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Abstract: Emissions of nitrous oxide (N2O) from aquatic ecosystems are on the rise due to the
dramatic increase in global reactive nitrogen input by anthropogenic activities (e.g., agricultural
nitrogen fertilizer use). However, uncertainties exist in the estimation of aquatic N2O budgets due
to limited knowledge of mechanisms involved in aquatic N2O emissions, as well as the N2O flux
measurements and modelling. To give a full picture of aquatic N2O emissions, this review discusses
the biotic and abiotic mechanisms involved in aquatic N2O emissions, common methods used in
aquatic N2O flux measurements (including field measurement methods and formula simulation
methods), and alternatives for aquatic N2O budget estimation. In addition, this review also suggests
that stable isotope technology is promising in the application of aquatic N2O source partitioning.
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1. Introduction

Nitrous oxide (N2O), whose single-molecular global warming potential is 273 times
(100-year timescale) greater than carbon dioxide, is the third most important long-term
greenhouse gas (LLGHG) and accounts for about 7% of the total radiative forcing of LLGHG
in 2020 [1,2]. N2O has a long residence time of 110–180 years in the atmosphere [3]. N2O is
stable in the troposphere, but when it escapes into the stratosphere, it is photolyzed into
NO radical by ultraviolet light, which further destroys the stratospheric ozone layer [4,5].
After the prohibition of the usage of chlorofluorocarbon in The Montreal Protocol on
Substances that Deplete the Ozone Layer, N2O has become the most important ozone-
depleting substance currently being emitted [4,5].

N2O emissions increased rapidly during the Industrial Revolution [6], mainly due to
the increased reactive nitrogen (Nr) input through the Haber–Bosch process [7,8]. According
to the latest field network observation data, the global mean atmospheric N2O concentration
reached a new high (333.2 ± 0.1 ppb) in 2020, which is 123% of the pre-industrial level, and
is still increasing at an average annual growth rate of 0.25% [2].

Aquatic ecosystems, including inland waters, estuaries, and oceans, have long been
considered as net N2O sources [9,10]. To meet the food demand of the dramatically growing
world population, the application of chemical fertilizers increased from 11.46 Mt in 1961
to 113.29 Mt in 2020 to promote crop production (Figure 1). Only 15–70% of fertilizer N is
taken up by plants, and some is leached into inland waters and further transported into
estuaries and oceans [11–13]. Correspondingly, riverine N2O emissions went through a
growth of 91.5% from 0.15 Tg N2O-N yr−1 in 1961 to 0.29 Tg N2O-N yr−1 in 2016 [14]. It is
estimated that the total N2O emissions from global rivers and streams account for 10–15%
of the total anthropogenic N2O emissions [15]. More than 80% of anthropogenic nitrogen
emissions from aquatic ecosystems come from the northern mid-latitudes, consistent
with the geographic distribution of nitrogen use and population [16]. The annual N2O
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emissions of the source streams and lakes are 0.36 and 0.52 Tg N2O yr−1, respectively,
which are affected by the discharge of wastewater from agricultural activities, human life,
and industrial production [10].
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Figure 1. Trends of global population, fertilizer application, and global riverine N2O emission.
Riverine N2O emission data from Yao et al., 2020 [14]; global population historical data from world-
population; global fertilizer application data from FAOSTAT.

The global biogeochemical cycles of nitrogen in marginal oceans are being strongly
interfered with, particularly in estuaries and coastal areas that serve as major transport
channels between terrestrial and ocean ecosystems [17–19]. Although coastal areas account
for only about 18% of the world’s ocean area, they contribute to about 41% of global
marine N2O emissions [20–22]. The N2O emission of the global coastal continental shelf
areas affected by human activities was 0.6 Tg N2O-N yr−1 [23]. The N2O emissions
from estuaries and coastal areas are 0.23 and 0.28 Tg N yr−1, respectively, from 2007 to
2016 (Figure 2) [1,20], suggesting that coastal areas are an important source of global
N2O emissions.

The ocean is the second natural source of N2O, but with the increase in atmospheric
deposition of nitrogen compounds, the anthropogenic N input to the ocean is 1 Tg N
yr−1 [24] and the Intergovernmental Panel on Climate Change (IPCC) assumed that the
marine N2O emissions range from 2.5 to 4.3 Tg N yr−1 with an average of 3.4 Tg N yr−1

from 2007 to 2016 (Figure 2) [1,25–27]. The global ocean contribution to N2O emissions is
estimated to be between 10% and 53%, with an average of 21%, but ongoing environmental
changes are affecting ocean N2O cycling and emissions to the atmosphere [28,29]. Although
it is clear that the ocean is a major natural contributor of N2O to the atmosphere, quantitative
estimates remain uncertain [28,30,31].

This review aims to summarize the current state of knowledge of the role of aquatic
ecosystems (inland waters–coastal regions–oceans) in global N2O emissions and dis-
cuss methods of flux measurement and budget quantification, interpret mechanisms in-
volved in N2O production, and point out the power of stable isotope techniques in N2O
source partitioning.



