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Abstract: The accurate prediction of PM2.5 concentration, a matter of paramount importance in envi-
ronmental science and public health, has remained a substantial challenge. Conventional method-
ologies for predicting PM2.5 concentration often grapple with capturing complex dynamics and
nonlinear relationships inherent in multi-station meteorological data. To address this issue, we have
devised a novel deep learning model, named the Meteorological Sparse Autoencoding Transformer
(MSAFormer). The MSAFormer leverages the strengths of the Transformer architecture, effectively
incorporating a Meteorological Sparse Autoencoding module, a Meteorological Positional Embedding
Module, and a PM2.5 Prediction Transformer Module. The Sparse Autoencoding Module serves to
extract salient features from high-dimensional, multi-station meteorological data. Subsequently, the
Positional Embedding Module applies a one-dimensional Convolutional Neural Network to flatten
the sparse-encoded features, facilitating data processing in the subsequent Transformer module.
Finally, the PM2.5 Prediction Transformer Module utilizes a self-attention mechanism to handle
temporal dependencies in the input data, predicting future PM2.5 concentrations. Experimental
results underscore that the MSAFormer model achieves a significant improvement in predicting
PM2.5 concentrations in the Haidian district compared to traditional methods. This research offers
a novel predictive tool for the field of environmental science and illustrates the potential of deep
learning in the analysis of environmental meteorological data.

Keywords: PM2.5 concentration prediction; meteorological sparse autoencoding; Transformer
architecture; deep learning

1. Introduction

The pervasiveness of air pollution in numerous global cities poses significant threats to
public health and induces sustained detrimental effects on broader ecological systems [1–3].
Among the various pollutants, fine particulate matter (PM2.5), with a diameter less than
2.5 µm, stands out [4,5]. Its adverse effects range from respiratory to cardiovascular dis-
eases, underscoring the importance of developing a model that can accurately predict PM2.5
concentrations, allowing for timely prevention measures and strategic responses [6–9].

Generally, PM2.5 prediction methods are categorized into two classes: those based on
physical models and those driven by data [10–13].

Physical model-based prediction methods, such as the Community Multi-scale Air
Quality (CMAQ) [14,15], WRF/Chem [16,17], and Nested Air Quality Prediction Modeling
System (NAQPMS) models [18,19], rely on scientific theories and equations to elucidate
patterns of air pollution diffusion and transformation [20]. The strength of these models lies
in their accuracy, which depends on how closely they approximate actual atmospheric con-
ditions, and their explainability, as the predictions are based on scientific principles [21–23].
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However, these models require a vast number of input parameters, including pollutant
emission data, meteorological data, and terrain data [24,25]. The process of obtaining and
processing these parameters is complex, and the models demand substantial computational
resources [26].

On the other hand, data-driven prediction methods have yielded significant results
with advancements in big data and computational capabilities [27–29]. Machine learning
algorithms like Support Vector Machines (SVM) [30,31], Random Forest (RF) [32,33], and
AdaBoost [34] are extensively employed in predicting PM2.5 concentrations. However, these
models primarily focus on utilizing historical data from air quality monitoring stations
for predictions, largely ignoring the consideration of other influencing factors, particularly
meteorological variables [35]. Meteorological conditions like temperature, humidity, wind
speed, and direction significantly impact PM2.5 concentrations by influencing and shaping
the diffusion, mixing, and deposition processes of particulates in the air [36–39].

Recent widespread application of deep learning technologies is beginning to alter
this situation [40–42]. Researchers have started integrating meteorological variables into
the deep learning models for PM2.5 prediction, but the prevalent approach still relies on
manual feature design and employs relatively traditional models such as Long Short-Term
Memory (LSTM) [43–45] and Gated Recurrent Units (GRU) [46,47]. While these models
exhibit strengths in handling the time-series characteristics of meteorological data, their
capacity to excavate deep and complex features in multi-source meteorological data needs
further enhancement [48,49].

The current challenge lies in the requirement of extensive domain knowledge and
presupposed data structures or relationships to handle high-dimensional meteorological
data, posing serious challenges to the generality and adaptability of the models [50–52].
Indeed, the relationship between meteorological conditions and PM2.5 concentrations
is highly nonlinear and subject to complex interactions among various environmental
factors [53]. This relationship could change with alterations in time and location [54].
Therefore, there is an urgent need to develop a novel prediction model that is capable of
automatically extracting salient features from high-dimensional meteorological data and
can adapt to changing environmental conditions.

To address these challenges, we have designed a novel deep learning model named
the Meteorological Sparse Autoencoding Transformer (MSAFormer), based on the Trans-
former architecture and sparse autoencoding technology. The Transformer architecture,
initially designed for natural language processing tasks [55], is adept at handling long-term
dependencies in the input data—thanks to its powerful self-attention mechanism—and
has exhibited excellent performance in many other fields [56], including environmental
science [57]. On the other hand, sparse autoencoding is an effective feature learning tech-
nique that can automatically extract and learn significant features from high-dimensional
data [58].

