 | 37.1 ± 2.5, 36.9 ± 2.8 | [133] | |
- | - | 15.8~36.7 | [52] | ||
Nitrifier denitrification | - | - | 0.1 ± 1.7 | [132] | |
Abiotic | NO2− reduction | - | - | 30.1 ± 1.7 | [134] |
NH2OH oxidation | - | - | 29.5 ± 1.1 | [134] | |
Chemodenitrification | 2~11 | 4~10 | 26.5 ± 0.8 | [61] | |
−19.8~−3.0 | 29.3~46.4 | 0.4~26.0 | [56] | ||
- | - | 10~22 | [57] |
5. Research Prospect
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IPCC. Global Carbon and other Biogeochemical Cycles and Feedbacks. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 673–816. [Google Scholar] [CrossRef]
- Basso, L.; Crotwell, A.; Dolman, H.; Gatti, L.; Gerbig, C.; Griffith, D.; Hall, B.; Jordan, A.; Krummel, P.; Loh, Z.; et al. WMO Greenhouse Gas Bulletin. The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2020; World Meteorological Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Bange, H.W.; Rapsomanikis, S.; Andreae, M.O. Nitrous oxide in coastal waters. Glob. Biogeochem. Cycles 1996, 10, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Pauleta, S.R.; Carepo, M.S.P.; Moura, I. Source and reduction of nitrous oxide. Coord. Chem. Rev. 2019, 387, 436–449. [Google Scholar] [CrossRef]
- Ravishankara, A.R.; Daniel, J.S.; Portmann, R.W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science 2009, 326, 123–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humbert, G.; Sébilo, M.; Fiat, J.; Lang, L.; Filali, A.; Vaury, V.; Spérandio, M.; Laverman, A.M. Isotopic evidence for alteration of nitrous oxide emissions and producing pathways contribution under nitrifying conditions. Biogeosciences 2019, 17, 979–993. [Google Scholar] [CrossRef] [Green Version]
- Beaulieu, J.J.; Tank, J.L.; Hamilton, S.K.; Wollheim, W.M.; Hall, R.O., Jr.; Mulholland, P.J.; Peterson, B.J.; Ashkenas, L.R.; Cooper, L.W.; Dahm, C.N.; et al. Nitrous oxide emission from denitrification in stream and river networks. Proc. Natl. Acad. Sci. USA 2011, 108, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Raymond, P.A.; Zappa, C.J.; Mulholland, P.; Laursen, A.E.; Butman, D.; Bott, T.L.; Potter, J.; McDowell, W.H.; Newbold, D. Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnol. Oceanogr. Fluids Environ. 2012, 2, 41–53. [Google Scholar] [CrossRef]
- Marzadri, A.; Amatulli, G.; Tonina, D.; Bellin, A.; Shen, L.Q.; Allen, G.H.; Raymond, P.A. Global riverine nitrous oxide emissions: The role of small streams and large rivers. Sci. Total Environ. 2021, 776, 145148. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Wu, S.; Xiao, S.; Yu, K.; Fang, X.; Xia, L.; Wang, J.; Liu, S.; Freeman, C.; Zou, J. Global methane and nitrous oxide emissions from inland waters and estuaries. Glob. Chang. Biol. 2022, 28, 4713–4725. [Google Scholar] [CrossRef]
- Gruber, N.; Galloway, J.N. An Earth-system perspective of the global nitrogen cycle. Nature 2008, 451, 293–296. [Google Scholar] [CrossRef] [Green Version]
- Menegat, S.; Ledo, A.; Tirado, R. Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture. Sci. Rep. 2022, 12, 14490. [Google Scholar] [CrossRef]
- Harris, E.; Yu, L.; Wang, Y.P.; Mohn, J.; Henne, S.; Bai, E.; Barthel, M.; Bauters, M.; Boeckx, P.; Dorich, C.; et al. Warming and redistribution of nitrogen inputs drive an increase in terrestrial nitrous oxide emission factor. Nat. Commun. 2022, 13, 4310. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Tian, H.; Shi, H.; Pan, S.; Xu, R.; Pan, N.; Canadell, J.G. Increased global nitrous oxide emissions from streams and rivers in the Anthropocene. Nat. Clim. Chang. 2020, 10, 138–142. [Google Scholar] [CrossRef]
- Wang, X.; Yu, L.; Liu, T.; He, Y.; Wu, S.; Chen, H.; Yuan, X.; Wang, J.; Li, X.; Li, H.; et al. Methane and nitrous oxide concentrations and fluxes from heavily polluted urban streams: Comprehensive influence of pollution and restoration. Environ. Pollut. 2022, 313, 120098. [Google Scholar] [CrossRef] [PubMed]
- Seitzinger, S.; Harrison, J.A.; Böhlke, J.K.; Bouwman, A.F.; Lowrance, R.; Peterson, B.; Tobias, C.; Drecht, G.V. Denitrification across Landscapes and Waterscapes: A Synthesis. Ecol. Appl. 2006, 16, 2064–2090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.T.A.; Wang, S.L.; Lu, X.X.; Zhang, S.R.; Lui, H.K.; Tseng, H.C.; Wang, B.J.; Huang, H.I. Hydrogeochemistry and greenhouse gases of the Pearl River, its estuary and beyond. Quat. Int. 2008, 186, 79–90. [Google Scholar] [CrossRef]
- Lequy, E.; Asmala, E.; Ibrom, A.; Loubet, B.; Massad, R.S.; Markager, S.; Garnier, J. Contribution from a eutrophic temperate estuary to the landscape flux of nitrous oxide. Water Res. 2022, 222, 118874. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.X.; Yue, F.J.; Wang, Y.; Li, Y.; Lang, Y.C.; Li, S.L. Dynamic N transport and N2O emission during rainfall events in the coastal river. Sci. Total Environ. 2023, 23, 166206. [Google Scholar] [CrossRef] [PubMed]
- Murray, R.H.; Erler, D.V.; Eyre, B.D. Nitrous oxide fluxes in estuarine environments: Response to global change. Glob. Chang. Biol. 2015, 21, 3219–3245. [Google Scholar] [CrossRef]
