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Abstract: The Standardized Precipitation Index (SPI) is a standardized measure of the variability of
precipitation and is widely used for drought assessment around the world. In general, the probability
distribution used to calculate the SPI in many studies is Gamma. In addition, a monthly time-scale
is applied to calculate the SPI to assess drought based on atmospheric moisture supply over the
medium-to-long term. However, probability distributions other than Gamma are applied in various
regions, and the need for a daily time-scale is emerging as concerns about fresh drought increase.
There are two main innovations of our work. The first is that we investigate the optimal probability
distribution of daily SPIs rather than monthly SPIs, and the second is that we address the issue
of determining the minimum time-scale that can be applied when applying a daily time-scale. In
this study, we investigate the optimal probability distribution and the minimum-applicable time-
scale for calculating the daily SPI using daily precipitation time series observed over 42 years at
56 sites in South Korea. Six candidate probability distributions (Gumbel, Gamma, GEV, Log-logistic,
Log-normal, and Weibull) and ten time-scales (5 day, 10 day, 15 day, 21 day, 30 day, 60 day, 90 day,
180 day, 270 day, and 365 day) were applied to calculate the daily SPI. A chi-square test and AIC were
applied to investigate the appropriate probability distribution for each time-scale, and the normality
of the daily SPI time series derived from each probability distribution were compared. The Weibull
distribution was suitable for calculating the daily SPI for short time-scales of 30 days or less, while
the GEV distribution was suitable for longer time-scales of 270 days or more. However, overall,
Gamma was found to be the best probability distribution. While there were some regional variations,
the minimum time-scales that could be applied per season were as follows: 15 days for spring and
summer, 21 days for fall, and 30 days for winter. It is shown that the minimum time-scale depends
on how many zero values are included in the moving cumulative-precipitation time series, and it
is shown that it is appropriate to have less than about 2.5%. Finally, the applicability of the GEV
distribution is investigated.

Keywords: daily drought index; drought; probability distribution; SPI; time-scale

1. Introduction

Due to its flexibility, spatiotemporal comparability, and simple calculation, the Stan-
dardized Precipitation Index (SPI) [1] has been widely applied to drought assessment
worldwide [2–10]. WMO [11] recommends the use of the SPI for meteorological drought as-
sessment because it allows users to confidently compare past and present droughts between
different climates and geographic locations. However, the SPI is a relative measure that
depends on the probability distribution function (PDF) adopted [12,13]. The appropriate
PDFs for cumulative precipitation at different time-scales and the minimum time-scale
for calculating cumulative precipitation need to be further investigated in the context of
drought studies applying the SPI at different locations [14–16].
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As the climate is changing globally, the transition between wet and dry periods is
shortening in many regions, and the frequency of flush droughts is increasing. This is
also the case in South Korea, where more frequent droughts, more intense droughts, and
more rapidly developing droughts are expected to occur [17–19]. Therefore, it is necessary
to quickly detect changes in wetness and dryness and, for this purpose, it is necessary
to analyze droughts on a daily time-scale, which is shorter than the monthly time-scale
currently used.

The proper selection of the PDF for precipitation is a prerequisite for a reliable SPI
calculation. Different PDFs (even different parameters of the same PDF) will lead to
different SPI values [2]. The original formulation of the SPI calculation by McKee et al. [1]
assumed that the cumulative precipitation follows a Gamma distribution. The Gamma
distribution has been found to be the optimal PDF for SPI calculations in most parts of
the world. For example, Stagge et al. [7] recommended the use of the Gamma distribution
for general use in calculating the SPI over all regions of Europe and across all time-scales.
Okpara et al. [8] showed that the Gamma distribution was the best fit for monthly rainfall
in West Africa. Blain et al. [9] recommended the use of the Gamma distribution for
calculating SPI on 1- to 12-month time-scales in the tropical–subtropical region of Brazil.
Zhao et al. [20] showed that the Gamma distribution exhibited the greatest stability across
different time-scales in China. However, a number of studies have shown that other PDFs
are more appropriate in other climate regions and at other time-scales. Angelidis et al. [21]
showed that the SPI at a 12-month or 24-month time-scale can use a log-normal or normal
probability distribution instead of a gamma distribution and produce almost the same
results. Sienz et al. [5] found that the Weibull distribution provided a markedly improved
fit for the monthly precipitation over Europe and the continental United States compared
to the Gamma distribution. Guenang et al. [10] reported that both the Gamma and Weibull
distributions were the best fit for SPI calculations at time-scales of 9 months or less over
most of Central Africa. Pieper et al. [22] advocated the use of the Weibull distribution as
the basis for SPI calculations for land areas around the world. However, most studies have
investigated the best PDFs for calculating the SPI on monthly time-scales, and few have
investigated the best PDFs for calculating the SPI on sub-monthly time-scales.

The SPI can be calculated at different time-scales. The time-scales used in the literature
vary from 1 month to 48 months, and the different time-scales reflect the impact of drought
on the availability of different water resources [23,24]. For example, to analyze meteo-
rological droughts, the SPI calculated at a time-scale of 1 month or 2 months is applied,
agricultural droughts are analyzed at a time-scale of 3 months to 6 months, and hydro-
logical droughts are analyzed at a time-scale of 6 months up to 24 months [11]. However,
caution is needed when analyzing SPIs on sub-monthly time-scales in low-precipitation
regions or during periods of low precipitation. Wu et al. [25] found that when calculating
the SPI for shorter time-scales, such as 1 week in the eastern United States, it was possible
in all seasons. However, they found that in the western United States, the high frequency
of precipitation-free days can result in unreliable SPI time series [25]. In fact, the difficulty
of estimating the SPI time series for dry regions or dry periods due to statistical problems
related to inaccuracies in estimating the parameters of the Gamma distribution has already
been recognized in many studies [26]. However, not enough quantitative research has been
conducted on the minimum time-scale that can be applied in different climate regions or in
different periods of the year. There are some studies that suggest that, on a monthly time-
scale, the Weibull distribution is mainly suitable for shorter time-scales and the Gamma
distribution is more suitable for longer time-scales [7].

The SPI is one of the main drought indices recommended by the South Korea Meteo-
rological Administration for drought monitoring and assessment. Considering the climatic
characteristics of South Korea, with relatively distinct seasonal features, a comprehensive
evaluation of the optimal PDF and minimum time-scale that can be applied for the esti-
mation of the daily SPI time series in various regions, as well as in various seasons of the
year, is necessary. In this study, we compare the goodness-of-fit of six candidate PDFs at
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various daily time-scales using the daily precipitation time series from sites in six regions
across South Korea. In addition to investigating which PDFs are suitable for the cumulative
precipitation, the normality of the final-calculated SPI is analyzed from various angles to
explore the minimum daily time-scale applicable to South Korea.