Our model comprises three core modules. Firstly, the Meteorological Sparse Autoen-
coding module extracts critical features from high-dimensional, multi-site meteorological
data, providing key information for understanding and predicting PM2.5 concentrations.
Secondly, the Meteorological Position Embedding module utilizes a one-dimensional Con-
volutional Neural Network (CNN) to flatten these sparse encoded features for processing
in the subsequent Transformer module. Lastly, the PM2.5 Prediction Transformer module
leverages the self-attention mechanism to handle time dependencies in the input data
for an accurate prediction of future PM2.5 concentrations. These designs confer superior
performance on our model when handling multi-source, high-dimensional, and highly
temporal meteorological data, offering a new and effective tool for precise PM2.5 prediction.

2. Materials

This study relies on data from two primary sources: air pollutant concentrations,
with an emphasis on PM2.5, and meteorological variables. The PM2.5 concentration data,
expressed in micrograms per cubic meter (µg/m3), were sourced from the Beijing Municipal
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Ecological Environmental Monitoring Center (BJMEMC). This data can be accessed via their
official website, http://www.bjmemc.com.cn/ (accessed on 21 March 2023). Concurrently,
a set of meteorological factors were gathered from nine meteorological monitoring stations,
facilitated through the National Climatic Data Center (NCDC) of the United States, an
institution within the National Oceanic and Atmospheric Administration (NOAA). Global
meteorological data, encompassing factors such as temperature, pressure, dew point, wind
direction and speed, cloud cover, and precipitation, can be retrieved from their official
website, https://www.ncei.noaa.gov/ (accessed on 17 April 2023). The meteorological
factors included in the study and their corresponding units are detailed in Table 1.

Table 1. Description and units of meteorological factors.

Meteorological Factor Description Unit

Temperature Average temperature at the site Degrees Celsius
Pressure Atmospheric pressure at the site Millibars

Dew Point Temperature at which air becomes saturated Degrees Celsius
Wind Direction Direction from which the wind is blowing Degrees

Wind Speed Speed of wind at the site Meters per second
Cloud Cover Percentage of the sky covered by clouds Percent (%)
Precipitation Amount of rainfall or snowfall at the site Millimeters

Data for the study were gathered at an hourly resolution from 1 January 2021 to
31 December 2022. The data collected from 1 January 2021 to 31 December 2021 were
utilized as training data, while the data from 1 January 2022 to 31 December 2022 served as
testing data. Figure 1 illustrates the geographical distribution of the meteorological and air
pollutant monitoring stations from which the data was sourced.
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Table 2. Detailed information on the meteorological and air pollutant monitoring stations used for
data collection in this study.

Category Station Code Station Name Longitude Latitude

Air Pollution
Monitoring Stations 1007A Haidian Wanliu 116.29 39.96

Meteorological Stations

54398 Shunyi 116.37 40.08
54399 Haidian 116.17 39.59
54424 Pinggu 117.07 40.10
54431 Tongzhou 116.38 39.55
54433 Chaoyang 116.30 39.57
54499 Changping 116.13 40.13
54514 Fengtai 116.15 39.52
54594 Daxing 116.21 39.43
54596 Fangshan 116.12 39.46

The integration of PM2.5 concentration data from BJMEMC and meteorological data
from NCDC, bolstered by comprehensive station information, provides a robust foundation
for the development and validation of the MSAFormer model.

3. Methodology
3.1. Overview of the MSAFormer Model

Predicting PM2.5 concentration accurately is crucial for understanding and managing
air quality in urban areas. Traditional methods, primarily based on statistical regression
models, often struggle to capture complex non-linear relationships and dynamics in me-
teorological and pollution data. To address these challenges, we propose a novel model,
MSAFormer, which combines the power of the Transformer architecture and meteorological
data analysis.

MSAFormer aims to integrate meteorological and temporal information effectively to
achieve an accurate prediction of PM2.5 concentration. Meteorological data, captured from
various monitoring stations, provide essential contextual information related to air quality.
Temporal data, reflected in the time-series data of PM2.5 concentration, reveal the dynamics
of air quality over time.

To harness the rich information embedded in both meteorological and temporal
data, the MSAFormer model is designed with three primary modules: the Meteorological
Sparse Autoencoding module, the Meteorological Embedding module, and the Transformer
Prediction module.

The Meteorological Sparse Autoencoding module is designed to encode high-dimensional
meteorological data into a sparse representation. The sparsity constraint facilitates the
extraction of meaningful and critical features, improving the interpretability of the model.

Next, the Meteorological Embedding module receives the sparse-encoded meteoro-
logical data, flattens them, and applies a 1D Convolutional Neural Network to encode
positional information. This module transforms the encoded meteorological data into a
format that is suitable for processing in the subsequent Transformer module.

Finally, the Transformer Prediction module integrates the meteorological data pro-
cessed by the Meteorological Embedding module with the historical PM2.5 concentration
data. The module employs the self-attention mechanism, capturing the temporal depen-
dencies in the input data and predicting future PM2.5 concentrations.