- Wells, N.S.; Maher, D.T.; Erler, D.V.; Hipsey, M.; Rosentreter, J.A.; Eyre, B.D. Estuaries as Sources and Sinks of N2O Across a Land Use Gradient in Subtropical Australia. Glob. Biogeochem. Cycles 2018, 32, 877–894. [Google Scholar] [CrossRef]
- Yan, W.; Yang, L.; Wang, F.; Wang, J.; Ma, P. Riverine N2O concentrations, exports to estuary and emissions to atmosphere from the Changjiang River in response to increasing nitrogen loads. Glob. Biogeochem. Cycles 2012, 26, GB4006. [Google Scholar] [CrossRef]
- Seitzinger, S.P.; Kroeze, C.; Styles, R.V. Global distribution of N2O emissions from aquatic systems: Natural emissions and anthropogenic effects. Glob. Chang. Sci. 2000, 2, 267–279. [Google Scholar] [CrossRef]
- Syakila, A.; Kroeze, C. The global nitrous oxide budget revisited. Greenh. Gas Meas. Manag. 2011, 1, 17–26. [Google Scholar] [CrossRef]
- Battaglia, G.; Joos, F. Marine N2O Emissions From Nitrification and Denitrification Constrained by Modern Observations and Projected in Multimillennial Global Warming Simulations. Glob. Biogeochem. Cycles 2018, 32, 92–121. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Chang, B.X.; Warner, M.J.; Weber, T.S.; Bourbonnais, A.M.; Santoro, A.E.; Kock, A.; Sonnerup, R.E.; Bullister, J.L.; Wilson, S.T.; et al. Global reconstruction reduces the uncertainty of oceanic nitrous oxide emissions and reveals a vigorous seasonal cycle. Proc. Natl. Acad. Sci. USA 2020, 117, 11954–11960. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ma, X.; Gu, X.; Liu, S.; Song, G.; Jin, H.; Zhang, G. Seasonal and spatial variations of N2O distribution and emission in the East China Sea and South Yellow Sea. Sci. Total Environ. 2021, 775, 145715. [Google Scholar] [CrossRef]
- Bange, H.W.; Arévalo-Martínez, D.L.; de la Paz, M.; Farías, L.; Kaiser, J.; Kock, A.; Law, C.S.; Rees, A.P.; Rehder, G.; Tortell, P.D.; et al. A Harmonized Nitrous Oxide (N2O) Ocean Observation Network for the 21st Century. Front. Mar. Sci. 2019, 6, 157. [Google Scholar] [CrossRef]
- Leng, P.; Li, Z.; Zhang, Q.; Koschorreck, M.; Li, F.; Qiao, Y.; Xia, J. Deciphering large-scale spatial pattern and modulators of dissolved greenhouse gases (CO2, CH4, and N2O) along the Yangtze River, China. J. Hydrol. 2023, 623, 129710. [Google Scholar] [CrossRef]
- Buitenhuis, E.T.; Suntharalingam, P.; Le Quéré, C. Constraints on global oceanic emissions of N2O from observations and models. Biogeosciences 2018, 15, 2161–2175. [Google Scholar] [CrossRef] [Green Version]
- Que, Z.; Wang, X.; Liu, T.; Wu, S.; He, Y.; Zhou, T.; Yu, L.; Qing, Z.; Chen, H.; Yuan, X. Watershed land use change indirectly dominated the spatial variations of CH4 and N2O emissions from two small suburban rivers. J. Hydrol. 2023, 619, 129357. [Google Scholar] [CrossRef]
- Gao, Y.; Jia, Y.; Yu, G.; He, N.; Zhang, L.; Zhu, B.; Wang, Y. Anthropogenic reactive nitrogen deposition and associated nutrient limitation effect on gross primary productivity in inland water of China. J. Clean. Prod. 2019, 208, 530–540. [Google Scholar] [CrossRef]
- Popp, B.N.; Westley, M.B.; Toyoda, S.; Miwa, T.; Dore, J.E.; Yoshida, N.; Rust, T.M.; Sansone, F.J.; Russ, M.E.; Ostrom, N.E.; et al. Nitrogen and oxygen isotopomeric constraints on the origins and sea-to-air flux of N2O in the oligotrophic subtropical North Pacific gyre. Glob. Biogeochem. Cycles 2002, 16, 12-1–12-10. [Google Scholar] [CrossRef]
- Snider, D.M.; Venkiteswaran, J.J.; Schiff, S.L.; Spoelstra, J. From the ground up: Global nitrous oxide sources are constrained by stable isotope values. PLoS ONE 2015, 10, e0118954. [Google Scholar] [CrossRef] [Green Version]
- Su, X.; Cui, L.; Tang, Y.; Wen, T.; Yang, K.; Wang, Y.; Zhang, J.; Zhu, G.; Yang, X.; Hou, L.; et al. Denitrification and N2O Emission in Estuarine Sediments in Response to Ocean Acidification: From Process to Mechanism. Environ. Sci. Technol. 2022, 56, 14828–14839. [Google Scholar] [CrossRef] [PubMed]
- Toyoda, S.; Yoshida, N.; Koba, K. Isotopocule analysis of biologically produced nitrous oxide in various environments. Mass Spectrom. Rev. 2017, 36, 135–160. [Google Scholar] [CrossRef] [PubMed]
- Quick, A.M.; Reeder, W.J.; Farrell, T.B.; Tonina, D.; Feris, K.P.; Benner, S.G. Nitrous oxide from streams and rivers: A review of primary biogeochemical pathways and environmental variables. Earth Sci. Rev. 2019, 191. [Google Scholar] [CrossRef]
- Thakur, I.S.; Medhi, K. Nitrification and denitrification processes for mitigation of nitrous oxide from waste water treatment plants for biovalorization: Challenges and opportunities. Bioresour. Technol. 2019, 282, 502–513. [Google Scholar] [CrossRef] [PubMed]
- Pandey, C.B.; Kumar, U.; Kaviraj, M.; Minick, K.J.; Mishra, A.K.; Singh, J.S. DNRA: A short-circuit in biological N-cycling to conserve nitrogen in terrestrial ecosystems. Sci. Total Environ. 2020, 738, 139710. [Google Scholar] [CrossRef] [PubMed]
- Wrage-Mönnig, N.; Horn, M.A.; Well, R.; Müller, C.; Velthof, G.; Oenema, O. The role of nitrifier denitrification in the production of nitrous oxide revisited. Soil Biol. Biochem. 2018, 123, A3–A16. [Google Scholar] [CrossRef]