2. Data and Methods

The overall methodology of this study includes the following main steps: (1) Obtain
the observed daily precipitation data from various sites in six regions of South Korea. (2) In-
vestigate the goodness-of-fit of the candidate PDFs for the moving cumulative-precipitation
time series at different time-scales and the normality of the calculated SPI using various
goodness-of-fit and normality tests. (3) Based on the investigated test results, determine
the optimal PDFs for different time-scales in the different regions and different seasons and
the minimum time-scale that can be applied.

2.1. Data

The daily precipitation data used to calculate the SPI were all obtained from the
56 sites of the Automated Surface Observation System (ASOS) operated by the South Korea
Meteorological Administration (“https://data.kma.go.kr/data/grnd/selectAsosRltmList.
do?pgmNo=36 (accessed on 20 July 2023)”). The data period is from January 1980 to
December 2020. Figure 1 shows the locations of the observation sites, which are categorized
into six regions.
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In South Korea, drought management is primarily carried out at the administrative
level. In this study, South Korea was divided into six administrative regions (Gangwon,
Capital, Buulgyeong, Daegyeong, Honam, and Chungcheong) and analyses were con-
ducted for each region. The average annual precipitation varies slightly from site to site,
but averages 1329.33 mm/yr and ranges from 872.46 mm/yr to 1887.60 mm/yr. For the data
used, the lowest-recorded annual precipitation is 505.09 mm/yr and the largest-recorded
annual precipitation is 3397.38 m/yr. South Korea’s precipitation has relatively large spatial
variability compared to its small land area, and its annual variability is also very large. In
South Korea, precipitation is mainly measured using gravimetric rain gauges. A gravimet-
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ric rain gauge is a sensor that observes liquid and solid precipitation, such as rain and snow,
and has a reservoir in the main body of the gravimetric rain gauge to collect rain and snow
in the reservoir and calculate precipitation using the principle of weighing. Due to the
climate characteristics of South Korea, precipitation other than rainfall has no significant
impact on drought analysis, so it is reasonable to assume that the measurement method
has little impact on the results of this study.

2.2. Standardized Precipitation Index

The SPI is calculated using a moving cumulative-precipitation time series over various
time-scales. In this study, the SPI is calculated by estimating the appropriate PDF for each
of the 365 time series organized by the Julian day. The calculated SPI is categorized as
moderate drought when it is −1 or less, severe drought when it is −1.5 or less, and extreme
drought when it is −2 or less (Svoboda et al., 2012).

In this study, SPI is calculated by applying 10 time-scales (5 day, 10 day, 15 day,
21 day, 30 day, 60 day, 90 day, 180 day, 270 day, and 365 day). The candidate PDFs are
Gumbel (GUM), Gamma (GAM), Generalized Extreme Value (GEV), Log-Logistic (LLD),
Log-Normal (LND), and Weibull (WEB), which are the most commonly used PDFs in South
Korea. The six PDFs are the most commonly used PDFs in the water sector in South Korea.
In addition, 1-month, 3-month, 6-month, and 12-month time-scales are commonly used
in South Korea to calculate the SPI, so we prioritized the 30-day, 60-day, 90-day, 180-day,
and 365-day time-scales to reflect this. We also selected 5-day, 10-day, 15-day, and 21-day
time-scales to analyze the sub-monthly time-scales in detail, as we are interested in daily
time-scales. The parameters of the PDF were estimated using the maximum-likelihood
method. In this case, zero precipitation events were excluded from the moving cumulative-
precipitation time series before estimating the parameters of the PDF and were treated
specifically afterward.

The PDF describing the frequency distribution of the cumulative precipitation, x,
is defined only for the positive real axis, so the cumulative PDF, G(x), is not defined at
x = 0. However, the time series of the cumulative precipitation may contain zero values.
Therefore, the value of the cumulative probability is adjusted as follows.

H(x) = q + (1− q)G(x) (1)

where q is the probability of the occurrence of a zero-valued event in a moving cumulative-
precipitation time series, estimated as the fraction of zero precipitation events that are
excluded during the parameter estimation of the PDF. Next, the new cumulative probability,
H(x), is used to calculate the cumulative probability corresponding to each value in the
cumulative-precipitation time series. In the final step, the SPI time series is constructed by
calculating the Z-value of the standard normal distribution for the transformed cumulative-
probability values.

2.3. Goodness-of-Fit of Probability Distribution

The chi-square goodness-of-fit test determines whether the difference between the
expected and observed frequencies is statistically significant [27]. This test is used to
examine how well a candidate PDF describes the observations across all bins of the data by
looking at the difference between the observed and expected frequencies across the class
bins. The chi-square statistic, χ2

c , a measure of the difference between the distribution of
the data and the assumed distribution, is calculated as follows. This test is sensitive to the
choice of bins. There is no optimal choice for the bin width. Since the number of samples is
large enough, we specified 10 as the number of classes for the chi-square test.

χc
2 =

k

∑
i=1

(
Oi − Ti)

2

Ti
(2)
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where Oi is the number of observed data in each class bin, Ti is the number of theoretically
expected data in each class bin, and k is the number of class bins. If the test statistic is
greater than a predefined threshold at a given significance level, α, and degrees of freedom,
ν, the hypothesis is rejected for the applied PDF. The goodness-of-fit is indicated by the
p-value. If the p-value is greater than the given significance level (0.05 in this case), the null
hypothesis is accepted. A larger p-value means that the candidate PDF is a better fit.

The parameters of the PDF are estimated using the maximum-likelihood method, and
the optimal PDF that best describes the cumulative-precipitation time series among the
candidate PDFs is selected using the Akaike Information Criterion (AIC) [28,29]. The AIC
is expressed as follows:

AIC = −2lnL
(
θ̂ | x

)
+ 2m (3)

where L
(
θ̂
∣∣x) is the likelihood function of the parameter, θ̂, estimated using the maximum-

likelihood method, and m is the number of parameters in the PDF. The PDF with the
smallest AIC is optimal. In this study, the relative difference between the AIC values
calculated from the different PDFs is compared. In other words, AIC− D, defined as the
relative AIC difference, is applied. If the smallest AIC among the candidate PDFs is called
AICmin, the AIC− D of a particular PDF i is calculated as follows:

AIC− Di = AICi − AICmin (4)

where i denotes a candidate PDF. Such an analysis is suitable for ranking the different
candidate PDFs. The best performing PDF returns an AIC− D value of 0, and the larger
the value of AIC−D, the more inferior the PDF. According to Burnham and Anderson [30],
an AIC − D value of less than 2 between two PDFs indicates no significant difference
in performance, while an AIC− D value between 4 and 7 indicates a significant perfor-
mance difference. A value of AIC− D greater than 10 indicates a very clear performance
difference [31].