An overview of the MSAFormer model structure is provided in Figure 2, highlighting
the journey of the data from the input stage, through each module, to the final prediction
of PM2.5 concentration. This modular design allows for flexibility and adaptability, making
the MSAFormer model a promising tool for air quality prediction tasks.
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3.2. Meteorological Sparse Autoencoding Module

The first module of the MSAFormer, the Meteorological Sparse Autoencoding module,
deals with the processing of multivariate meteorological data. This module employs the
concept of sparse autoencoding to transform the original high-dimensional meteorological
data into a reduced, more manageable feature space that emphasizes critical information
and suppresses noise and redundant features.

Consider the raw meteorological data collected from nine meteorological stations
across Beijing. For each station, we have a time series of several meteorological features,
namely temperature, pressure, dew point, wind speed, wind direction, cloud cover, and
precipitation. Hence, for each station, we formulate a matrix X ∈ Rd×T , where d is the
number of meteorological features, and T is the number of time steps.

A typical sparse autoencoder comprises two components: an encoder fθ(·), parameter-
ized by θ, and a decoder gφ(·), parameterized by φ. The encoder aims to transform the high-
dimensional input data X into a lower-dimensional representation Z = fθ(X) ∈ Rd′×T ,
where d′ is the number of latent features.

The decoder, on the other hand, tries to reconstruct the original input from the en-
coded representation, i.e., X̂ = gφ(Z). The goal of the training process is to minimize the
reconstruction error while maintaining the sparsity of the encoded representation Z.

To achieve this, we employ a loss function that combines the reconstruction error, given
using the Frobenius norm of the difference between the original and reconstructed matrices,
and a sparsity-inducing penalty term based on the Kullback–Leibler (KL) divergence. The
loss function LAE is thus given using:

LAE = ‖X− X̂‖2
F + λDKL(Z

∣∣∣∣∣∣P0) (1)
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where ‖ · ‖F denotes the Frobenius norm, DKL(Z||P0) represents the KL divergence be-
tween the empirical distribution of Z and the specified sparse prior distribution P0, and λ
is a tunable parameter that controls the balance between the reconstruction error and the
sparsity.

The Meteorological Sparse Autoencoding module plays a vital role in the MSAFormer
model, as it effectively condenses high-dimensional meteorological data into a lower-
dimensional, sparse, and informative representation. This representation serves as the foun-
dation for the following modules to build upon and produce accurate PM2.5 predictions.

3.3. Meteorological Positional Embedding Module

Once the sparse-encoded representations of the meteorological data are obtained
through the Meteorological Sparse Autoencoding module, we next transform these features
into a form suitable for the Transformer Prediction module. The Meteorological Embedding
module accomplishes this by employing a 1D Convolutional Neural Network (CNN)
to capture local dependencies among the meteorological features and convert the multi-
dimensional input data into a flat representation. Additionally, a fully connected layer (FC)
is utilized to encode positional information into the flattened data.

Let us denote the sparse-encoded representation of the meteorological data from
the previous module as Z ∈ Rd′×T , where d′ is the dimension of the sparse-encoded
representation, and T is the number of time steps. The sparse-encoded data are organized
into a matrix that needs to be reformatted for the time-series prediction task.

To leverage the inherent local dependencies in the multi-dimensional meteorological
data, we apply a 1D convolution over the d′ dimension of the sparse-encoded data. The 1D
convolution operation uses a set of learnable filters to perform a sliding dot product over the
input data. This mechanism allows the model to learn local patterns in the meteorological
features.

Mathematically, the 1D convolution operation can be defined as follows. Given an
input Z ∈ Rd′×T and a filter h ∈ Rm, the convolution operation Z ∗ h outputs a new
representation Z′ ∈ R(d′−m+1)×T , where each element Z′ij is computed using

Z′ij =
m−1

∑
k=0

hkZi+k,j (2)

After the 1D convolution operation, the flattened meteorological features are passed
through a fully connected layer to encode positional information into the data. The FC
layer essentially applies a linear transformation to the input data and can be represented as:

Z′′ = WZ′ + b (3)

where W ∈ Rd′′×(d′−m+1) and b ∈ Rd′′ are the weight matrix and bias vector of the FC
layer, respectively, and d′′ is the output dimension.

The output of this module, the embedded meteorological data, thus preserves critical
information from the sparse-encoded representation but also incorporates local meteorolog-
ical dependencies and positional information. This form of data proves to be more suitable
for processing in the next Transformer Prediction module, ultimately contributing to more
accurate PM2.5 predictions.

3.4. PM2.5 Prediction Transformer Module

Following the Meteorological Embedding module, the Transformer Prediction module
is applied to perform PM2.5 prediction. The embedded meteorological data from the
previous module, along with the historical PM2.5 data, are used as inputs for this module.
The Transformer architecture is known for its ability to capture complex dependencies in
sequential data and provide robust and interpretable predictions. Therefore, it is well-suited
for handling our time-series prediction task.
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The Transformer module contains an encoder and a decoder, both of which are com-
posed of several identical layers. Each layer comprises two sub-layers: a multi-head
self-attention mechanism and a position-wise fully connected feed-forward network. An
essential feature of the Transformer is that it replaces the recurrence mechanism with the
self-attention mechanism, which computes a weighted sum of all the input features rather
than processing the input data step by step. This mechanism gives the model the capacity
to focus more on important features and less on unimportant ones.