Atmosphere 2023, 14, 1291 3 of 19Atmosphere 2023, 14, x FOR PEER REVIEW 3 of 19 
 

 

 
Figure 2. The N2O budgets of different aquatic ecosystems and their isotopic values. The N2O emis-
sion data of each aquatic ecosystem in units of Tg N2O-N yr−1 [1,10,20]. The δ15N isotope value in the 
figure represents the isotope ratio of 15N and 14N, and the site preference (SP) represents the enrich-
ment difference between the proximal N and distal N of the O atom in the N2O molecule; data de-
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Figure 2. The N2O budgets of different aquatic ecosystems and their isotopic values. The N2O
emission data of each aquatic ecosystem in units of Tg N2O-N yr−1 [1,10,20]. The δ15N isotope value
in the figure represents the isotope ratio of 15N and 14N, and the site preference (SP) represents the
enrichment difference between the proximal N and distal N of the O atom in the N2O molecule; data
derived from [32–36].

2. Mechanisms Involved in N2O Production
2.1. Biological Pathways

N2O production refers to the conversion of any other N species into N2O [37]. In
aquatic ecosystems, there are five different microbe-mediated pathways that are impor-
tant for N2O production (Figure 3): (1) Nitrification is catalyzed by ammonia-oxidizing
archaea (AOA) or ammonia-oxidizing bacteria (AOB). NH4

+ is stepwise oxidized into
hydroxylamine (NH2OH) and nitrite (NO2

−), which is further oxidized into NO3
− by

nitrite-oxidizing bacteria (NOB), and N2O is produced as a by-product of NH2OH oxida-
tion [38]. (2) Denitrification includes bacterial denitrification and fungal denitrification.
The former is usually an anaerobic dissimilatory reduction process of NO3

− to NO2
−, NO,

N2O, and N2 with reductase enzymes of nitrate reductase (Nar), nitrite reductase (Nir),
nitric oxide reductase (Nor), and nitrous oxide reductase (Nos), while the latter lacks the
gene encoding N2O reductase (NosZ) and fail to reduce N2O to N2. So far, the reduction
of N2O to N2 by Nos during denitrification is the only known biological pathway of N2O
consumption [4]. (3) Nitrate reduced to ammonium (DNRA) is a process that is primarily
driven by nitrate-reducing bacteria and nitrite-reducing bacteria; N2O is produced as a
byproduct of NO2

− reduction [39]. (4) Nitrifier denitrification refers to the process in
which denitrification is conducted by nitrifiers instead of denitrifiers [40]. (5) Coupled
nitrification and denitrification is the oxidation of NH4

+ to NO3
− under an aerobic or

micro-oxygen environment and the reduction of NO3
− to N2O under anaerobic or hypoxic

conditions [41–46].
Microbial nitrification and denitrification are biological pathways that contribute

largely to aquatic N2O production [47–49]. In heavily polluted estuaries, the contribution
of nitrification and denitrification to N2O emission ranges from 4.52% to 38.1% and from
61.9% to 80.3%, respectively [32,50]. The anoxic zone of the estuary accounts for 90% of
the total estuarine N2O production, which is very likely from denitrification [35,51,52].
The contribution of denitrification to total N2O emissions is about 44%, 14%, 1%, and
11% in global continental shelves, marine oxygen minimum zones (OMZs), estuarine,
and freshwater ecosystems (except groundwater), respectively [16]. When the estuary is
affected by ocean acidification, N2O release from the sediment is stimulated mainly by
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bacterial denitrification, while in a neutral environment, N2O production is dominated by
fungi [53].
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2.2. Abiotic Pathways

Since the intermediates (NH2OH and NO2
−) of microbial nitrification and deni-

trification are highly chemically reactive, they are quickly chemically converted into
N2O when leached into the environment [54]. Under acidic conditions, NO2

− is pro-
tonated to HNO2, which is more reactive than NO2

− and easily reduced to N2O by
soil organic matter or reduced transitional metals in the environment [55]. The chem-
ical pathway in which NO2

− is chemically reduced to N2O is called chemodenitrification
(Equations (1) and (2)). Ferrous iron (Fe (II)) and lignin-derived soil organic compounds are
common reductants in chemodenitrification [44,56–60]. In general, structural iron plays a
more important role in chemodenitrification compared with dissolved free Fe (II) ions [61].
In contrast to chemodenitrification, the chemical oxidation of NH2OH becomes quicker
when the pH increases because NH2OH is more stable in acidic conditions [54]. When
NH2OH is leached into the environment, it can be easily oxidized to N2O by oxidative
transition metals, such as Fe (III) and Mn4+ (Equations (3) and (4)).