- Baggs, E.M. A review of stable isotope techniques for N2O source partitioning in soils: Recent progress, remaining challenges and future considerations. Rapid Commun. Mass Spectrom. 2008, 22, 1664–1672. [Google Scholar] [CrossRef]
- Beaulieu, J.J.; Arango, C.P.; Hamilton, S.K.; Tank, J.L. The production and emission of nitrous oxide from headwater streams in the Midwestern United States. Glob. Chang. Biol. 2008, 14, 878–894. [Google Scholar] [CrossRef]
- Frame, C.H.; Casciotti, K.L. Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium. Biogeosciences 2010, 7, 2695–2709. [Google Scholar] [CrossRef] [Green Version]
- Otte, J.M.; Blackwell, N.; Ruser, R.; Kappler, A.; Kleindienst, S.; Schmidt, C. N2O formation by nitrite-induced (chemo)denitrification in coastal marine sediment. Sci. Rep. 2019, 9, 10691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, C.; Qi, M.; Lin, W.; Li, X. Nitrous Oxide from Abiotic Processes of Hydroxylamine and Nitrite in Estuarine and Coastal Ecosystems: A Review. J. Mar. Sci. Eng. 2022, 10, 623. [Google Scholar] [CrossRef]
- Deng, W.; Wu, J.; Hong, Y.; Liu, X.; Hu, Y. The diversity distribution and N2O production driven by fungal denitrification in different natural ecosystems. Acta Microbiol. Sin. 2021, 61, 1551–1566. (In Chinese) [Google Scholar] [CrossRef]
- Ivens, W.P.M.F.; Tysmans, D.J.J.; Kroeze, C.; Löhr, A.J.; van Wijnen, J. Modeling global N2O emissions from aquatic systems. Curr. Opin. Environ. Sustain. 2011, 3, 350–358. [Google Scholar] [CrossRef]
- Müller, D.; Bange, H.W.; Warneke, T.; Rixen, T.; Müller, M.; Mujahid, A.; Notholt, J. Nitrous oxide and methane in two tropical estuaries in a peat-dominated region of northwestern Borneo. Biogeosciences 2016, 13, 2415–2428. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Yang, P.; Yang, H.; Wang, H.; Zhang, L.; Tong, C.; Lai, D.Y.F.; Lin, Y.; Tan, L.; Hong, Y.; et al. Diffusive nitrous oxide (N2O) fluxes across the sediment-water-atmosphere interfaces in aquaculture shrimp ponds in a subtropical estuary: Implications for climate warming. Agric. Ecosyst. Environ. 2023, 341, 108218. [Google Scholar] [CrossRef]
- Li, X.; Qi, M.; Gao, D.; Liu, M.; Sardans, J.; Penuelas, J.; Hou, L. Nitrous oxide emissions from subtropical estuaries: Insights for environmental controls and implications. Water Res. 2022, 212, 118110. [Google Scholar] [CrossRef]
- Yang, J.T.; Hsu, T.C.; Tan, E.; Lee, K.; Krom, M.D.; Kang, S.; Dai, M.; Hsiao, S.S.; Yan, X.; Zou, W.; et al. Sedimentary processes dominate nitrous oxide production and emission in the hypoxic zone off the Changjiang River estuary. Sci. Total Environ. 2022, 827, 154042. [Google Scholar] [CrossRef]
- Maeda, K.; Spor, A.; Edel-Hermann, V.; Heraud, C.; Breuil, M.C.; Bizouard, F.; Toyoda, S.; Yoshida, N.; Steinberg, C.; Philippot, L. N2O production, a widespread trait in fungi. Sci. Rep. 2015, 5, 9697. [Google Scholar] [CrossRef] [Green Version]
- Su, X.; Wen, T.; Wang, Y.; Xu, J.; Cui, L.; Zhang, J.; Xue, X.; Ding, K.; Tang, Y.; Zhu, Y.-g. Stimulation of N2O emission via bacterial denitrification driven by acidification in estuarine sediments. Glob. Chang. Biol. 2021, 27, 5564–5579. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Zhang, X.; Xia, L.; Yuan, W.; Zhou, Z.; Bruggmann, N. Role of chemical reactions in the nitrogenous trace gas emissions and nitrogen retention: A meta-analysis. Sci. Total Environ. 2022, 808, 152141. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Amelung, W.; Lehndorff, E.; Schloter, M.; Vereecken, H.; Brüggemann, N. N2O and NOx emissions by reactions of nitrite with soil organic matter of a Norway spruce forest. Biogeochemistry 2017, 132, 325–342. [Google Scholar] [CrossRef]
- Buchwald, C.; Grabb, K.; Hansel, C.M.; Wankel, S.D. Constraining the role of iron in environmental nitrogen transformations: Dual stable isotope systematics of abiotic NO2− reduction by Fe(II) and its production of N2O. Geochim. Cosmochim. Acta 2016, 186, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Jones, L.C.; Peters, B.; Lezama Pacheco, J.S.; Casciotti, K.L.; Fendorf, S. Stable isotopes and iron oxide mineral products as markers of chemodenitrification. Environ. Sci. Technol. 2015, 49, 3444–3452. [Google Scholar] [CrossRef]
- Picardal, F. Abiotic and Microbial Interactions during Anaerobic Transformations of Fe(II) and NOx−. Front. Microbiol. 2012, 3, 112. [Google Scholar] [CrossRef] [Green Version]
- Wankel, S.D.; Ziebis, W.; Buchwald, C.; Charoenpong, C.; de Beer, D.; Dentinger, J.; Xu, Z.; Zengler, K. Evidence for fungal and chemodenitrification based N2O flux from nitrogen impacted coastal sediments. Nat. Commun. 2017, 8, 15595. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Knicker, H.; Zhou, Z.; Eckhardt, K.-U.; Leinweber, P.; Wissel, H.; Yuan, W.; Brüggemann, N. Nitrogen immobilization caused by chemical formation of black- and amide-N in soil. Geoderma 2023, 429, 116274. [Google Scholar] [CrossRef]