In the context of our model, let us denote the output from the Meteorological Em-
bedding module as E ∈ Rd′′×T and the historical PM2.5 data as Y ∈ Rdy×T , where d′′ is
the output dimension of the Meteorological Embedding module, dy is the dimension of
the historical PM2.5 data, and T is the number of time steps. The Transformer Prediction
module processes these data in the following way:

• Encoder: The encoder takes the Meteorological Embedding module’s output E as an
input and passes it through the multi-head self-attention mechanism and the feed-
forward network. The self-attention mechanism allows the model to focus on different
parts of the input sequence and considers their importance for the current prediction.
The feed-forward network further processes the attended features;

• Decoder: The decoder receives the encoded meteorological data and the historical
PM2.5 data Y. Similar to the encoder, it also contains a multi-head self-attention
mechanism and a feed-forward network; however, it has an additional multi-head
attention mechanism that attends to the encoder’s output.

The decoder ultimately generates a sequence of predicted PM2.5 values. The Trans-
former Prediction module harnesses the complex temporal dependencies in both meteo-
rological and historical PM2.5 data, contributing to the generation of accurate and robust
PM2.5 predicts.

3.5. Training Strategy

The architecture and optimization parameters in the MSAFormer model play critical
roles in achieving a high accuracy in PM2.5 concentration predictions. The architecture
parameters are specifically configured to optimally capture the spatial and temporal dy-
namics within multi-station meteorological data. Table 3 presents a detailed configuration
of the architecture parameters.

Table 3. Architecture parameters for MSAFormer model.

Items Value Description

Sequence Window Size 5 Length of memory units
Conv1d Kernel Size 7 Kernel size of the 1D convolution

Conv1d Embedding Size 128 Meteorological data embedding size
Position Embedding Size 128 Position embedding size

Attention Heads 8 Self-attention heads in Transformer
Transformer Layers 4 Layers in Transformer

Sparse Autoencoder Coefficient (λ) 0.4 (optimal) Controls the sparsity of the Meteorological
Sparse Autoencoding module

Models in this section were configured and trained with hyperparameters above.

The Sequence Window Size of 5 was chosen to balance the trade-off between capturing
enough temporal dependencies and computational efficiency. For the Conv1D Kernel
Size, a setting of 7 was found to be effective for learning the inherent patterns in the
meteorological data. Both Conv1D Embedding Size and Position Embedding Size are set to
128, which ensures an integrated and comprehensive representation of the meteorological
and spatial information. The Transformer module, with eight attention heads and four
layers, can capture the complex patterns and dependencies within the data at various
abstraction levels. Model optimization is carried out using an adaptive learning strategy
combined with a suitable loss function. The primary optimization parameters are presented
in Table 4.



Atmosphere 2023, 14, 1294 8 of 16

Table 4. Optimization parameters for MSAFormer model.

Parameters Value Description

Optimizer Adam Adaptive learning rate optimizer

Loss Function MSE Loss Measures the difference between predicted and actual
PM2.5 concentrations

Learning Rate 0.001 Initial learning rate for the optimizer
Batch Size 8 Number of training examples utilized in one iteration

Epochs 50 Number of complete passes through the training dataset

Adam optimizer is used for its adaptive learning rate adjustment capability, which
aids efficient and robust optimization. We employ the Mean Squared Error (MSE) loss
function, which is formulated as

LMSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (4)

where yi represents the observed PM2.5 concentration, ŷi the predicted concentration, and
n the total number of samples. This loss function aligns with our goal of minimizing
prediction error in PM2.5 concentration.

Furthermore, we incorporated an early stopping strategy to monitor the validation loss
during training. When the validation loss stops improving after a certain number of epochs
(patience), the training process is halted. This strategy helps in preventing overfitting by
not allowing the model to learn the noise within the training data.

In summary, the training and optimization strategies employed in MSAFormer ensure
its robustness and reliability in predicting PM2.5 concentrations using multi-station me-
teorological data. These strategies contribute to the model’s ability to generalize well to
unseen data, making it a practical tool for air quality prediction tasks.

4. Results and Discussion
4.1. Data Preparation and Evaluation Metrics

This study assembled an extensive dataset comprising hourly observations of PM2.5
concentrations from 1 January 2021 to 31 December 2022. Initially, the PM2.5 concentration
data were transformed into serialized samples using the sliding window method, with
a Sequence Window Size of 5 for single-step prediction. Any serialized samples with
missing PM2.5 concentrations were then carefully eliminated to ensure data integrity. Next,
meticulous data cleaning procedures were implemented for the meteorological factors. The
SimpleImputer class from the scikit-learn package was employed to address any missing
values, replacing them with the mean, median, or most frequent value, as appropriate. After
ensuring the continuity and coherence of the dataset through these cleaning processes,
temporal alignment was performed to synchronize the serialized PM2.5 concentration
samples with corresponding meteorological features, resulting in a set of 16,000 valid
samples. These samples were then temporally divided into a training dataset (spanning the
period from 1 January 2021 to 31 December 2021) and a testing dataset (from 1 January 2022
to 31 December 2022).