4Fe2+ + 2NO−2 + 5H2O→ 2Fe3+ + N2O + 6H+ (1)

2Mn2+ + 2NO−2 + 6H+ → 2Mn4+ + N2O + 3H2O (2)

4Fe3+ + 2NH2OH → 4Fe2+ + N2O + H2O + 4H+ (3)

2Mn4+ + 2NH2OH → 2Mn2+ + N2O + H2O + 4H+ (4)

More and more studies demonstrate that chemodenitrification and chemical hydroxy-
lamine oxidation play a significant role in global N2O production [45,62,63]. At least 15–25%
of N2O formation in coastal marine sediments is caused by chemodenitrification [44]. In the
reaction of Fe (II) with NO2

−, the percentage of NO2
− converted to N2O ranges from 11% to

52%, reflecting a considerable difference in the degree of chemodenitrification reactions [56].
In intertidal sediments, N2O production with NO2

− as a precursor averaged from 70% to
80%, indicating that the N2O was largely catalyzed by fungal denitrification and abiotic
reactions such as chemodenitrification [59]. Abiotic NH2OH oxidation is also an important
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source of N2O in coastal ecosystems; it has been reported that NH2OH produced by nitrify-
ing bacteria is rapidly oxidized to N2O by active Mn (III/IV)-oxidizing minerals [64]. It has
been proved that abiotic N2O production plays an important role in coastal N2O emissions,
while their roles in streams and seawater are still unclear [37,44,59,64,65].

3. Assessment of Aquatic N2O Budget
3.1. N2O Flux Measurements

Floating chambers, including static and dynamic floating chambers, are the most
commonly used methods to determine the spatiotemporal variation in aquatic N2O emis-
sions [66]. The floating static chamber refers to using a top-sealed box placed on the surface
of the water to collect the N2O emitted from the surface water through diffusion (Figure 4a).
The N2O concentration in the chamber will be analyzed at regular time intervals in the
laboratory [67,68], so that the N2O fluxes can be calculated according to the increasing rate
of N2O concentration in the chamber over time, as follows [67–70]:

FN2O =
nt − n0

A× t
(5)

where FN2O (mol m−2 d−1) is the N2O flux through the water–air interface; nt (mol) and n0
(mol) are the mole numbers of N2O in the chamber at time t and 0, respectively; A (m2) is
the surface area of the chamber in contact with water; and t (day) is the time for which the
concentration of the gas increases linearly.
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Figure 4. Diagram of N2O flux measurement with static floating chamber (a), dynamic floating
chamber (b), and water–air gas exchange model (c). The red arrow in Figure (b) represents the
direction of the gas flow in the carrier pipe, and the “1” represents the electric fan in the chamber,
which allows the gas to flow.
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In contrast, the dynamic floating chambers are based on continuous measurements
of gases in the chamber (Figure 4b) [66,71]. At a given airflow rate, the dynamic chamber
can reach a steady state in a short time after placement and it can reduce headspace
concentration build-up in the gas chamber [66,72]. The gas flow rate extracted by the
gas analyzer is about 0.52 L min−1, which is lower than the flow rate of N2-loaded gas
controlled by the mass flow controller (7.72L min−1) [66]. In addition, an injection port
is added to the intake carrier pipe (near the syringe in Figure 4b), which can be used to
inject a known volume of greenhouse gases for calibration. In terms of ebullitive fluxes,
the method can detect bubbles containing more than 1.6 × 10−3 mL of gas and a larger
chamber surface area in contact with water will improve the ability to trap more bubbles
in a given time [66]. It has been found that continuous monitoring data can accurately
reflect the 24 h N2O emission concentration [71]. The flux can be determined by following
equation [66]:

F = (
d
(

θ dCD
dt + CD

)
dt

+
θD

dCD
dt + CD − C0

θDC
)× VDC

ADC
(6)

where F indicates the instantaneous flux (g m−2 s−1); CD is the N2O concentration (g m−3)
measured by the gas analyzer; C0 is the potential concentration of the influent gas (g m−3);
θDC and θD are the residence time (s) in the dynamic chamber and the cavity of the gas
analyzer, respectively; VDC is the volume (m3) of the headspace of the dynamic chamber;
and ADC is the area (m2) of the dynamic chamber in contact with the aquatic ecosystem.

The uncertainty of static floating chamber methods mainly comes from the natural
turbulence at the water–air interface when deploying floating chambers, so this method is
recommended for low fraction and low wave conditions [10,20]. The impact of natural tur-
bulence can be reduced by minimizing the chamber size, smoothing the surface, employing
calm water conditions, and taking measurements during stable meteorological conditions.
The gas detection accuracy of a dynamic floating chamber is affected by the carrier gas flow
and the surface water area covered by the floating chamber. Therefore, it is necessary to
set appropriate experimental parameters and select a detector with high sensitivity. For
example, the internal pump of the ultra-portable greenhouse gas analyzer (UGGA, Model
915-0011, Los Gatos Research, Inc., Mountain View, CA, USA) can be used to extract the
gas in the chamber and determine the concentration of greenhouse gases and water vapor
at 1hz [66].