- Grabb, K.C.; Buchwald, C.; Hansel, C.M.; Wankel, S.D. A dual nitrite isotopic investigation of chemodenitrification by mineral-associated Fe(II) and its production of nitrous oxide. Geochim. Cosmochim. Acta 2017, 196, 388–402. [Google Scholar] [CrossRef] [Green Version]
- Peters, B.; Casciotti, K.L.; Samarkin, V.A.; Madigan, M.T.; Schutte, C.A.; Joye, S.B. Stable isotope analyses of NO2−, NO3−, and N2O in the hypersaline ponds and soils of the McMurdo Dry Valleys, Antarctica. Geochim. Cosmochim. Acta 2014, 135, 87–101. [Google Scholar] [CrossRef]
- Zhu-Barker, X.; Cavazos, A.R.; Ostrom, N.E.; Horwath, W.R.; Glass, J.B. The importance of abiotic reactions for nitrous oxide production. Biogeochemistry 2015, 126, 251–267. [Google Scholar] [CrossRef]
- Cavazos, A.R.; Taillefert, M.; Tang, Y.; Glass, J.B. Kinetics of nitrous oxide production from hydroxylamine oxidation by birnessite in seawater. Mar. Chem. 2018, 202, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Su, X.; Yang, L.; Yang, K.; Tang, Y.; Wen, T.; Wang, Y.; Rillig, M.C.; Rohe, L.; Pan, J.; Li, H.; et al. Estuarine plastisphere as an overlooked source of N2O production. Nat. Commun. 2022, 13, 3884. [Google Scholar] [CrossRef] [PubMed]
- Gerardo-Nieto, O.; Vega-Penaranda, A.; Gonzalez-Valencia, R.; Alfano-Ojeda, Y.; Thalasso, F. Continuous Measurement of Diffusive and Ebullitive Fluxes of Methane in Aquatic Ecosystems by an Open Dynamic Chamber Method. Environ. Sci. Technol. 2019, 53, 5159–5167. [Google Scholar] [CrossRef] [PubMed]
- Hinshaw, S.E.; Dahlgren, R.A. Dissolved nitrous oxide concentrations and fluxes from the eutrophic San Joaquin River, California. Environ. Sci. Technol. 2013, 47, 1313–1322. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, S.; Xia, X.; Battin, T.J.; Liu, S.; Wang, Q.; Liu, R.; Yang, Z.; Ni, J.; Stanley, E.H. Unexpectedly minor nitrous oxide emissions from fluvial networks draining permafrost catchments of the East Qinghai-Tibet Plateau. Nat. Commun. 2022, 13, 950. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, J.J.; Shuster, W.D.; Rebholz, J.A. Nitrous Oxide Emissions from a Large, Impounded River: The Ohio River. Environ. Sci. Technol. 2010, 44, 7527–7533. [Google Scholar] [CrossRef]
- Webb, J.R.; Clough, T.J.; Quayle, W.C. A review of indirect N2O emission factors from artificial agricultural waters. Environ. Res. Lett. 2021, 16, 043005. [Google Scholar] [CrossRef]
- Yang, W.B.; Yuan, C.S.; Huang, B.Q.; Tong, C.; Yang, L. Emission Characteristics of Greenhouse Gases and Their Correlation with Water Quality at an Estuarine Mangrove Ecosystem—The Application of an In-situ On-site NDIR Monitoring Technique. Wetlands 2018, 38, 723–738. [Google Scholar] [CrossRef]
- Denmead, O.T. Approaches to measuring fluxes of methane and nitrous oxide between landscapes and the atmosphere. Plant Soil 2008, 309, 5–24. [Google Scholar] [CrossRef]
- Wu, S.; Chen, J.; Li, C.; Kong, D.; Yu, K.; Liu, S.; Zou, J. Diel and seasonal nitrous oxide fluxes determined by floating chamber and gas transfer equation methods in agricultural irrigation watersheds in southeast China. Environ. Monit. Assess. 2018, 190, 122. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Zheng, X.; Wang, R.; Liao, T.; Zou, J. Preliminary Comparison of the Static Floating Chamber and the Diffusion Model Methods for Measuring Water–Atmosphere Exchanges of Methane and Nitrous Oxide from Inland Water Bodies. Clim. Environ. Res. 2014, 19, 290–302. (In Chinese) [Google Scholar] [CrossRef]
- Clough, T.J.; Bertram, J.E.; Sherlock, R.R.; Leonard, R.L.; Nowicki, B.L. Comparison of measured and EF5-r-derived N2O fluxes from a spring-fed river. Glob. Chang. Biol. 2006, 12, 477–488. [Google Scholar] [CrossRef]
- Liu, S.; Gao, Q.; Wu, J.; Xie, Y.; Yang, Q.; Wang, R.; Zhang, J.; Liu, Q. Spatial distribution and influencing mechanism of CO2, N2O and CH4 in the Pearl River Estuary in summer. Sci. Total Environ. 2022, 846, 157381. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Zhang, L.; Wang, G.; Wang, J.; Zhang, L.; Zhang, S.; Li, Z. Nitrogen loss from a turbid river network based on N2 and N2O fluxes: Importance of suspended sediment. Sci. Total Environ. 2021, 757, 143918. [Google Scholar] [CrossRef] [PubMed]
- Rosamond, M.S.; Thuss, S.J.; Schiff, S.L. Dependence of riverine nitrous oxide emissions on dissolved oxygen levels. Nat. Geosci. 2012, 5, 715–718. [Google Scholar] [CrossRef]
- Tian, H.; Xu, R.; Canadell, J.G.; Thompson, R.L.; Winiwarter, W.; Suntharalingam, P.; Davidson, E.A.; Ciais, P.; Jackson, R.B.; Janssens-Maenhout, G.; et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 2020, 586, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Deng, H.; Wang, D.; Ye, M.; Tan, Y.; Li, Y.; Chen, Z.; Xu, S. Nitrous oxide emissions in the Shanghai river network: Implications for the effects of urban sewage and IPCC methodology. Glob. Chang. Biol. 2013, 19, 2999–3010. [Google Scholar] [CrossRef]
- Jiang, L.Q.; Cai, W.J.; Wang, Y. A comparative study of carbon dioxide degassing in river- and marine-dominated estuaries. Limnol. Oceanogr. 2008, 53, 2603–2615. [Google Scholar] [CrossRef] [Green Version]