2.4. Normality Test

The SPI time series should be normally distributed due to the nature of the calculation
process. Therefore, the suitability of the SPI time series calculated from the candidate PDFs
can be evaluated based on the normality of the frequency distribution.

A primary determination of whether the calculated SPI time series is normally dis-
tributed can be made using the Anderson–Darling test. The Anderson–Darling test can
perform goodness-of-fit tests for many PDFs, but is known to be particularly powerful as a
normality test [32]. The Anderson–Darling test statistic, A2, is calculated as follows:

A2 = −n−
n

∑
i=1

2i− 1
n

[lnF(Yi) + ln(1− F(Yn+1−i))] (5)

where n is the size of the data, Yi is the sorted data, and F is the cumulative standard
normal distribution. If the p-value is less than the significance level (5% in this case), the
calculated SPI time series is not normally distributed.

In addition to the Anderson–Darling test, we further evaluated the normality of the
calculated SPI using a deviation from N0,1 as proposed by Pieper et al. [22]. According to
the WMO’s SPI User Guide [11], the SPI distinguishes between seven classes of atmospheric
moisture supply (see Table 1). The probability of the SPI being in the normal class (N0)
is more than twice as high as the probability of it being in the other six classes combined.
Therefore, a simple summation of the deviation between the theoretical probability and the
probability of the actual time series based on evenly divided bins will not give an accurate
assessment of the tail of the SPI distribution. The better the tail of the SPI distribution
matches the standard normal distribution, the better the evaluation score should be. There-
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fore, the following error rates, E, were applied to evaluate the normality of the calculated
SPI based on the seven classes:

Ei =
Na,i − Nt,i

Nt,i
(6)

where Na,i is the number of data in the SPI time series with SPI values corresponding to
class i, and Nt,i is the theoretical number of SPI time series that would have SPI values
corresponding to class i if the SPI time series followed a perfectly normal distribution.
For example, if the number of SPI time series is 1000, the Nt,i for class W3 would be
1000 × 0.0228 = 22.8.

Table 1. Drought classification in SPI.

SPI Interval Period Classification Probability

SPI ≥ 2 W3: extremely wet 0.0228
2 > SPI ≥ 1.5 W2: severely wet 0.0441
1.5 > SPI ≥ 1 W1: moderately wet 0.0918
1 > SPI > −1 N0: normal 0.6827
−1 ≥ SPI > −1.5 D1: moderately dry 0.0918
−1.5 ≥ SPI > −2 D2: severely dry 0.0441

SPI ≤ −2 D3: extremely dry 0.0228

3. Results
3.1. Goodness-of-Fit Test

The candidate PDFs, namely GUM, GAM, GEV, LLD, LGN, and WEB, are evaluated
for their fit to the observed precipitation using different time-scales in different regions
and seasons. Table 2 summarizes the results of the chi-square goodness-of-fit test using the
candidate PDFs after excluding the zero values in the cumulative-precipitation time series
for all the sites used in this study, including the mean p, the simple adoption probability,
h (%), and the win rate, w (%). Table 2 shows the mean p, h (%), and w (%) values for the
PDFs examined for each season and time-scale. The colored cells indicate the PDF with the
best performance metrics for the corresponding season and time-scale.

Table 2. The mean The mean p-values and the acceptable and win rates of the candidate PDFs. The
colored cells indicate the best performance among the candidate PDFs.

Time-Scale 5 Day 10 Day 15 Day

Season PDF Mean p h (%) w (%) Mean p h (%) w (%) Mean p h (%) w (%)

Spring

GUM 0.0698 22.8649 8.6762 0.0515 22.8649 6.5023 0.0465 21.3703 5.4542

GAM 0.4387 89.0334 42.4884 0.3310 89.0334 24.9030 0.3138 89.5186 15.6250

GEV 0.2331 76.5916 4.8331 0.2843 76.5916 23.0784 0.3036 83.1328 28.7849

LLD 0.2670 71.2345 5.2213 0.2319 71.2345 8.8898 0.2551 78.8626 12.3253

LGN 0.2326 57.4340 5.3571 0.1631 57.4340 4.8525 0.1748 63.3152 6.9682

WEB 0.4480 89.7127 33.4239 0.3462 89.7127 31.7741 0.3322 90.5085 30.8424

Summer

GUM 0.0393 15.1009 5.3183 0.0319 15.1009 4.2314 0.0360 16.9061 3.9790

GAM 0.4082 88.7811 44.4876 0.3403 88.7811 27.5039 0.3040 87.5970 17.1584

GEV 0.2224 75.9511 7.7640 0.2811 75.9511 21.8750 0.3092 82.7640 32.4728

LLD 0.2558 75.0388 6.7158 0.2557 75.0388 11.9759 0.2562 79.1925 13.5481

LGN 0.2174 60.6366 5.8618 0.1856 60.6366 6.2694 0.1704 62.7135 6.7547

WEB 0.4234 90.0815 29.8525 0.3549 90.0815 28.1444 0.3177 89.0722 26.0870
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Table 2. Cont.