The water–air gas exchange model is another method to indirectly estimate the aquatic
N2O flux (Figure 4c) [73]. It is based on the principle that the gas transfer at the water–
air interface depends on the combination of the gas diffusion rate and concentration
gradient [74]. The gas exchange model aims to calculate the N2O flux (FN2O) according to
the N2O water–air gas transfer velocity (kw) using the following formulas [15,42,67,75–77]:

FN2O = kw
(
Cobc − Ceq

)
(7)

kw = k600(
Sc

600
)−0.5 (8)

Sc = 2055.6− 137.11t + 4.3173× t2 − 0.054350× t3 (9)

where FN2O and kw are in the units of µmol·m−2·d−1 and m·d−1, respectively; Cobs is the
measured concentration (µmol L−1) of dissolved N2O in the water, Ceq (µmol L−1) repre-
sents the air-equilibrated concentration of dissolved N2O, which is calculated according to
the temperature, air pressure, and salinity of the sampling sites; Sc is the Schmidt coefficient
in fresh water; and t refers to the in situ temperature. k600 is the normalized value to a
Schmidt coefficient of 600 at 20 ◦C, which is generally calculated by empirical hydrology
parameter models.
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The uncertainties of the water–air gas exchange method are associated with how the
wind or water turbulence flow affects gas exchange across the water–air interface [10].
Several different equations for k600 can be used to calculate a series of fluxes to reduce
the deviation [15,20]. Equations that include the slope and velocity of a river are the
best at predicting the speed of gas transfer, while equations that include depth terms
have the strongest correlations (Table 1) [78], and other wind-speed-based or wind speed–
hydrological models also used to calculate k600 (Table 1). The gas flux calculated using
the multi-model average k600 is conservative but comparable to other models [15]. Field
measurements of N2O obtained from the above bottom-up methods are often used to
estimate N2O emissions in regional and global aquatic ecosystems but basically show high
spatiotemporal heterogeneity [10,79].

Table 1. Equations for predicting the k600 (m d−1) based on stream velocity (V, in m s−1), slope (S,
unitless), depth (D, in meters), discharge (Q, in m3 s−1), the Froude number (Fr = V/(gD)0.5), and
wind speed at a 10 m height (W, in m s−1). All p-values for the regressions are 0.001. “-” indicates
no measurement.

Model Equation R2 Slope y-Intercept Ref.

k600 = (VS)0.89 × D0.54 × 5037 0.72 0.92 ± 0.024 0.98 ± 0.17

[8]

k600 = 5937 × (1–2.54 × Fr2) × (VS)0.89 × D0.58 0.76 0.94 ± 0.022 0.76 ± 0.16
k600 = 1162 × V0.85S0.77 0.54 0.91 ± 0.036 0.91 ± 0.24
k600 = (VS)0.76 × 951.5 0.53 0.82 ± 0.037 0.92 ± 0.24

k600 = VS × 2841 + 2.02 0.55 1.0 ± 0.038 −4.8 × 10−3 ± 0.26
k600 = 929 × (VS)0.75 × Q0.011 0.53 0.92 ± 0.036 0.81 ± 0.24

k600 = 4725 × (VS)0.86 × D0.66 × Q−0.14 0.76 0.95 ± 0.023 0.57 ± 0.17
k600 = 1.91 × e0.35W - - - [80]

k600 = 0.314 ×W2 − 0.436 ×W + 3.99 - - - [81]
k600 = 1.0 + 1.719 × (V/D)0.5 + 2.58 ×W - - - [82]

k600 = 17.19 × V0.5 × D−0.5 + 2.58 ×W + 1.0 - - - [83]

3.2. Estimation Based on Emission Factor (EF)

IPCC Tier 1 assumes that the N2O emissions from aquatic systems can be estimated
based on the emission factor (EF) of total N leached into aquatic systems [47,84–87]:

N2O−Nemission = EF×TotalN (10)

where N2O-Nemission, Total N, and EF are in units of kg N2O-N yr−1, kg N yr−1, and kg
N2O-N kg−1 N, respectively [1,85]. The default EF value was set at 0.0075 kg N2O-N/kg N
by IPCC in 1997 and revised down to 0.0025 kg N2O-N/kg N for the convenient estimation
of N2O emission from rivers [86,88,89]. But this recommendation was later revised to
0.0026 kg N2O-N/kg NO3-N for rivers, reservoirs, and down-streams, while the EFs for
outer estuaries, coastal seawater, and open ocean are still missing [85,89].

In practical application, the data acquisition of N leaching and runoff required to
determine the EF of all aquatic ecosystems based on the IPCC definition is incomplete and
difficult [10,90–92]. Therefore, many studies choose to estimate the EF using the actual
NO3

− concentrations in focused aquatic systems [10,89,93,94]:

EF=
CN2O−N

CNO3−
−N

(11)

where CN2O−N (mg·L−1) and CNO3−N (mg·L−1) are concentrations measured in the water.
Uncertainty may be introduced when using EF-based estimation [42] because it

ignores potential differences in spatial and temporal N delivery efficiency [90], and mul-
tiple sources of input may result in the supersaturation of N2O [7,78,95,96]. Moreover,
N2O in aquatic ecosystems is mainly produced and consumed through nitrification
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and denitrification pathways, but the EF-based method does not take into account
that these processes may differ significantly under different conditions in diverse
waters [68,97]. It is suggested that N2O−N/NH4