- Borges, A.V.; Vanderborght, J.-P.; Schiettecatte, L.-S.; Gazeau, F.; Ferrón-Smith, S.; Delille, B.; Frankignoulle, M. Variability of the gas transfer velocity of CO2 in a macrotidal estuary (the Scheldt). Estuaries 2004, 27, 593–603. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Wang, D.; Li, Y.; Deng, H.; Hu, B.; Ye, M.; Zhou, X.; Da, L.; Chen, Z.; Xu, S. Carbon dioxide and methane dynamics in a human-dominated lowland coastal river network (Shanghai, China). J. Geophys. Res. Biogeosciences 2017, 122, 1738–1758. [Google Scholar] [CrossRef] [Green Version]
- Aho, K.S.; Fair, J.H.; Hosen, J.D.; Kyzivat, E.D.; Logozzo, L.A.; Weber, L.C.; Yoon, B.; Zarnetske, J.P.; Raymond, P.A. An intense precipitation event causes a temperate forested drainage network to shift from N2O source to sink. Limnol. Oceanogr. 2022, 67, S242–S257. [Google Scholar] [CrossRef]
- IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4 Agriculture, Forestry and Other Land Use. Chapter 11: N2O Emissions from Managed Soils, and CO2 Emissions from Lime and Urea Application; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use; IPCC: Geneva, Switzerland, 2006. [Google Scholar]
- Zhou, Y.; Huang, M.; Tian, H.; Xu, R.; Ge, J.; Yang, X.; Liu, R.; Sun, Y.; Pan, S.; Gao, Q.; et al. Four decades of nitrous oxide emission from Chinese aquaculture underscores the urgency and opportunity for climate change mitigation. Environ. Res. Lett. 2021, 16, 114038. [Google Scholar] [CrossRef]
- Wang, J.; Chen, N.; Yan, W.; Wang, B.; Yang, L. Effect of dissolved oxygen and nitrogen on emission of N2O from rivers in China. Atmos. Environ. 2015, 103, 347–356. [Google Scholar] [CrossRef]
- Wang, J.; Wang, G.; Zhang, S.; Xin, Y.; Jiang, C.; Liu, S.; He, X.; McDowell, W.H.; Xia, X. Indirect nitrous oxide emission factors of fluvial networks can be predicted by dissolved organic carbon and nitrate from local to global scales. Glob. Chang. Biol. 2022, 28, 7270–7285. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Chen, D.; Dahlgren, R.A. Modeling nitrous oxide emission from rivers: A global assessment. Glob. Chang. Biol. 2016, 22, 3566–3582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Outram, F.N.; Hiscock, K.M. Indirect nitrous oxide emissions from surface water bodies in a lowland arable catchment: A significant contribution to agricultural greenhouse gas budgets? Environ. Sci. Technol. 2012, 46, 8156–8163. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhu, Q.; Wang, Y.; Lai, X.; Liao, K.; Guo, C. Storages and leaching losses of soil water dissolved CO2 and N2O on typical land use hillslopes in southeastern hilly area of China. Sci. Total Environ. 2023, 886, 163780. [Google Scholar] [CrossRef]
- Hama-Aziz, Z.Q.; Hiscock, K.M.; Cooper, R.J. Indirect Nitrous Oxide Emission Factors for Agricultural Field Drains and Headwater Streams. Environ. Sci. Technol. 2017, 51, 301–307. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Toyoda, R.; Suenaga, T.; Aoyagi, T.; Hori, T.; Terada, A. Low nitrous oxide concentration and spatial microbial community transition across an urban river affected by treated sewage. Water Res. 2022, 216, 118276. [Google Scholar] [CrossRef]
- Garnier, J.; Billen, G.; Vilain, G.; Martinez, A.; Silvestre, M.; Mounier, E.; Toche, F. Nitrous oxide (N2O) in the Seine river and basin: Observations and budgets. Agric. Ecosyst. Environ. 2009, 133, 223–233. [Google Scholar] [CrossRef]
- Hu, M.; Li, B.; Wu, K.; Zhang, Y.; Wu, H.; Zhou, J.; Chen, D. Modeling Riverine N2O Sources, Fates, and Emission Factors in a Typical River Network of Eastern China. Environ. Sci. Technol. 2021, 55, 13356–13365. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Cai, Y.; Akiyama, H. A review of indirect N2O emission factors from agricultural nitrogen leaching and runoff to update of the default IPCC values. Environ. Pollut. 2019, 245, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Li, Y.; Lei, K.; Yang, L. Concentration, Flux, and Emission Factor of N2O in River with Different Nitrogen Pollution Features. Environ. Sci. 2018, 39, 5400–5409. (In Chinese) [Google Scholar] [CrossRef]
- He, Y.; Wang, X.; Chen, H.; Yuan, X.; Wu, N.; Zhang, Y.; Yue, J.; Zhang, Q.; Diao, Y.; Zhou, L. Effect of watershed urbanization on N2O emissions from the Chongqing metropolitan river network, China. Atmos. Environ. 2017, 171, 70–81. [Google Scholar] [CrossRef]
- Audet, J.; Wallin, M.B.; Kyllmar, K.; Andersson, S.; Bishop, K. Nitrous oxide emissions from streams in a Swedish agricultural catchment. Agric. Ecosyst. Environ. 2017, 236, 295–303. [Google Scholar] [CrossRef]
- Baulch, H.M.; Schiff, S.L.; Thuss, S.J.; Dillon, P.J. Isotopic character of nitrous oxide emitted from streams. Environ. Sci. Technol. 2011, 45, 4682–4688. [Google Scholar] [CrossRef] [PubMed]