Time-Scale 5 Day 10 Day 15 Day

Season PDF Mean p h (%) w (%) Mean p h (%) w (%) Mean p h (%) w (%)

Fall

GUM 0.0584 15.8948 6.2991 0.0292 15.8948 3.6107 0.0296 15.2669 3.6303

GAM 0.4065 91.8760 42.8571 0.3954 91.8760 43.2104 0.3583 90.5416 31.8681

GEV 0.2038 62.2449 1.9231 0.2093 62.2449 7.1429 0.2580 72.9003 17.7983

LLD 0.3201 74.5290 8.3595 0.2676 74.5290 7.1232 0.2656 77.0212 11.3815

LGN 0.3195 69.5251 12.0487 0.2412 69.5251 8.5754 0.2132 67.5432 6.8681

WEB 0.4399 93.0338 28.5126 0.4161 93.0338 30.3375 0.3768 91.2088 28.4537

Winter

GUM 0.0699 17.3413 7.8175 0.0365 17.3413 4.9405 0.0291 13.6905 3.8492

GAM 0.3742 89.3849 33.3532 0.3675 89.3849 31.6468 0.3497 89.0278 25.6746

GEV 0.2240 67.2421 2.2817 0.2410 67.2421 7.4008 0.2749 74.0278 15.7540

LLD 0.3397 78.3929 10.2778 0.3090 78.3929 10.0794 0.2966 78.4921 12.4405

LGN 0.3518 76.5675 17.4603 0.3014 76.5675 15.1984 0.2653 72.7579 12.1429

WEB 0.4171 91.8452 28.8095 0.4014 91.8452 30.7341 0.3740 91.1508 30.1389

Time-Scale 30 Day 60 Day 90 Day

Season PDF Mean p h (%) w (%) Mean p h (%) w (%) Mean p h (%) w (%)

Spring

GUM 0.0512 25.4464 2.5815 0.0730 38.7422 2.4068 0.0768 38.5675 2.7562

GAM 0.3159 89.0722 15.3144 0.3480 92.1584 14.1693 0.3546 90.7997 15.9744

GEV 0.2836 84.6273 21.3703 0.2769 85.5784 13.3152 0.2658 82.5505 11.8789

LLD 0.2934 86.5101 19.7399 0.3450 91.9837 26.5528 0.3483 91.8284 27.1351

LGN 0.2196 76.9410 9.9961 0.2817 86.8012 12.9658 0.3071 88.1988 16.4402

WEB 0.3374 90.0621 30.9977 0.3426 90.3339 30.5901 0.3223 86.9565 25.8152

Summer

GUM 0.0582 28.4744 3.6102 0.0830 38.3346 3.2609 0.0944 42.9154 3.7655

GAM 0.3149 87.7329 14.3439 0.3341 89.9068 14.7904 0.3637 92.1584 14.7710

GEV 0.2933 85.0155 21.9526 0.2585 82.8804 9.3362 0.2751 84.8408 9.6079

LLD 0.2885 84.3362 17.0613 0.3260 89.7321 25.5629 0.3608 92.3525 27.7174

LGN 0.2157 72.6126 9.1615 0.2566 82.0264 10.4814 0.3041 88.1017 12.7329

WEB 0.3404 89.6351 33.8703 0.3413 88.7811 36.5683 0.3336 86.8401 31.4053

Fall

GUM 0.0404 19.4662 3.5714 0.0803 37.8728 3.7873 0.1260 58.0651 5.9066

GAM 0.3141 88.5008 15.6986 0.3436 91.7975 12.9906 0.3636 93.4851 14.5801

GEV 0.3086 85.1452 29.5918 0.3028 87.2841 18.9560 0.2678 85.5377 8.1240

LLD 0.2681 81.6523 13.9521 0.3277 89.5408 20.1727 0.3386 91.8564 19.8980

LGN 0.1927 69.0149 7.0447 0.2686 84.5173 12.0683 0.2926 88.0298 12.7551

WEB 0.3294 89.2661 30.1413 0.3574 91.3462 32.0251 0.3909 93.3673 38.7363

Winter

GUM 0.0197 9.1667 1.4484 0.0166 9.3452 0.1786 0.0372 20.1587 1.2103

GAM 0.3144 88.1746 16.0119 0.3358 90.9921 12.8571 0.3437 91.2500 15.0595

GEV 0.3521 87.7183 34.4643 0.3473 89.0079 30.7738 0.3119 86.9841 23.3730

LLD 0.3038 84.7421 15.5357 0.3545 91.9841 25.7937 0.3452 91.2698 23.4722

LGN 0.2423 74.8810 10.4365 0.2922 84.2857 13.8095 0.3043 87.9762 16.0913

WEB 0.3141 88.7500 22.1032 0.3020 87.3413 16.5873 0.3043 86.0714 20.7937
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Table 2. Cont.

Time-Scale 180 Day 270 Day 365 Day

Season PDF Mean p h (%) w (%) Mean p h (%) w (%) Mean p h (%) w (%)

Spring

GUM 0.0851 41.2073 2.9697 0.1501 59.2391 5.9006 0.1854 67.2943 7.4534

GAM 0.3796 92.9542 14.9068 0.3797 93.4006 17.7019 0.4030 92.9542 19.8758

GEV 0.2925 86.0248 15.2562 0.2782 84.4720 9.1033 0.2925 85.7337 8.1716

LLD 0.3770 94.0023 27.3098 0.3637 92.8183 24.7671 0.3837 92.8960 21.5062

LGN 0.3543 91.9449 19.1576 0.3337 90.6444 15.1009 0.3652 91.5955 14.5380

WEB 0.2984 84.3944 20.3998 0.3428 89.1498 27.4262 0.3534 89.1304 28.4550

Summer

GUM 0.1015 45.2446 4.4837 0.0991 45.2640 4.4061 0.1548 58.7716 6.5149

GAM 0.3676 91.4014 17.4884 0.3864 93.4589 17.4301 0.4034 93.9168 21.5071

GEV 0.2499 81.6770 7.2399 0.2757 84.8797 9.9573 0.2926 85.2630 8.2025

LLD 0.3597 91.7314 29.4449 0.3854 93.9635 31.6770 0.3873 93.4458 27.0408

LGN 0.3258 89.1304 13.2764 0.3611 92.4884 17.6048 0.3544 92.0722 10.5769

WEB 0.3144 85.8307 28.0668 0.2830 83.3851 18.9247 0.3334 88.4027 26.1578

Fall

GUM 0.1645 65.6201 7.2214 0.1712 65.0903 7.6334 0.1879 68.0952 6.8452

GAM 0.4016 91.8956 19.1523 0.3940 92.4254 17.5235 0.3864 91.7460 19.7024

GEV 0.2819 84.4976 2.8257 0.2744 84.0659 3.5322 0.2841 82.7778 7.4008

LLD 0.3770 91.9741 22.8414 0.3656 92.4451 26.0008 0.3526 91.1706 22.5992

LGN 0.3447 90.0510 13.9914 0.3425 90.3061 11.3619 0.3354 88.6706 10.9325

WEB 0.3766 89.6193 33.9678 0.3646 88.2064 33.9482 0.3561 89.5040 32.5198

Winter

GUM 0.1299 55.3175 5.0992 0.1531 60.9325 6.1111 0.1531 60.9325 6.1111

GAM 0.3671 92.5794 14.3651 0.3493 89.2262 16.2103 0.3493 89.2262 16.2103

GEV 0.2785 85.7341 11.1706 0.2556 78.9881 5.0992 0.2556 78.9881 5.0992

LLD 0.3428 91.7262 16.8651 0.3345 88.9286 21.0913 0.3345 88.9286 21.0913

LGN 0.3298 90.7341 17.0437 0.3128 85.8532 12.3214 0.3128 85.8532 12.3214

WEB 0.3679 92.1032 35.4563 0.3415 88.8294 39.1667 0.3415 88.8294 39.1667

The mean p is the average of all the corresponding p-values. For example, mean
p = 0.0698 for the time-scale of 5 days, spring (March, April, and May), and GUM means
the average of p-values from the 56 sites (totaling 56 × (31 + 30 + 31) = 5152 p-values). h is
the simple adoption probability, which means what percentage of the total time series is
adopted correctly in the chi-square goodness-of-fit test. The win rate w (%) is the probability
of being selected as the PDF with the highest p-value.