+ should be used to calculate EF in
river sections with the ammonium nitrogen pollution type, and N2O−N/DIN
(DIN ≈ NO3

− + NH4
+) should be used to calculate the EF when both NO3

− and NH4
+ are

considerable N pollutants [98].
Data analysis based on global observations shows that the N2O fluxes in rivers are

positively correlated with the concentrations of NH4
+, NO3

−, and DIN [90]. N2O concentra-
tions and EF values show spatial differences associated with different land use types along
water bodies [89,99]. The values of EFs could range from 0.000028 to 0.022, corresponding
to the variability in the regional environmental condition (Table 2). The concentrations
of dissolved N2O and NO3

− were usually higher in agricultural and urban rivers [89].
N2O flux may be determined by NH4

+ concentration in some urban river networks, while
NO3

− plays a more important role in agricultural watersheds [42,67,100,101]. For example,
in the Liaohe River basin in northeast China, sewage and aquaculture wastewater dis-
charge leads to NH4

+ (0.2–15.5mg/L) pollution in the river, while those polluted by NO3
−

(0.02–9.6mg/L) are mainly distributed in agricultural areas, and the EFs are 0.4456 and
0.0005, respectively [98]. Therefore, the EFs for inland waters and estuaries should fully
consider the influence of specific factors such as river basin land use type and water pollu-
tion type, and adopting region-specific EF values is more appropriate for the estimation of
regional and global aquatic N2O emissions [10,89,102].

Table 2. N2O fluxes and EFs of different rivers.

Regions Aquatic Ecosystems N2O Flux
(µmol·m−2·d−1) NH4

+ (mg/L) NO3−

(mg/L)
EFs
(%) Ref.

Southeast
China

Min River Basin −0.84–3.12 0.01–2.3 1.9–11.9 0.043–0.93 a [103]
Estuary of Min River −2.9–4.3 0.01–0.2 0.4–2.7 0.029–0.25 a [104]

Northeast
China

Liao River Basin 9.36–8539.2 0. 2–15.5 0.02–9.6 0.01–2.2 b [98]
Daliao River and Estuary 4.6–145.1 - - - [105]

North China

Lower Haihe River Basin −7.2–160.8 0.1–0.2 0.3–0.5 0.20–0.39 a [106]
Beitang Drainage River and

Dagu Drainage River 44.6 ± 39.4 3.3–10.6 - 0.007–0.1 b [107]

Duliujian River,
Yongdingxin River, and

Nanyuhe River
26.9 ± 31.2 3.3–10.6 - 0.003–0.09 b [107]

Eastern China

Middle and lower reaches of
the Yangtze River 0.1–35.0 0.2–0.3 2.6–6.9 0.033–0.053 a [22]

Chaohu River Basin 0.4–2102.6 0.3–12.5 0.5–0.7 0.027–0.80 a [88]
Xin’an Tang River in

Taihu region 35.3–86.7 0.5–1.2 3.0–7.2 0.040–0.044 a [108]

Southwest
China

Chongqing metropolitan
river network 4.5–1566.8 - 3.7 ± 2.5 0.47 a [99]

Qingshui Stream, Taohua
Stream, Panxi Stream,

Xiaojia River, Fenghuang
Stream, and Jiuqu River in

Chongqing

10–4940 0.1–1.6 1.1–9.6 0.14–0.29 a [15]

Western China

Lancang River 7.70–26.00 0.18–0.45 0.26–0.53 0.41–0.61 a [109]
The upper reaches of

Yangtze River, Yellow River,
Lancang River, and Nu River

9.4 ± 6.2 - - 0.1 a [68]

South China

Shenzhen River, Dashahe
River, Xixiang River - 0–9.6 0.3–15.8 0.0028–0.44 a [110]

Estuary of Pearl River 31.9 ± 7.5 - - - [76]
37 ± 15 0–8.46 0–14.26 0.13 a [111]
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Table 2. Cont.

Regions Aquatic Ecosystems N2O Flux
(µmol·m−2·d−1) NH4

+ (mg/L) NO3−

(mg/L)
EFs
(%) Ref.

USA
San Joaquin River 22.6–177.4 - 0.2–15.5 0.003–0.21 a [67]
Kalamazoo River −7.7–228.7 0–0.4 0.003–27.4 0.05–0.014 a [42]
Connecticut River 28.9 0.03–0.07 0.5–2.3 0.09–0.44 a [84]

Canada
Grand River −35–4200 - - - [68]

Ontario Streams 0.48–199.2 0.002–0.4 0.5–12.8 - [101]
Sweden Uppsala watershed 92.5–150 <0.1 4.4–22.1 0.11 a [100]
Japan Tama River - 0.4–0.7 8.0–30.9 0.019 a [94]

France
Haut-Loir watershed - 0.03–0.05 27.9–50.5 0.014–0.095 a [112]