- Cooper, R.J.; Wexler, S.K.; Adams, C.A.; Hiscock, K.M. Hydrogeological controls on regional-scale indirect nitrous oxide emission factors for rivers. Environ. Sci. Technol. 2017, 51, 10440–10448. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Sardans, J.; Qi, M.; Ni, X.; Zhang, M.; Peñuelas, J.; Yue, K.; Wu, F. Nitrous oxide concentration and flux in Min River Basin of southeast China: Effects of land use, stream order and water variables. J. Hydrol. 2022, 614, 128507. [Google Scholar] [CrossRef]
- Qi, M.; Luo, L.; Hong, X.; Qian, W.; Tong, C.; Li, X. Spatial and temporal variations and influencing factors of nitrous oxide emissions from surface water in Min River Estuary. Acta Sci. Circumstantiae 2022, 42, 489–500. (In Chinese) [Google Scholar] [CrossRef]
- Guan, D.; Zhao, H.; Yao, Z. The distribution and flux of nitrous oxide in the Liaohe Estuary area. Acta Oceanol. Sin. 2009, 31, 85–90. (In Chinese) [Google Scholar]
- Li, X.; Yue, F.; Zhou, B.; Wang, X.; Hu, J.; Chen, S.; Li, S. Study on N2O release from typical gate-controlled rivers in Bohai Bay. China Environ. Sci. 2022, 42, 356–366. (In Chinese) [Google Scholar] [CrossRef]
- Hu, B.; Wang, D.; Zhou, J.; Meng, W.; Li, C.; Sun, Z.; Guo, X.; Wang, Z. Greenhouse gases emission from the sewage draining rivers. Sci. Total Environ. 2018, 612, 1454–1462. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Li, Y.; Li, X.; Guo, M.; She, D.; Yan, X. Diurnal pattern in nitrous oxide emissions from a sewage-enriched river. Chemosphere 2013, 92, 421–428. [Google Scholar] [CrossRef]
- Wu, W.; Wang, J.; Zhou, X.; Yuan, B.; Guo, M.; Ren, L. Spatiotemporal distribution of nitrous oxide (N2O) emissions from cascade reservoirs in Lancang-Mekong River Yunnan section, Southwestern China. River Res. Appl. 2020, 37, 1055–1069. [Google Scholar] [CrossRef]
- Li, X.; Yu, Y.; Fan, H.; Tang, C. Intense denitrification and sewage effluent result in enriched 15N in N2O from urban polluted rivers. J. Hydrol. 2022, 608, 127631. [Google Scholar] [CrossRef]
- Lin, H.; Dai, M.; Kao, S.-J.; Wang, L.; Roberts, E.; Yang, J.-Y.T.; Huang, T.; He, B. Spatiotemporal variability of nitrous oxide in a large eutrophic estuarine system: The Pearl River Estuary, China. Mar. Chem. 2016, 182, 14–24. [Google Scholar] [CrossRef]
- Grossel, A.; Bourennane, H.; Ayzac, A.; Pasquier, C.; Henault, C. Indirect emissions of nitrous oxide in a cropland watershed with contrasting hydrology in central France. Sci. Total Environ. 2021, 766, 142664. [Google Scholar] [CrossRef]
- Borges, A.V.; Darchambeau, F.; Lambert, T.; Morana, C.; Allen, G.H.; Tambwe, E.; Sembaito, A.T.; Mambo, T.; Wabakhangazi, J.N.; Descy, J.-P.; et al. Variations in dissolved greenhouse gases (CO2, CH4, N2O) in the Congo River network overwhelmingly driven by fluvial-wetland connectivity. Biogeosciences 2019, 16, 3801–3834. [Google Scholar] [CrossRef] [Green Version]
- Mwanake, R.M.; Gettel, G.M.; Aho, K.S.; Namwaya, D.W.; Masese, F.O.; Butterbach-Bahl, K.; Raymond, P.A. Land Use, Not Stream Order, Controls N2O Concentration and Flux in the Upper Mara River Basin, Kenya. J. Geophys. Res. Biogeosci. 2019, 124, 3491–3506. [Google Scholar] [CrossRef]
- Hershey, R.; Nandan, S.B.; Jayachandran, P.R.; Vijay, A.; Sudheesh, V. Nitrous oxide flux from a Tropical estuarine system (Cochin estuary, India). Reg. Stud. Mar. Sci. 2019, 30, 100725. [Google Scholar] [CrossRef]
- Nirmal Rajkumar, A.; Barnes, J.; Ramesh, R.; Purvaja, R.; Upstill-Goddard, R.C. Methane and nitrous oxide fluxes in the polluted Adyar River and estuary, SE India. Mar. Pollut. Bull. 2008, 56, 2043–2051. [Google Scholar] [CrossRef] [PubMed]
- Clough, T.J.; Buckthought, L.E.; Casciotti, K.L.; Kelliher, F.M.; Jones, P.K. Nitrous oxide dynamics in a braided river system, New Zealand. J. Environ. Qual. 2011, 40, 1532–1541. [Google Scholar] [CrossRef]
- Gao, X.; Ouyang, W.; Lin, C.; Wang, K.; Hao, F.; Hao, X.; Lian, Z. Considering atmospheric N2O dynamic in SWAT model avoids the overestimation of N2O emissions in river networks. Water Res. 2020, 174, 115624. [Google Scholar] [CrossRef] [PubMed]
- Kroeze, C.; Dumont, E.; Seitzinger, S. Future trends in emissions of N2O from rivers and estuaries. J. Integr. Environ. Sci. 2010, 7, 71–78. [Google Scholar] [CrossRef]
- Maavara, T.; Lauerwald, R.; Laruelle, G.G.; Akbarzadeh, Z.; Bouskill, N.J.; Van Cappellen, P.; Regnier, P. Nitrous oxide emissions from inland waters: Are IPCC estimates too high? Glob. Chang. Biol. 2018, 25, 473–488. [Google Scholar] [CrossRef]
- Tian, H.; Yang, J.; Lu, C.; Xu, R.; Canadell, J.G.; Jackson, R.B.; Arneth, A.; Chang, J.; Chen, G.; Ciais, P.; et al. The Global N2O Model Intercomparison Project. Bull. Am. Meteorol. Soc. 2018, 99, 1231–1251. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Schürz, C.; Zoboli, O.; Zessner, M.; Schulz, K.; Watzinger, A.; Bodner, G.; Mehdi-Schulz, B. N2O Emissions from Two Austrian Agricultural Catchments Simulated with an N2O Submodule Developed for the SWAT Model. Atmosphere 2021, 13, 50. [Google Scholar] [CrossRef]
- Marzadri, A.; Dee, M.M.; Tonina, D.; Bellin, A.; Tank, J.L. Role of surface and subsurface processes in scaling N2O emissions along riverine networks. Proc. Natl. Acad. Sci. USA 2017, 114, 4330–4335. [Google Scholar] [CrossRef]