In the context of our study, the prediction problem is formulated as follows: Given
the past 5 h of PM2.5 and meteorological factor data, the goal is to predict the PM2.5
concentration for the next hour. Mathematically, this can be defined as

Ŷt+1 = f (Yt−4:t, Zt−4:t) (5)

where Yt−4:t and Zt−4:t represent the past 5 h of PM2.5 and meteorological factor data,
respectively, and f denotes the prediction model.
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The performance of the models is evaluated using Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE), and the Coefficient of Determination (R2). These metrics are
defined as

RMSE =

√
1
n ∑n

i=1 (Yi − Ŷi)2 (6)

MAE =
1
n ∑n

i=1 |Yi −
ˆ
Yi| (7)

R2 = 1− ∑n
i=1 (Yi − Ŷi)

2

∑n
i=1 (Yi − Ȳ)2 (8)

where n denotes the number of samples, Yi and Ŷi represent the actual and predicted PM2.5
concentrations, respectively, and Ȳ stands for the mean of the actual PM2.5 concentrations.
The objective of our study is to minimize RMSE and MAE while maximizing the R2 score.

4.2. Models Comparation and Performance Analysis

In order to establish the efficacy of the proposed MSAFormer model, it was juxtaposed
against five widely recognized models: Support Vector Machine (SVM) [30], Random Forest
(RF) [32], Adaptive Boosting (AdaBoost) [34], Long Short-Term Memory (LSTM) [43], and
Gated Recurrent Unit (GRU) [46]. These models are detailed below:

• Support Vector Machine (SVM): This was implemented employing a radial basis
function (RBF) kernel. The optimal parameters, C and gamma, were ascertained via a
grid search over the parameters of ‘C’: [0.1, 1, 10, 100, 1000] and ‘gamma’: [1, 0.1, 0.01,
0.001, 0.0001];

• Random Forest (RF): the RF model was constructed with a forest of 100 trees, with
‘max_features’ set to ‘sqrt’, a choice guided by the nature of regression tasks;

• Adaptive Boosting (AdaBoost): AdaBoost was set up with 50 weak learners, with a
learning rate of 1, ensuring an efficient trade-off between bias and variance;

• Long Short-Term Memory (LSTM): the LSTM, a popular variant of recurrent neural
networks, was structured with 50 units, and the activation function was set as ‘tanh’;

• Gated Recurrent Unit (GRU): GRU, a modern variant of recurrent neural networks,
shared the same structure as LSTM, with 50 units and a ‘tanh’ activation function.

The temporal dynamics and predictive performance of the six models were compared
using three evaluation methods: time-series visualization, accuracy metrics, and error
histogram analysis.

Figure 3 presents the time-series plots of PM2.5 predictions for each model throughout
2022 (Figure 3a–f). These graphs reveal that the MSAFormer model closely captures the true
PM2.5 concentration trends, thereby evidencing its superior temporal modeling capability.
Table 5 displays the RMSE, MAE, and R2 scores for all six models, from which it is apparent
that the MSAFormer model exhibits the best predictive accuracy, marked by the lowest
RMSE and MAE, as well as the highest R2 score.

Lastly, the histogram of prediction errors (Figure 4) shows that the MSAFormer has
a narrower error distribution, centralized around zero. This underlines its enhanced
prediction performance as compared to the benchmark models, with smaller and fewer
errors.

From these results, it can be concluded that the MSAFormer model presents significant
improvements over traditional models in terms of predictive accuracy and the ability to
effectively capture temporal dependencies in PM2.5 concentrations.



Atmosphere 2023, 14, 1294 10 of 16

Atmosphere 2023, 14, x FOR PEER REVIEW 10 of 17 
 

 

Random Forest (RF) [32], Adaptive Boosting (AdaBoost) [34], Long Short-Term Memory 
(LSTM) [43], and Gated Recurrent Unit (GRU) [46]. These models are detailed below: 
• Support Vector Machine (SVM): This was implemented employing a radial basis 

function (RBF) kernel. The optimal parameters, C and gamma, were ascertained via 
a grid search over the parameters of ‘C’: [0.1, 1, 10, 100, 1000] and ‘gamma’: [1, 0.1, 
0.01, 0.001, 0.0001]; 

• Random Forest (RF): the RF model was constructed with a forest of 100 trees, with 
‘max_features’ set to ‘sqrt’, a choice guided by the nature of regression tasks; 

• Adaptive Boosting (AdaBoost): AdaBoost was set up with 50 weak learners, with a 
learning rate of 1, ensuring an efficient trade-off between bias and variance; 

• Long Short-Term Memory (LSTM): the LSTM, a popular variant of recurrent neural 
networks, was structured with 50 units, and the activation function was set as ‘tanh’; 

• Gated Recurrent Unit (GRU): GRU, a modern variant of recurrent neural networks, 
shared the same structure as LSTM, with 50 units and a ‘tanh’ activation function. 
The temporal dynamics and predictive performance of the six models were com-

pared using three evaluation methods: time-series visualization, accuracy metrics, and er-
ror histogram analysis. 