Seine River 2.3–193.2 - 22.1–31 0.01–0.028 a [95]
Sub-Saharan

Africa Congo River −52–319 0.04 0.4 0.0024 a [113]

Kenya Mara River 13.7 0.02–0.19 0.65–1.77 0.031–0.04 a [114]
Malaysia Lupar and Saribas Rivers 21.3 0.012–0.12 0.3–2.3 0.1–1.19 a [48]

South Asia
Cochin Estuary 0.5–29.7 0.02–0.5 0.4–2.6 0.21–0.37 a [115]

Adyar River and Estuary 0.24–122.4 7.6–77 0.3–2.8 0.03–1.76 a [116]

UK
Upper Thurne River 129.8 0.4 7.1 0.11 a [91]
Wensum, Eden, and

Avon Rivers 50.0 - 19.8–37.7 0.006–0.24 a [102]

New
Zealand

LII River 20.6–273.4 - 11.1–23.5 0.023–0.048 a [75]
Ashburton River 8.6–16.3 - 0.09–6.02 0.17–1.69 a [117]

a The N2O concentration in water divided by the NO3
− concentration. b The N2O concentration in water divided

by the concentration of NO3
− and NH4

+. “-” indicates no measurement.

3.3. Model Simulation

The modeling of N2O emissions from aquatic ecosystems can be mainly categorized
into two types: statistical models and process-based models. Statistical models of N2O
emissions, including empirical models and semi-empirical models, rely on multiple lin-
ear regression analysis which can reflect statistical relationships between emission data
and their controlling factors [7,31,118–120]. For example, the global Nutrient Export from
WaterShed (NEWS) model is the first global applicable semi-empirical model used to
estimate aquatic N load rates and N2O emissions [47,119]. The model estimates N load
rates as a function of human activities, such as nitrogen fertilizer use, human sewage, and
atmospheric nitrogen deposition [31]. The estimated global N2O emission from rivers
and estuaries based on this model is 1.32 Tg N yr−1 [119]. The global ocean N2O emis-
sions are estimated to be 2.45 ± 0.80 Tg N yr−1 by a semi-empirical model based on the
relationship between ocean primary productivity and the N cycle [30]. Machine learning
algorithms, such as Random Forest or Monte Carlo simulation, can be used to identify
complex relationships between multiple variables [9,10,26].

Process-based models for N2O emissions are based on the biogeochemical and physi-
cal processes that drive N2O emissions. For example, the Dynamic Land Ecosystem Model
(DLEM) riverine module simulates N2O emissions according to nitrification and denitrifica-
tion rates, N inputs, N retention and release rates, oxygen consumption, and organic matter
decomposition and estimated riverine N2O emission to be 0.3 ± 0.06Tg N yr−1 [14]. The
Bern3D Earth system model calculates N2O emissions based on denitrification and organic
matter consumption and estimates an oceanic N2O budget of 4.5 ± 1.0 Tg N yr−1 [25].
Process-based models show good advantages to estimate aquatic N2O emissions in the
absence of measured data and to predict the response of N2O fluxes to multifactor climate
and environmental changes [25,79,121,122]. In addition, the process-based N2O emission
model can be integrated with hydrological models to predict changes in N2O emissions in
response to land use changes beside the water bodies [37,118,123].
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Even though multiple models have been developed to predict aquatic N2O emissions,
their results vary from model to model, regarding both natural and anthropogenic sources.
The total N2O emission in rivers and oceans ranges largely from 0.03 to 1.05 Tg N yr−1 and
from 2.45 to 4.50 Tg N yr−1, respectively (Table 3). The uncertainties of N2O-predicting
models mainly come from the fact that (1) measurement data are highly limited due to the
difficulties of field sampling and (2) the mechanisms involved in aquatic N2O emissions
are not yet fully interpreted [47].

Table 3. Estimates of global aquatic emissions of N2O by different models or methods in units of Tg
N yr−1. “-” indicates no measurement.

N2O Emission Natural Anthropogenic Total Models/Methods Ref.

Global 9.7 (8.0–12.0) 7.3 (4.2–11.4) 17 Process-based
model (DLEM) [79]

Inland and
coastal waters 0.3 (0.3–0.4) 0.5 (0.2–0.7) 0.8 Process-based

model (DLEM) [79]

Rivers and estuaries 0.07 1.25 1.32 Semi-empirical
model (NEWS) [23]

Continental shelves 0.5 0.1 0.6 Semi-empirical
model (NEWS) [23]

Estuaries - - 0.148–0.277 Process-based N
balance model [120]

Rivers, reservoirs,
lakes, ponds, streams - - 0.94 Empirical Monte

Carlo simulation [10]

Estuaries - - 0.26 Empirical Monte
Carlo simulation [10]

Riverine - - 0.3 ± 0.06 Process-based
model (DLEM) [14]

Riverine - - 0.073 Semi-empirical
model [9]

Riverine - - 0.03–0.035 Empirical multiple
regression model [90]

Riverine 0.105 0.945 1.05 Semi-empirical
model (NEWS) [124]