- Kroeze, C.; Seitzinger, S.P. Nitrogen inputs to rivers, estuaries and continental shelves and related nitrous oxide emissions in 1990 and 2050: A global model. Nutr. Cycl. Agroecosystems 1998, 52, 195–212. [Google Scholar] [CrossRef]
- Reay, D.S.; Davidson, E.A.; Smith, K.A.; Smith, P.; Melillo, J.M.; Dentener, F.; Crutzen, P.J. Global agriculture and nitrous oxide emissions. Nat. Clim. Chang. 2012, 2, 410–416. [Google Scholar] [CrossRef]
- Kroeze, C.; Dumont, E.; Seitzinger, S.P. New estimates of global emissions of N2O from rivers and estuaries. Environ. Sci. 2005, 2, 159–165. [Google Scholar] [CrossRef]
- Qin, X.; Li, Y.; Goldberg, S.; Wan, Y.; Fan, M.; Liao, Y.; Wang, B.; Gao, Q.; Li, Y. Assessment of Indirect N2O Emission Factors from Agricultural River Networks Based on Long-Term Study at High Temporal Resolution. Environ. Sci. Technol. 2019, 53, 10781–10791. [Google Scholar] [CrossRef] [PubMed]
- Borges, A.V.; Darchambeau, F.; Teodoru, C.R.; Marwick, T.R.; Tamooh, F.; Geeraert, N.; Omengo, F.O.; Guérin, F.; Lambert, T.; Morana, C.; et al. Globally significant greenhouse-gas emissions from African inland waters. Nat. Geosci. 2015, 8, 637–642. [Google Scholar] [CrossRef] [Green Version]
- Gao, D.; Hou, L.; Li, X.; Liu, M.; Zheng, Y.; Yin, G.; Yang, Y.; Liu, C.; Han, P. Exotic Spartina alterniflora invasion alters soil nitrous oxide emission dynamics in a coastal wetland of China. Plant Soil 2019, 442, 233–246. [Google Scholar] [CrossRef]
- Sutka, R.L.; Ostrom, N.E.; Ostrom, P.H.; Gandhi, H.; Breznak, J.A. Nitrogen isotopomer site preference of N2O produced by Nitrosomonas europaea and Methylococcus capsulatus Bath. Rapid Commun. Mass Spectrom. 2003, 17, 738–745. [Google Scholar] [CrossRef] [PubMed]
- Denk, T.R.A.; Mohn, J.; Decock, C.; Lewicka-Szczebak, D.; Harris, E.; Butterbach-Bahl, K.; Kiese, R.; Wolf, B. The nitrogen cycle: A review of isotope effects and isotope modeling approaches. Soil Biol. Biochem. 2017, 105, 121–137. [Google Scholar] [CrossRef] [Green Version]
- Sutka, R.L.; Ostrom, N.E.; Ostrom, P.H.; Breznak, J.A.; Gandhi, H.; Pitt, A.J.; Li, F. Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances. Appl. Environ. Microbiol. 2006, 72, 638–644. [Google Scholar] [CrossRef] [Green Version]
- Sutka, R.L.; Adams, G.C.; Ostrom, N.E.; Ostrom, P.H. Isotopologue fractionation during N2O production by fungal denitrification. Rapid Commun. Mass Spectrom. 2008, 22, 3989–3996. [Google Scholar] [CrossRef]
- Toyoda, S.; Mutobe, H.; Yamagishi, H.; Yoshida, N.; Tanji, Y. Fractionation of N2O isotopomers during production by denitrifier. Soil Biol. Biochem. 2005, 37, 1535–1545. [Google Scholar] [CrossRef]
- Schmidt, I.; van Spanning, R.J.; Jetten, M.S. Denitrification and ammonia oxidation by Nitrosomonas europaea wild-type, and NirK- and NorB-deficient mutants. Microbiology 2004, 150, 4107–4114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, P.; Li, X.; Chen, F.; Liu, S.; Hou, C. The isotopomer ratios of N2O in the Shaying River, the upper Huai River network, Eastern China: The significances of mechanisms and productions of N2O in the heavy ammonia polluted rivers. Sci. Total Environ. 2019, 687, 1315–1326. [Google Scholar] [CrossRef]
- Heil, J.; Wolf, B.; Brüggemann, N.; Emmenegger, L.; Tuzson, B.; Vereecken, H.; Mohn, J. Site-specific 15N isotopic signatures of abiotically produced N2O. Geochim. Cosmochim. Acta 2014, 139, 72–82. [Google Scholar] [CrossRef]
- Li, Y.H.; Peng, T.H.; Broecker, W.S.; Ostlund, H.C. The average vertical mixing coefficient for the oceanic thermocline. Tellus B Chem. Phys. Meteorol. 1984, 36, 212. [Google Scholar] [CrossRef] [Green Version]
- Toyoda, S.; Kuroki, N.; Yoshida, N.; Ishijima, K.; Tohjima, Y.; Machida, T. Decadal time series of tropospheric abundance of N2O isotopomers and isotopologues in the Northern Hemisphere obtained by the long-term observation at Hateruma Island, Japan. J. Geophys. Res. Atmos. 2013, 118, 3369–3381. [Google Scholar] [CrossRef]
- Yoshida, N.; Toyoda, S. Constraining the atmospheric N2O budget from intramolecular site preference in N2O isotopomers. Nature 2000, 405, 330–334. [Google Scholar] [CrossRef]
Model Equation | R2 | Slope | y-Intercept | Ref. |
---|---|---|---|---|
k600 = (VS)0.89 × D0.54 × 5037 | 0.72 | 0.92 ± 0.024 | 0.98 ± 0.17 | [8] |
k600 = 5937 × (1–2.54 × Fr2) × (VS)0.89 × D0.58 | 0.76 | 0.94 ± 0.022 | 0.76 ± 0.16 | |
k600 = 1162 × V0.85S0.77 | 0.54 | 0.91 ± 0.036 | 0.91 ± 0.24 | |
k600 = (VS)0.76 × 951.5 | 0.53 | 0.82 ± 0.037 | 0.92 ± 0.24 | |
k600 = VS × 2841 + 2.02 | 0.55 | 1.0 ± 0.038 | −4.8 × 10−3 ± 0.26 | |
k600 = 929 × (VS)0.75 × Q0.011 | 0.53 | 0.92 ± 0.036 | 0.81 ± 0.24 | |
k600 = 4725 × (VS)0.86 × D0.66 × Q−0.14 | 0.76 | 0.95 ± 0.023 | 0.57 ± 0.17 | |
k600 = 1.91 × e0.35W | - | - | - | [80] |
k600 = 0.314 × W2 − 0.436 × W + 3.99 | - | - | - | [81] |
k600 = 1.0 + 1.719 × (V/D)0.5 + 2.58 × W | - | - | - | [82] |
k600 = 17.19 × V0.5 × D−0.5 + 2.58 × W + 1.0 | - | - | - | [83] |
Regions | Aquatic Ecosystems | N2O Flux (μmol·m−2·d−1) | NH4+ (mg/L) | NO3− (mg/L) | EFs (%) | Ref. |