Figure 3 presents the time-series plots of PM2.5 predictions for each model throughout 
2022 (Figure 3a–f). These graphs reveal that the MSAFormer model closely captures the 
true PM2.5 concentration trends, thereby evidencing its superior temporal modeling capa-
bility. Table 5 displays the RMSE, MAE, and R2 scores for all six models, from which it is 
apparent that the MSAFormer model exhibits the best predictive accuracy, marked by the 
lowest RMSE and MAE, as well as the highest R2 score. 

 
(a) 

 
(b) 

 
(c) 

Atmosphere 2023, 14, x FOR PEER REVIEW 11 of 17 
 

 

 
(d) 

 
(e) 

 
(f) 

Figure 3. Time-series plots of the PM2.5 predictions made by (a) MSAFormer, (b) SVM, (c) RF, (d) 
AdaBoost, (e) LSTM, and (f) GRU models for the year 2022. 

Table 5. Comparative performance of SVM, RF, AdaBoost, LSTM, GRU, and MSAFormer models in 
terms of RMSE, MAE, and R2 scores. 

Model RMSE MAE R2 
MSAFormer 11.112 8.691 0.898 

SVM 19.674 14.930 0.706 
RF 23.000 17.452 0.632 

AdaBoost 21.623 16.100 0.662 
LSTM 20.785 15.716 0.683 
GRU 18.047 13.629 0.752 

Lastly, the histogram of prediction errors (Figure 4) shows that the MSAFormer has 
a narrower error distribution, centralized around zero. This underlines its enhanced pre-
diction performance as compared to the benchmark models, with smaller and fewer er-
rors. 

Figure 3. Time-series plots of the PM2.5 predictions made by (a) MSAFormer, (b) SVM, (c) RF,
(d) AdaBoost, (e) LSTM, and (f) GRU models for the year 2022.



Atmosphere 2023, 14, 1294 11 of 16

Table 5. Comparative performance of SVM, RF, AdaBoost, LSTM, GRU, and MSAFormer models in
terms of RMSE, MAE, and R2 scores.

Model RMSE MAE R2

MSAFormer 11.112 8.691 0.898
SVM 19.674 14.930 0.706
RF 23.000 17.452 0.632

AdaBoost 21.623 16.100 0.662
LSTM 20.785 15.716 0.683
GRU 18.047 13.629 0.752
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Figure 4. Histogram of prediction errors for the six models: SVM, RF, AdaBoost, LSTM, GRU, and
MSAFormer.

4.3. Sensitivity Analysis of the MSAFormer Model

This section conducts a sensitivity analysis to determine the influence of the Mete-
orological Sparse Autoencoding (MSA) module and the parameter, Sparse Autoencoder
Coefficient (λ), on the overall performance of the proposed MSAFormer model. The first
experiment was conducted without incorporating the MSA module into the MSAFormer
model, meaning that meteorological factor data were not utilized for the PM2.5 concentra-
tion prediction. The second part of the analysis involved adjusting the Sparse Autoencoder
Coefficient (λ), from 0.0 to 1.0 in increments of 0.1, to observe its impact on the model’s
performance.

The experimental results are visually presented in Figure 5 and quantitatively sum-
marized in Table 6. Figure 5 shows the error distribution of the MSAFormer model with
varying λ values and the exclusion of the MSA module. An observable pattern from the
graph is the decline in prediction error as λ increases, hitting a minimum at λ = 0.4, beyond
which the error begins to rise, indicating an overfitting scenario.

The sensitivity analysis results shed light on the integral role of both the MSA module
and the λ parameter in the MSAFormer model. Removing the MSA module leads to a
substantial increase in error distribution, signifying the detrimental impact on the model’s
performance. This indicates the importance of meteorological factors in achieving accurate
PM2.5 concentration predictions, thereby validating the relevance and efficacy of the MSA
module. As detailed in Table 6, different λ settings and the absence of the MSA module
result in varying RMSE, MAE, and R2 scores for the MSAFormer model. An optimal λ
value of 0.4 leads to the best model performance, with the lowest RMSE and MAE values
and the highest R2 score. However, the absence of the MSA module does not lead to the
worst performance, even though it leads to a considerable decrease in the accuracy of the
predictions. The least satisfactory results are seen when λ is set to 1.0. These findings, in
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line with Figure 5, underscore the crucial role of the MSA module and the appropriate
tuning of the λ parameter in maintaining the predictive accuracy of the MSAFormer model.
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Table 6. Comparative performance of the MSAFormer model for different λ values and without the
Meteorological Sparse Autoencoding module, based on RMSE, MAE, and R2 scores.