Fora time-scale of 5 days, WEB is the best for all seasons in terms of mean p and h,
and GAM is the best for all seasons in terms of w. For a time-scale of 10 days, the results
are almost similar to the time-scale of 5 days. The only difference is that WEB is better in
terms of w in the summer. For a time-scale of 15 days, it is almost similar to the time scale
of 5 days. The only difference is that WEB performs best for w in winter. Although not
shown in the table, the results for a time-scale of 21 days are almost similar to those for the
time-scale of 5 days, with the exception that GEV is best for w in summer and winter. For a
time-scale of 30 days, WEB is the best for all seasons except winter. In winter, GEV is the
best for the mean p and w, and WEB is the best for h. The overall trend for the time-scales
from 5 days to 30 days suggests that WEB is the best distribution. In terms of the mean p,
WEB is the best distribution for most SPI time seriesand, in terms of h, WEB is the best
distribution for all-time series. Finally, from the perspective of w, the best fit is shown in
the order of WEB > GAM > GEV.

For a time-scale of 60 days, we can see that GAM and WEB have a similar level of fit
to each other, and that LLD has a good fit in winter.
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In contrast to the results at shorter time-scales, the adoption rate of WEB decreases
noticeably from a time-scale of 90 days to 365 days. For time-scales of 90 days and 180 days,
we can say that LLD is generally the best, and GAM and WEB are still among the most
adoptable distributions. For time-scales of 270s days and 365 days, we can see that GAM is
the best distribution, and that LLD and WEB are also acceptable PDFs.

Overall, across all the time-scales analyzed, WEB and GAM appear to be superior at
time-scales of 30 days or less; GAM, LLD, and WEB at time-scales of 60 days to 180 days;
and GAM and LLD at time-scales of 270 days or more. At shorter time-scales, the best
performing distribution is dominated by WEB, but the performance difference with GAM is
not significant, meaning that GAM performs relatively well for all time-scales. For reference,
the distribution of p-values calculated for each region is shown in Figures S1–S6 in the
Supplementary Materials. GUM was found to be inappropriate regardless of the region,
season, or time-scale, and at time-scales below 30 days, only GAM and WEB can be applied
regardless of the region and season. From the perspective of selecting the optimal PDF, we
can see that there are no clear differences between the regions, but there are some differences
between the seasons. The main results of the chi-square goodness-of-fit test, mean p, simple
adoption probability, h (%), and winning rate, w (%), are summarized and visualized using
a heat map, and are shown in Figures S7–S9 of the Supplementary Materials.

AIC was used to compare the relative fit of the candidate PDFs. The AIC− Ds of the
candidate PDFs obtained from all the applied sites were aggregated. The proportion, r, of
sites for which each candidate PDF displays a value of AIC−D below a certain AIC−Dmax
was calculated. This calculation was repeated for increasing values of AIC− Dmax up to
10. Since only one candidate PDF can perform the best at each site, the sum of rs for all the
candidate PDFs at AIC−Dmax = 0 should be one. The candidate PDF that approaches r = 1
the fastest can then be considered more suitable than the others. Ideally, it is important to
look at which candidate PDF has the highest r-value at AIC− Dmax = 2. Figure 2 shows
the AIC− D of the candidate PDFs for the cumulative-precipitation time series, excluding
the zero values for all seasons and all regions.
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Figure 2. AIC frequencies for candidate PDFs.

GUM performs very poorly compared to the other candidate PDFs, regardless of the
time-scale. Although its performance improves with an increasing time-scale, even at the
best-performing 365-day time-scale, more than 50% of all the sites have an AIC− Dmax
greater than 10. Overall, GAM performs well for most time-scales. WEB is the best of
the candidate PDFs at short time-scales, but its performance deteriorates as the time-scale
increases, and at longer time-scales it is the worst of the PDFs, except GUM. We can see that
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GEV performs significantly better as the time-scale increases. LLD and LGN also perform
well with an increasing time-scale.

For shorter time-scales, from 5 to 30 days, WEB and GAM clearly outperform the
others. Table 3 shows the r-values of GAM and WEB at AIC− Dmax = 2. For example, at a
time-scale of 5 days, GAM has an r-value of 0.8549. This means that GAM’s performance is
reliable for 85.49% of all the sites. Comparing the two PDFs, WEB clearly performs better.
However, we can see that GAM’s performance is not far behind. The remaining candidate
PDFs, besides GAM and WEB, performed so poorly compared to the two PDFs that further
analysis was unnecessary.

Table 3. r-values at AIC− Dmax = 2 for GAM and WEB for short time-scales.

PDF
Time-Scale

5 Day 10 Day 15 Day 21 Day 30 Day

GAM 0.8549 0.9303 0.9318 0.8945 0.8532

WEB 0.9036 0.9526 0.9563 0.9346 0.8879

The most noticeable change in the shape of AIC− D against the time-scale is from
30 days to 60 days. There is a clear decrease in the performance of WEB compared to GAM,
and a significant overall improvement in the performance of the remaining PDFs, with
the exception of GUM. For a 60-day to 180-day time-scale, the most striking feature is
the fact that GAM performs the best, and WEB’s performance drops dramatically. WEB,
which is the best at shorter time-scales, performs significantly worse than GAM at 60 days,
and worse than LGN at 90 days and 180 days. For a 60-day time-scale, GAM has an
AIC-D of two or less for 83.77% of all the sites. This provides a strong argument for
the relatively much better performance of GAM compared to the other candidate PDFs.
However, at AIC− Dmax = 4, the difference in performance between GAM and GEV is
significantly reduced, with GEV performing better at time-scales above 90 days. This trend
is more pronounced at time-scales of 270 days and 365 days. At a time-scale of 270 days, the
intersection of GAM and GEV is AIC−Dmax = 2.114. This means that GEV is the better PDF
based on AIC− Dmax = 4. Similar results are obtained for a time-scale of 365 days and for a
time-scale of 270 days. We show the AIC− D shares of the candidate PDFs for each region
in Figures S10–S15 in the Supplementary Materials, and the AIC−D shares of the candidate
PDFs for each season in Figures S16–S19 in the Supplementary Materials. It can be seen that
no clear regional (or seasonal) features emerge, although some differences across the regions
(or seasons) are visible. Additionally, a box-plot of the AIC− D value of each time-scale by
probability distribution type is shown in Figure S20 of the Supplementary Materials.