---|---|---|---|---|---|---|
Southeast China | Min River Basin | −0.84–3.12 | 0.01–2.3 | 1.9–11.9 | 0.043–0.93 a | [103] |
Estuary of Min River | −2.9–4.3 | 0.01–0.2 | 0.4–2.7 | 0.029–0.25 a | [104] | |
Northeast China | Liao River Basin | 9.36–8539.2 | 0. 2–15.5 | 0.02–9.6 | 0.01–2.2 b | [98] |
Daliao River and Estuary | 4.6–145.1 | - | - | - | [105] | |
North China | Lower Haihe River Basin | −7.2–160.8 | 0.1–0.2 | 0.3–0.5 | 0.20–0.39 a | [106] |
Beitang Drainage River and Dagu Drainage River | 44.6 ± 39.4 | 3.3–10.6 | - | 0.007–0.1 b | [107] | |
Duliujian River, Yongdingxin River, and Nanyuhe River | 26.9 ± 31.2 | 3.3–10.6 | - | 0.003–0.09 b | [107] | |
Eastern China | Middle and lower reaches of the Yangtze River | 0.1–35.0 | 0.2–0.3 | 2.6–6.9 | 0.033–0.053 a | [22] |
Chaohu River Basin | 0.4–2102.6 | 0.3–12.5 | 0.5–0.7 | 0.027–0.80 a | [88] | |
Xin’an Tang River in Taihu region | 35.3–86.7 | 0.5–1.2 | 3.0–7.2 | 0.040–0.044 a | [108] | |
Southwest China | Chongqing metropolitan river network | 4.5–1566.8 | - | 3.7 ± 2.5 | 0.47 a | [99] |
Qingshui Stream, Taohua Stream, Panxi Stream, Xiaojia River, Fenghuang Stream, and Jiuqu River in Chongqing | 10–4940 | 0.1–1.6 | 1.1–9.6 | 0.14–0.29 a | [15] | |
Western China | Lancang River | 7.70–26.00 | 0.18–0.45 | 0.26–0.53 | 0.41–0.61 a | [109] |
The upper reaches of Yangtze River, Yellow River, Lancang River, and Nu River | 9.4 ± 6.2 | - | - | 0.1 a | [68] | |
South China | Shenzhen River, Dashahe River, Xixiang River | - | 0–9.6 | 0.3–15.8 | 0.0028–0.44 a | [110] |
Estuary of Pearl River | 31.9 ± 7.5 | - | - | - | [76] | |
37 ± 15 | 0–8.46 | 0–14.26 | 0.13 a | [111] | ||
USA | San Joaquin River | 22.6–177.4 | - | 0.2–15.5 | 0.003–0.21 a | [67] |
Kalamazoo River | −7.7–228.7 | 0–0.4 | 0.003–27.4 | 0.05–0.014 a | [42] | |
Connecticut River | 28.9 | 0.03–0.07 | 0.5–2.3 | 0.09–0.44 a | [84] | |
Canada | Grand River | −35–4200 | - | - | - | [68] |
Ontario Streams | 0.48–199.2 | 0.002–0.4 | 0.5–12.8 | - | [101] | |
Sweden | Uppsala watershed | 92.5–150 | <0.1 | 4.4–22.1 | 0.11 a | [100] |
Japan | Tama River | - | 0.4–0.7 | 8.0–30.9 | 0.019 a | [94] |
France | Haut-Loir watershed | - | 0.03–0.05 | 27.9–50.5 | 0.014–0.095 a | [112] |
Seine River | 2.3–193.2 | - | 22.1–31 | 0.01–0.028 a | [95] | |
Sub-Saharan Africa | Congo River | −52–319 | 0.04 | 0.4 | 0.0024 a | [113] |
Kenya | Mara River | 13.7 | 0.02–0.19 | 0.65–1.77 | 0.031–0.04 a | [114] |
Malaysia | Lupar and Saribas Rivers | 21.3 | 0.012–0.12 | 0.3–2.3 | 0.1–1.19 a | [48] |
South Asia | Cochin Estuary | 0.5–29.7 | 0.02–0.5 | 0.4–2.6 | 0.21–0.37 a | [115] |
Adyar River and Estuary | 0.24–122.4 | 7.6–77 | 0.3–2.8 | 0.03–1.76 a | [116] | |
UK | Upper Thurne River | 129.8 | 0.4 | 7.1 | 0.11 a | [91] |
Wensum, Eden, and Avon Rivers | 50.0 | - | 19.8–37.7 | 0.006–0.24 a | [102] | |
New Zealand | LII River | 20.6–273.4 | - | 11.1–23.5 | 0.023–0.048 a | [75] |
Ashburton River | 8.6–16.3 | - | 0.09–6.02 | 0.17–1.69 a | [117] |
N2O Emission | Natural | Anthropogenic | Total | Models/Methods | Ref. |
---|---|---|---|---|---|
Global | 9.7 (8.0–12.0) | 7.3 (4.2–11.4) | 17 | Process-based model (DLEM) | [79] |
Inland and coastal waters | 0.3 (0.3–0.4) | 0.5 (0.2–0.7) | 0.8 | Process-based model (DLEM) | [79] |
Rivers and estuaries | 0.07 | 1.25 | 1.32 | Semi-empirical model (NEWS) | [23] |
Continental shelves | 0.5 | 0.1 | 0.6 | Semi-empirical model (NEWS) | [23] |
Estuaries | - | - | 0.148–0.277 | Process-based N balance model | [120] |
Rivers, reservoirs, lakes, ponds, streams | - | - | 0.94 | Empirical Monte Carlo simulation | [10] |
Estuaries | - | - | 0.26 | Empirical Monte Carlo simulation | [10] |
Riverine | - | - | 0.3 ± 0.06 | Process-based model (DLEM) | [14] |
Riverine | - | - | 0.073 | Semi-empirical model | [9] |
Riverine | - | - | 0.03–0.035 | Empirical multiple regression model | [90] |
Riverine | 0.105 | 0.945 | 1.05 | Semi-empirical model (NEWS) | [124] |
Oceans | 3.4 (2.5–4.3) | 0.1 (0.1–0.2) | 3.5 | Process-based model (DLEM) | [79] |
Oceans | 4.2 ± 1.0 | - | 4.2 ± 1.0 | Empirical Random Forest model | [26] |
Oceans | - | - | 4.5 ± 1.0 | Bern3D Earth System model | [25] |
Oceans | - | - | 2.45± 0.8 | Semi-empirical N cycle model | [30] |
Oceans | 3.5 | 0 | 3.5 | Semi-empirical model (NEWS) | [23] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, H.; Zhou, Z.; Zhang, S.; Wang, F.; Wei, J. N2O Emissions from Aquatic Ecosystems: A Review. Atmosphere 2023, 14, 1291. https://doi.org/10.3390/atmos14081291
Pan H, Zhou Z, Zhang S, Wang F, Wei J. N2O Emissions from Aquatic Ecosystems: A Review. Atmosphere. 2023; 14(8):1291. https://doi.org/10.3390/atmos14081291
Chicago/Turabian StylePan, Huixiao, Zheyan Zhou, Shiyu Zhang, Fan Wang, and Jing Wei. 2023. "N2O Emissions from Aquatic Ecosystems: A Review" Atmosphere 14, no. 8: 1291. https://doi.org/10.3390/atmos14081291
APA StylePan, H., Zhou, Z., Zhang, S., Wang, F., & Wei, J. (2023). N2O Emissions from Aquatic Ecosystems: A Review. Atmosphere, 14(8), 1291. https://doi.org/10.3390/atmos14081291