Oceans 3.4 (2.5–4.3) 0.1 (0.1–0.2) 3.5 Process-based
model (DLEM) [79]

Oceans 4.2 ± 1.0 - 4.2 ± 1.0 Empirical Random
Forest model [26]

Oceans - - 4.5 ± 1.0 Bern3D Earth
System model [25]

Oceans - - 2.45± 0.8 Semi-empirical N
cycle model [30]

Oceans 3.5 0 3.5 Semi-empirical
model (NEWS) [23]

3.4. Uncertainties

Most N2O emission inventories rely on simple EF methods or model studies [47].
Field measurements provide the most realistic estimates of N2O fluxes and can provide
spatiotemporal datasets for model calibration and verification [10,37,96]. While more
field measurements can yield more accurate EFs, they also bring uncertainty due to
aquatic conditions and the heterogeneity in land use types along water bodies, lead-
ing to a wide range of N2O estimations [14,90,120,125–127]. Moreover, the large-scale
deployment of EF measurements is difficult and labor-intensive, and the assessment of
aquatic ecosystem EFs using the IPCC method needs detailed N-relevant data, which
are difficult to obtain and often missing in many studies [37,70,127]. Despite the limi-
tations, field measurements play an important role in providing accurate estimates of
N2O fluxes and improving model frameworks. In the future, it is necessary to take into
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account river hydrological characteristics and measure more data for the revision of IPCC
EFs [67,125].

There is considerable uncertainty in the assessment of N2O emission models
at both regional and global scales [7,9,118,120]. Uncertainties come mainly from the
complexity of the aquatic ecosystems and inadequate measurement data [123,128].
More data networks need to be established to improve model prediction and validation
performance [25,28,79]. The N2O model comparison project is proposed to better
identify and ultimately reduce these uncertainties between different models [121],
and additional long-term studies measuring results in aquatic ecosystems are
needed [28,47].

4. N2O Source Partitioning with Stable Isotope Technique
4.1. Stable Isotopes of N2O

Isotopes are atoms of the same element that have different numbers of neutrons,
resulting in different atomic masses, such as 14N and 15N and 16O and 18O. The stable
isotope technique is widely used in the qualitative measurement of N-transforming
processes, and it is also an effective method to study the pathway of N2O production [36].
N2O is an asymmetric linear molecule with the proximal and distal N of the O atom called
Nα and Nβ, respectively. The difference in 15N enrichment of Nα and Nβ is defined as
site preference (SP) of N2O [4]:

δ15Nbulk =

(
δ15Nα + δ15Nβ

)
2

(12)

SP = δ15Nα − δ15Nβ (13)

where δ15Nα and δ15Nβ denote the relative 15N abundance of Nα and Nβ, respectively.
Isotopes substituted by 15N or 18O are usually studied to provide information about

the formation and decomposition processes of N2O [129,130].
Obvious differences in δ15N and SP values were detected among each aquatic ecosys-

tem (Figure 2). The δ15N-N2O values of freshwater and seawater are −4.64 ± 9.84‰
and 6.63 ± 3.50‰, respectively [34]. The isotopic characteristics of N2O are controlled by
biological, chemical, and physical fractionations, as well as isotopic characteristics of N
substrates [101]. Due to the isotope fractionation effect of each N2O production pathway,
the stable isotopic values can be used to analyze the relative contributions of the N2O
production pathways [43,57].

4.2. Isotopic Characteristics of Biological Processes

During nitrification, the isotope effect of N2O production (δ15N-N2O) by the
oxidation of NH4

+ is −56.6 ± 7.3‰, but when NH2OH is the only substrate, the
δ15N-N2O increases to −5.1 ± 12.0‰ [131]. In aquatic environments, the isotope ef-
fect of NO3

− reduced to NO2
− is −14.3 ± 9.7‰, while the δ15N-N2O for denitrification

and nitrifier denitrification from NO2
− to N2O can be represented by −14.9 ± 6.7‰

and −34.5 ± 0.7‰, respectively [131,132]. The ranges of δ18O-N2O produced by fun-
gal denitrification and NH4

+ by bacterial nitrification are between 27‰ and 42‰ and
20‰ and 26‰, respectively. The δ18O-N2O difference is partly due to the different
isotopic compositions of O-containing sources. In the process by which bacteria pro-
duce N2O by oxidizing NH4

+, the O comes from oxygen and water vapor in the atmo-
sphere. On the contrary, oxygen atoms are derived from NO3

− or NO2
− substrates during

denitrification [133].
Tracing the path of N2O production by using these SP values has become a research

hotspot [6,41,132,134]. The SP values of N2O produced by different paths have certain
differences, ranging from −11‰ to 36.9‰ (Tables 4 and 5). Unlike δ18O and δ15N, SP is
thought to reflect the N2O production mechanism while remaining independent of the



Atmosphere 2023, 14, 1291 12 of 19

substrate’s isotopic signature [135]. For example, when nitrifying bacteria produce N2O,
there may be a positive correlation between SP and δ18O-N2O, resulting from nitrification
by mixing high SP and 18O-enriched N2O from hydroxylamine decomposition with low SP
and 18O-depleted N2O from nitrifying denitrification [43]. Compared with aerobic denitri-
fication and bacterial denitrification, the N2O process produced by fungal denitrification
and nitrification has a higher SP value [36,136]. The SP value of the coupled nitrification
and denitrification process is similar to that of denitrification, with a value of 0.1 ± 1.7‰,
indicating that the isotopic SP value can distinguish nitrification from coupled nitrification
and denitrification [132]. In addition, differences in the experimental environment or the
presence of an unknown N2O production pathway in the sample will influence the mea-
surement of the SP value. Therefore, it is necessary to reduce uncertainties and limitations
through more experiments in the future.