3.2. Normality Test

We used the Anderson–Darling test to determine if the SPI time series computed from
the candidate PDFs followed a standard normal distribution. To test for normality, we
calculated the proportion (i.e., normality ratio) of sites satisfying the normal distribution
among all the sites for each season (see Figure 3). Wang et al. [16] assumed that if the nor-
mality ratio is greater than 90%, the time-series data of the region are normally distributed,
and we also used this criterion to determine the normality of the SPI time series calculated
for the corresponding time-scale.

As shown in Figure 3, we find that GUM is not applicable for any time-scales, re-
gardless of season. GAM has a high normality ratio compared to the other PDFs for all
time-scales. GEV has a lower normality ratio than GAM and WEB for short time-scales,
but for longer time-scales it has a higher normality ratio than all the other candidate
PDFs. WEB has a high normality ratio along with GAM for short time-scales, but the
normality ratio decreases for time-scales longer than 60 days. As a result, we can say that
GAM is a good representation of the normal distribution for all time-scales except for very
short time-scales.
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If we look at the results of the normality test separately for each season, we can see
that there is a difference in the minimum time-scale that can be applied for each season. In
spring, when calculating the SPI using GAM, GEV, and WEB, the time-scale can be reduced
to 15 days, which means that the SPI can be obtained for a relatively short time-scale in
the spring and still follow a normal distribution. In summer, as in spring, GAM, GEV, and
WEB can be applied for a time-scale of 15 days. In the fall, the normality ratio is higher
than 0.9 for a 21-day time-scale using GAM and WEB. Finally, in winter, we can say that
a 30-day time-scale using GAM, GEV, and WEB is the minimum time-scale that can be
applied. To summarize, the minimum time-scale for each season is 15 days in the spring
and summer, 21 days in the fall, and 30 days in the winter. This means that it is possible to
monitor changes in meteorological drought at relatively short time-scales in the spring and
summer, but only at relatively long time-scales in the fall and winter.

Furthermore, looking at the regional results in Figures S21–S26 in the Supplementary
Materials, the Gangwon region has a higher normality ratio than the results of all the regions
combined (i.e., Figure 3), and the results of GAM are clearly superior for all time-scales in
all seasons. In the Honam region, the normality ratio drops overall at long time-scales in
the fall and winter, and GEV is the most stable distribution for time-scales above 30 day for
all seasons.

The Anderson–Darling test looks at whether the overall frequency shape of the SPI
time series follows a normal distribution, but when analyzing drought with SPI, we are
more interested in extreme drought events. In other words, it is important to see if the
tails of the distribution follow a normal distribution. Therefore, we additionally assessed
normality with E, the error rate of the SPI time series relative to the normal distribution.
We compared the theoretical probability of occurrence for the drought classes in the SPI to
the actual probability in the actual SPI time series. Figure 4 shows the error rate from the
normal distribution corresponding to the drought classes of SPI at each time-scale (10 days,
15 days, 21 days, 30 days, and 60 days) for all seasons at all sites.
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GUM has a very large E for all time-scales. GAM shows consistently good normality
results compared to the other PDFs for all time-scales. WEB performs well for short
time-scales. However, at a time-scale of 60 days, E becomes significantly larger.

Seasonally, the differences between seasons are evident for each time-scale. The SPI
at a time-scale of 10 days shows very large error rates for drought classes D2 and D3
for all seasons except summer. This suggests that the time-scale of 10 days SPI is not a
good representation of extreme drought because the cumulative-precipitation time series
contains too many zero precipitation events. In summer, the SPIs for a time-scale of 10 days
computed from GAM and WEB are relatively close to the normal distribution for the
remaining drought classes, except for D3. From a time-scale of 15 days, the error rate
decreases significantly and we can recognize that the distribution is becoming more normal.
The error rate of D3 is still large in fall and winter, but in spring and summer the error
rate of D3 decreases significantly to below 0.5. At this time-scale, GAM and WEB have
significantly smaller error rates than the other candidate PDFs. At time-scales longer than
21 days, the seasonal results were different for the different PDFs. The 21-day GAM and
WEB show lower error rates in the spring and summer and, in particular, the distribution
of SPI by WEB follows a nearly perfect normal distribution. On the other hand, LLD and
LGN show low error rates in the fall and winter. For the time-scale of 30 days, GAM and
WEB have relatively low error rates in the summer and fall, GEV in the spring and summer,



Atmosphere 2023, 14, 1292 14 of 19

and LLD and LGN in the fall and winter. It is also worth noting that WEB has a very large
error rate for D3 in winter. For the time-scale of 60 days, GAM has lower error rates in
the fall and winter, and GEV in the spring and summer. The rest of the PDFs have similar
error rates regardless of the season. To summarize, when trying to estimate the SPI for
time-scales of 60 days or less, GAM had a lower error rate in the summer, and GEV and
WEB had lower error rates in the spring and summer. Conversely, LLD and LGN had lower
error rates in the fall and winter.

We show the seasonal error rates across all the sites for each time-scale (5 day, 90 day,
180 day, 270 day, 365 day) in Figures S27–S31 in the Supplementary Materials. The 5 day
does not adequately reflect D2 and D3 in summer nor D1, D2, and D3 for the rest of the
seasons (see Figure S27). For the 90 day and 180 day, GAM and GEV show good normality in
the spring and summer, with large error rates in the fall (see Figures S28 and S29). Similar
to the 90 day, the 180 day shows good normality of GAM and GEV in the spring and
summer (Figure S29). For the 270 day and 365 day, we find no significant difference in the
error rates of GAM, GEV, and LGN (see Figures S30 and S31). It is also worth noting that
when the time-scales are longer than 270 days, the error rate of GAM and GEV increases,
while the error rate of LGN decreases.