Model RMSE MAE R2

No MSA Module 15.869 11.635 0.792
λ = 0.0 11.506 8.901 0.893
λ = 0.1 12.069 9.348 0.882
λ = 0.2 12.039 9.361 0.884
λ = 0.3 11.936 9.369 0.886
λ = 0.4 11.112 8.691 0.898
λ = 0.5 13.954 10.774 0.848
λ = 0.6 13.619 10.608 0.856
λ = 0.7 19.013 14.644 0.746
λ = 0.8 18.788 14.511 0.746
λ = 0.9 19.417 15.027 0.727
λ = 1.0 19.579 15.163 0.719

The observed outcomes reinforce the architectural rationale underpinning the MSAFormer
model. The implementation of the MSA module, through a specialized sparse autoencoder,
proficiently extracts meaningful features from meteorological variables sourced from nine
distinct monitoring stations situated throughout Beijing. This advanced feature extraction
significantly augments the model’s predictive proficiency for PM2.5 concentrations in the
Haidian district. Moreover, these outcomes highlight the pivotal role played by the Sparse
Autoencoder Coefficient (λ) in fine-tuning the balance between the sparsity of the feature
representation and the generalization capability of the model. Notably, the model achieved
optimal performance when the λ value was adjusted to 0.4. This finding suggests that
a certain degree of sparsity within the autoencoder is beneficial in encapsulating critical
meteorological features whilst concurrently circumventing overfitting, thus offering a
compelling trade-off.

These findings unequivocally reaffirm the effectiveness and robustness of the MSAFormer
model, underscoring its considerable potential for application in air quality prediction
tasks, particularly in the realm of urban environmental management and public health.
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5. Conclusions

In this study, we introduced MSAFormer, a transformative approach for PM2.5 concen-
tration prediction, that offers significant improvement over conventional methodologies.
The MSAFormer model creatively combines the advantages of the Transformer architec-
ture with a Meteorological Sparse Autoencoding (MSA) module to tackle the inherent
complexity of multi-station meteorological data. The MSA module effectively encapsu-
lates the non-linear relationships in high-dimensional data by extracting salient features,
overcoming the limitations of traditional methods. The Positional Embedding module
further flattens the sparse-encoded features, enabling streamlined data processing in the
subsequent Transformer module. In the final module, a self-attention mechanism is em-
ployed to capture temporal dependencies in the input data, thereby predicting future PM2.5
concentrations with increased precision.

Our experimental evaluation reveals that MSAFormer performs remarkably well in
predicting PM2.5 concentrations in the Haidian district. In our study, we compared the
MSAFormer model with traditional methods such as SVM, RF, AdaBoost, LSTM, and
GRU. Specifically, the MSAFormer model demonstrates improvements in all the considered
metrics: it lowers the RMSE by 6.935 to 11.888, reduces the MAE by 4.938 to 8.761, and
enhances the R2 value by 0.146 to 0.266, compared to these traditional methods. Among
these, the greatest improvement in R2 is observed over RF, with an increase of 29.621%.
These quantitative advancements corroborate the efficacy of our model and the relevance
of deep learning in environmental meteorological data analysis.

However, like all research, ours is not without limitations. The MSAFormer model
relies heavily on the quality of input data. As such, data inconsistencies or inadequacies
might affect the predictive capabilities of our model. Furthermore, while our model
demonstrates superior performance in the Haidian district, the generalizability to other
geographical locations and environmental contexts remains to be explored.

For future work, we recommend several avenues. First, the model’s robustness could
be strengthened by incorporating additional sources of data and conducting multi-site
evaluation tests. Second, the MSAFormer model could be further refined and generalized
to predict other meteorological phenomena and pollutants, potentially contributing to a
broader scope of environmental science. Finally, the implementation of the MSAFormer
model in a real-world setting, such as urban air quality management systems, would
provide valuable insights into its practical performance and utility.

Author Contributions: Conceptualization, H.W. and L.Z.; methodology, H.W.; software, H.W.;
validation, H.W., L.Z. and R.W.; formal analysis, H.W.; investigation, H.W.; resources, H.W.; data
curation, H.W.; writing—original draft preparation, H.W.; writing—review and editing, H.W.; visual-
ization, H.W.; supervision, H.W.; project administration, H.W.; funding acquisition, L.Z. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China,
grant number 41830108.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Patz, J.A. Public Health Risk Assessment Linked to Climatic and Ecological Change. Hum. Ecol. Risk Assess. Int. J.

2001, 7, 1317–1327. [CrossRef]
2. Harlan, S.L.; Ruddell, D.M. Climate change and health in cities: Impacts of heat and air pollution and potential co-benefits from

mitigation and adaptation. Curr. Opin. Environ. Sustain. 2011, 3, 126–134. [CrossRef]

https://doi.org/10.1080/20018091095023
https://doi.org/10.1016/j.cosust.2011.01.001


Atmosphere 2023, 14, 1294 14 of 16

3. Singh, N.; Singh, S.; Mall, R.K. Urban ecology and human health: Implications of urban heat island, air pollution and climate
change nexus. In Urban Ecology; Verma, P., Singh, P., Singh, R., Raghubanshi, A.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2020;
Chapter 17; pp. 317–334.