4.3. Isotopic Characteristics of Abiotic Processes

Dual isotope ecosystems of N and O have also made further progress in their applica-
tion to distinguish abiotic processes. The SP reflects the difference in the regulatory reaction
mechanism, and the end value is related to the final concentration and yield of N2O [56].
For the abiotic reduction of NO2

− by Fe (II), the δ15N and δ18O of N2O ranges from−19.8‰
to −3.0‰ and from 29.3‰ to 46.4‰, respectively [56]. The SP values of N2O produced by
NH2OH oxidation and NO2

− reduction processes are 30.1‰ and 29.5‰, respectively [135],
while in the process of NO2

− reduction catalyzed by Fe (II), the SP value ranges from
0.4‰ to 35‰ [56,57,137]. In addition, the reported SP of chemodenitrification ranges from
−4‰ to 26.5‰, which overlaps with the SP value of biological processes [45,56,57,61].
At present, although the SP value is an important indicator to identify the pathways of
N2O production, most of the studies are pure culture experiments conducted in the lab-
oratory [56,57,61], and the differentiation characteristics of N and O isotope effects on
N2O produced by the coupling of NH2OH and NO2

− with Fe/Mn in various natural
aquatic environments remain unclear, which limits the understanding of the mechanism of
N2O production.

Table 4. Summary of N2O isotope characteristics produced by each pathway.

N2O Sources Reaction Type δ15N-N2O (‰) δ18O-N2O (‰) SP (‰) Ref.

Ocean
- 8.8 60.7 35.7 [138]
- −6~21 - - [139]

Biotic 3.5~5.5 35.5~41.5 0–8 [33]
Natural or

agricultural soil Biotic −38~6 - - [139]

Antarctic soil Biotic + Abiotic −82 ± 1 23 ± 1 22 ± 1 [62]
11 rivers in southern

Ontario, Canada - −22.6~10.7 47.4~51.5 - [101]

Estuarine salt marsh Biotic −1.41~2.99 39.66~50.38 4.09~13.69 [129]
Troposphere - 7.0 ± 0.6 43.7 ± 0.9 18.7 ± 2.2

[140]Stratosphere - 11.4 48.3 21.3
Weighted average of

marine and
land sources

Biotic + Abiotic −25.5~1.0 9.8~37.4 −0.5 ~15.1

“-” indicates no measurement.
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Table 5. Summary of N2O isotope characterization of biotic and abiotic processes.

Reaction Process N2O Sources δ15N-N2O (‰) δ18O-N2O (‰) SP (‰) Ref.

Biotic

Oxidation of NH2OH
and NH4+ - - 32~35

[132]
Denitrification of
NO2

− and NO3
− - - 0

NO2
− reduction −90~2 13~35 −11~0 [6]

NH2OH oxidation
- −10 - [41]

−68~19 22~24.5 13~37 [6]
- - 32.5~35.6 [132]

Nitrification
−5.1 ± 12.0 - - [131]
−56.6 ± 7.3 - - [131]

Bacterial denitrification - - 23.3 ± 4.2, −5.1 ± 1.8 [134]

Fungal denitrification - 37.3 ± 1.3, 31.5 ± 0.5 37.1 ± 2.5, 36.9 ± 2.8 [133]
- - 15.8~36.7 [52]

Nitrifier denitrification - - 0.1 ± 1.7 [132]

Abiotic

NO2
− reduction - - 30.1 ± 1.7 [134]

NH2OH oxidation - - 29.5 ± 1.1 [134]

Chemodenitrification
2~11 4~10 26.5 ± 0.8 [61]

−19.8~−3.0 29.3~46.4 0.4~26.0 [56]
- - 10~22 [57]

“-” indicates no measurement.

5. Research Prospect

Aquatic ecosystems are important global N2O sources, but uncertainties still exist in
the quantification of the aquatic N2O budget. To understand more precisely the aquatic
N2O emissions, further studies should be conducted to (1) establish more N2O flux mea-
surements in aquatic ecosystems, especially data-inadequate areas such as oceans and arctic
regions; (2) interpret more clearly the mechanisms involved in aquatic N2O production
and its controlling environmental factors; (3) decrease the uncertainties of N2O-predicting
models and make the results of different models more comparable; and (4) advance the ap-
plication of stable isotopic techniques in aquatic N2O emissions regarding both mechanism
studies and model establishment.
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