4. Discussion
4.1. Effect of Zero Precipitation Events on Minimum Time-Scales

As flush droughts become more frequent, the need for short-term drought assessments
is increasing. However, the monthly SPI currently in use has difficulty responding to such
flush droughts. There is a need for a method to accurately capture droughts that develop
rapidly in a short period of time. As part of this, the need to apply a daily time-scale SPI
is increasing.

Yoo et al. [33] suggested the use of daily SPIs because SPIs calculated for a monthly
time-scale have poor reproducibility for suddenly occurring extreme drought events. Wang
et al. [16] also mentioned the need for daily SPIs, noting that SPIs for longer time-scales
are insensitive to short-term changes in precipitation, making it difficult to identify the
beginning and end of a drought event and to monitor suddenly occurring droughts in detail.
However, in order to apply the daily SPI to a short time-scale, it is necessary to take into
account the fact that the cumulative-precipitation time series contains many zero values
(see Figure 5).
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In South Korea, there is a large seasonal variation in precipitation, with more than half
of the average annual precipitation concentrated in the summer. Due to this characteristic,
the proportion of zero values in the cumulative-precipitation time series in summer is the
lowest among the four seasons. Conversely, due to the dry nature of the winter climate,
the percentage of zero values in the cumulative-precipitation time series is the highest in
winter. For spring and fall, the percentage of zeros in the cumulative-precipitation time
series is higher in the fall, even though fall precipitation is slightly higher. This fact is
directly related to the results of the normality test.

In this study, the Anderson–Darling test and a deviation from N0,1 were performed to
test for normality. In the Anderson–Darling test, a normality ratio of 0.9 or higher is set as
the criterion for the minimum-applicable time-scale [16]. Under the premise of using the
probability distribution with the best normality, from Figure 3, the minimum time-scales
with a normality ratio of 0.9 or higher are 15 day, 21 day, and 30 day in the order of spring,
summer, fall, and winter, which is consistent with the results in Figure 5. In addition, GAM
and WEB in Figure 4b show good normality in the spring and summer. For fall and winter,
we find that the error rates at 21 days and 30 days, respectively, decrease to a similar extent
as the error rates in spring and summer at 15 days. When the proportion of zero values
is high in a moving cumulative-precipitation time series, a significant lower bound is
introduced in the SPI calculation, resulting in a truncation of the SPI distribution [7,25].
The proportion of zero values in the time series of moving accumulated precipitation over
South Korea is highly seasonal, which also imposes seasonal differences on the minimum
time-scale for calculating the SPI. As mentioned in Wu et al. [25], WMO [11], and Wang
et al. [16], it is difficult to apply SPI with a short time-scale to the winter in South Korea,
which is a period of low precipitation. Wang et al. [16] suggested that it is reasonable to
apply a longer minimum time-scale in arid regions compared to humid regions. This is
consistent with the longer minimum time-scale in the relatively dry Chungcheong region,
a region with a high proportion of zero cumulative-precipitation values.

This can also be seen in the regional results. From Figure S32c in the Supplementary
Materials, we can see that the proportion of zero values is high in the fall and winter in the
Chungcheong region. The results of the normality test for fall and winter in this region are
shown in Figure S26c,d in the Supplementary Materials. It can be seen that the normality
test results for autumn and winter in this region have a significantly lower normality ratio
than the rest of the regions, which means that the high proportion of zero values in the
precipitation time series in the Chungcheon region causes the SPI time series to deviate
from the normal distribution.

One interesting fact is the normality ratio for the summer season in the Gangwon
region (Figure S21 in the Supplementary Materials). The normality ratio of 0.9 is satisfied
at a time-scale of 10 days, and a time-scale of 10 days is the shortest applicable time-scale
among all the SPI time series analyzed in this study. The median proportion of zero values
for 10 days in summer in the Gangwon region is 0.0244, which is lower than that of the
other regions (see Figure S32 in the Supplementary Materials). By examining the proportion
of zeros in each region, we can see that the normality ratio exceeds 0.9 at the boundary of
0.0244, meaning that if the cumulative-precipitation time series has less than 2.5% zeros,
we can conclude that the corresponding SPI time series is normally distributed.

From Figure 5, we can see that the shorter the time-scale, the higher the percentage
of zero values and, from Figure 3, we can see that all the PDFs have low normality ratios
for short time-scales. Overall, all the PDFs have low normality ratios for short time-scales,
but GAM and WEB have relatively high normality ratios among the PDFs. Similar results
can be found in Stagge et al. [7]. Stagge et al. [7] reported that for short time-scales, WEB
and GAM exhibited low rejection rates among the candidate PDFs, with WEB and GAM
performing best in that order. However, in our study, we found that the performance of
WEB deteriorates rapidly as the time-scale increases. GAM performed well for all time-
scales and was found to be the optimal probability distribution for calculating the daily
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SPI. However, if a minimum time-scale SPI is required for a specific purpose, it may be
preferable to calculate the SPI using WEB.

In this study, the proportion of zero values was applied as the probability mass of
zero cumulative precipitation (see Equation (1)). Therefore, when the probability mass is
above a certain level, the frequency distribution of the SPI time series is bound to deviate
from the normal distribution [7]. As a result, the accuracy of the normality of the SPI
calculated by including zero values decreases, making it unreasonable to use it on short
time-scales [9]. Currently, there is no standardized method for ensuring the normality of
SPI by accounting for the proportion of zero values in SPI calculations, so further research
is needed.

4.2. Applicability of the GEV Distribution

Globally, the most commonly applied PDF for SPI computation is GAM. As shown
in McKee et al., Stagge et al., Okpara et al., Blain et al., and Zhao et al. [1,7–9,20], GAM is
used worldwide. Also, in South Korea, GAM is currently used for PDF [34–36]. However,
these facts are only valid for a monthly time-scale. It is not easy to find studies on whether
GAM is the optimal probability distribution for calculating the SPI for a daily time-scale in
South Korea or globally.

GAM is often used because the expression structure of its distribution is relatively
simple, and cumulative-precipitation time series around the world have been shown to
generally follow GAM. It has been reported that cumulative-precipitation time series in
South Korea also follow GAM [35]. In this study, the Chi-square test indicates that overall,
GAM is the best probability distribution when evaluated for all time-scales (see Table 2).

The AIC test still shows that GAM performs best for all time-scales (see Figure 2).
However, GEV’s performance under an AIC distribution improves dramatically as the
time-scale gets progressively longer (e.g., 365 day). In addition, the normality test shows
that GEV performs very well when the time-scale is longer than 30 days (see Figure 3).
However, this is not evidence that GEV is superior to GAM. From Figure 4, which shows
the deviation from the normal distribution in the drought class, we cannot say that GEV
performs better than GAM at time-scales greater than 30 days. In addition, although GEV
is flexible in calculating SPI, it has risks, such as the uncertainty caused by the addition of
one more distributional parameter and the constraints on the upper or lower bound of the
time series imposed by the sign of the shape parameter. Since GEVs are often faced with
these inconveniences in practical applications, two-parameter probability distributions are
often applied in practice [7,37]. In addition, DeGaetano et al. and Carbone et al. [38,39]
reported that record lengths of at least 60 years are required to estimate stable parameters
and, hence, calculate reliable SPIs. Guttman and Wang et al. [2,16] also recommended a
record length of 70 years or more for SPI calculation. Considering the current record length
of about 40 years, the application of a three-parameter probability distribution such as the
GEV would be unreasonable. In addition, since the goodness-of-fit test is performed using
data excluding zero values, the actual record length will be shorter when estimating the
parameters of the probability distribution for calculating SPI on shorter time-scales, leading
to greater uncertainty in the SPI calculation [25]. For these reasons, it is difficult to say that
GEV is a better probability distribution for SPI calculation in South Korea compared to
GAM, although there are many precipitation time series that show that GEV performs well
in terms of goodness-of-fit and normality of distribution.

5. Conclusions

The SPI is a standardized index of precipitation variability, and the probability distri-
bution used to calculate the SPI in many studies is typically Gamma. In addition, the SPI
is mainly used to evaluate drought on a monthly time-scale. However, in principle, it is
necessary to select and apply the most appropriate probability distribution to the precipi-
tation time series to calculate the SPI, and the need for a daily time-scale is emerging as
concerns about fresh drought have increased in recent years. In this study, we investigated



Atmosphere 2023, 14, 1292 17 of 19

the optimal probability distribution for calculating SPI at sub-daily time-scales and the
minimum time-scale that could be applied using daily precipitation time series observed
for 42 years at 56 sites in South Korea.

The results of the chi-square goodness-of-fit test and the AIC show that GAM is the
best-overall probability distribution for short time-scales (30 days or less) to long time-
scales (365 days). However, we also found that WEB slightly outperforms GAM for short
time-scales of 60 days or less. The AIC test suggests that GEV performs well at longer
time-scales of 180 days or more, but the normality test does not provide evidence that
GEV is a better distribution than GAM. We also found that the proportion of zeros in a
precipitation time series has a decisive effect on the normality test, and this is more evident
when calculating the SPI at short time-scales of 30 days or less.

While there are some regional differences, the minimum time-scale for calculating the
daily SPI in South Korea varies by season as follows: 15 days for spring and summer, 21 day
for fall, and 30 days for winter. The factor that most influenced the minimum time-scale
was the share of zero events in the cumulative-precipitation time series, which was found
to be appropriate for calculating the SPI if it was 2.5% or less. The best distribution for
calculating SPI is WEB for time-scales below 60 days and GAM for all other time-scales, and
if we had to choose one probability distribution that could be applied across all time-scales,
we would recommend GAM.

Our findings clearly contain limitations and uncertainties, including data quality
and availability, parameter-estimation methods, and spatial variability of precipitation. It
would also be worthwhile to extend our investigation in the future by utilizing other PDFs
or other drought indices, applying other transformation methods, or incorporating other
climate factors.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/atmos14081292/s1, Figure S1: Box-plot of the p-values of the chi-
square test for six candidate PDFs for the four seasons in the Gangwon region; Figure S2: Box-plot
of the p-values of the chi-square test for six candidate PDFs for the four seasons in the Capital
region; Figure S3: Box-plot of the p-values of the chi-square test for six candidate PDFs for the
four seasons in the Buulgyeong region; Figure S4: Box-plot of the p-values of the chi-square test for
six candidate PDFs for the four seasons in the Daegyeong region; Figure S5: Box-plot of the p-values
of the chi-square test for six candidate PDFs for the four seasons in the Honam region; Figure S6:
Box-plot of the p-values of the chi-square test for six candidate PDFs for the four seasons in the
Chungcheong region; Figure S7: Heatmap of h (%) of the chi-square test for six candidate PDFs
for the four seasons; Figure S8: Heatmap of p (%) of the chi-square test for six candidate PDFs for
the four seasons; Figure S9: Heatmap of w (%) of the chi-square test for six candidate PDFs for the
four seasons; Figure S10: AIC frequencies for candidate PDFs in the Gangwon region; Figure S11: AIC
frequencies for candidate PDFs in the Capital region; Figure S12: AIC frequencies for candidate PDFs
in the Buulgyeong region; Figure S13: AIC frequencies for candidate PDFs in the Daegyeong region;
Figure S14: AIC frequencies for candidate PDFs in the Honam region; Figure S15: AIC frequencies
for candidate PDFs in the Chungcheong region; Figure S16: AIC frequencies for candidate PDFs in
the spring season; Figure S17: AIC frequencies for candidate PDFs in the summer season; Figure S18:
AIC frequencies for candidate PDFs in the fall season; Figure S19: AIC frequencies for candidate
PDFs in the winter season; Figure S20: A box-plot showing AIC − D values for each probability
distribution by time-scale; Figure S21: Normality ratio for six candidate PDFs for all seasons in the
Gangwon region; Figure S22: Normality ratio for six candidate PDFs for all seasons in the Capital
region; Figure S23: Normality ratio for six candidate PDFs for all seasons in the Buulgyeong region;
Figure S24: Normality ratio for six candidate PDFs for all seasons in the Daegyeong region; Figure S25:
Normality ratio for six candidate PDFs for all seasons in the Honam region; Figure S26: Normality
ratio for six candidate PDFs for all seasons in the Chungcheong region; Figure S27: Error rate of SPI
at 5 days calculated per drought class for all seasons across all sites; Figure S28: Error rate of SPI at
90 days calculated per drought class for all seasons across all sites; Figure S29: Error rate of SPI at
180 days calculated per drought class for all seasons across all sites; Figure S30: Error rate of SPI at
270 days calculated per drought class for all seasons across all sites; Figure S31: Error rate of SPI at
365 days calculated per drought class for all seasons across all sites; Figure S32: Rate of cumulative
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time series having zero value for all seasons at each time-scale (5 day, 10 day, 15 day, 21 day, 30 day,
and 60 day) for each region.
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