4. Karimi, B.; Meyer, C.; Gilbert, D.; Bernard, N. Air pollution below WHO levels decreases by 40% the links of terrestrial microbial
networks. Environ. Chem. Lett. 2016, 14, 467–475. [CrossRef]

5. Zajchowski, C.A.B.; South, F.; Rose, J.; Crofford, E. The role of temperature and air quality in outdoor recreation behavior: A
social-ecological systems approach. Geogr. Rev. 2022, 112, 512–531. [CrossRef]

6. Wang, C.; Tu, Y.; Yu, Z.; Lu, R. PM2.5 and Cardiovascular Diseases in the Elderly: An Overview. Int. J. Environ. Res. Public Health
2015, 12, 8187–8197. [CrossRef] [PubMed]

7. Liu, S.-T.; Liao, C.-Y.; Kuo, C.-Y.; Kuo, H.-W. The Effects of PM2.5 from Asian Dust Storms on Emergency Room Visits for
Cardiovascular and Respiratory Diseases. Int. J. Environ. Res. Public Health 2017, 14, 428. [CrossRef] [PubMed]

8. Luo, G.; Zhang, L.; Hu, X.; Qiu, R. Quantifying public health benefits of PM2.5 reduction and spatial distribution analysis in
China. Sci. Total Environ. 2020, 719, 137445. [CrossRef]

9. Al-Hemoud, A.; Gasana, J.; Al-Dabbous, A.; Alajeel, A.; Al-Shatti, A.; Behbehani, W.; Malak, M. Exposure levels of air pollution
(PM2.5) and associated health risk in Kuwait. Environ. Res. 2019, 179, 108730. [CrossRef]

10. McKeen, S.; Chung, S.H.; Wilczak, J.; Grell, G.; Djalalova, I.; Peckham, S.; Gong, W.; Bouchet, V.; Moffet, R.; Tang, Y.; et al.
Evaluation of several PM2.5 forecast models using data collected during the ICARTT/NEAQS 2004 field study. J. Geophys. Res.
Atmos. 2007, 112, 7608. [CrossRef]

11. Mahajan, S.; Liu, H.M.; Tsai, T.C.; Chen, L.J. Improving the Accuracy and Efficiency of PM2.5 Forecast Service Using Cluster-Based
Hybrid Neural Network Model. IEEE Access 2018, 6, 19193–19204. [CrossRef]

12. Luo, C.H.; Yang, H.; Huang, L.P.; Mahajan, S.; Chen, L.J. A Fast PM2.5 Forecast Approach Based on Time-Series Data Analysis,
Regression and Regularization. In Proceedings of the 2018 Conference on Technologies and Applications of Artificial Intelligence
(TAAI), Taichung, Taiwan, 30 November–2 December 2018; pp. 78–81.

13. Cho, S.; Park, H.; Son, J.; Chang, L. Development of the Global to Mesoscale Air Quality Forecast and Analysis System (GMAF)
and Its Application to PM2.5 Forecast in Korea. Atmosphere 2021, 12, 411. [CrossRef]

14. Hu, J.; Chen, J.; Ying, Q.; Zhang, H. One-year simulation of ozone and particulate matter in China using WRF/CMAQ modeling
system. Atmos. Chem. Phys. 2016, 16, 10333–10350. [CrossRef]

15. Mathur, R.; Xing, J.; Gilliam, R.; Sarwar, G.; Hogrefe, C.; Pleim, J.; Pouliot, G.; Roselle, S.; Spero, T.L.; Wong, D.C.; et al. Extending
the Community Multiscale Air Quality (CMAQ) modeling system to hemispheric scales: Overview of process considerations and
initial applications. Atmos. Chem. Phys. 2017, 17, 12449–12474. [CrossRef] [PubMed]

16. Tuccella, P.; Curci, G.; Visconti, G.; Bessagnet, B.; Menut, L.; Park, R.J. Modeling of gas and aerosol with WRF/Chem over Europe:
Evaluation and sensitivity study. J. Geophys. Res. Atmos. 2012, 117, 6302. [CrossRef]

17. Sicard, P.; Crippa, P.; De Marco, A.; Castruccio, S.; Giani, P.; Cuesta, J.; Paoletti, E.; Feng, Z.; Anav, A. High spatial resolution
WRF-Chem model over Asia: Physics and chemistry evaluation. Atmos. Environ. 2021, 244, 118004. [CrossRef]

18. Wang, Q.; Zeng, Q.; Tao, J.; Sun, L.; Zhang, L.; Gu, T.; Wang, Z.; Chen, L. Estimating PM2.5 Concentrations Based on MODIS AOD
and NAQPMS Data over Beijing–Tianjin–Hebei. Sensors 2019, 19, 1207. [CrossRef] [PubMed]

19. Zeng, Q.; Zhu, H.; Gao, Y.; Xie, T.; Liu, S.; Chen, L. Estimating Full-Coverage PM2.5 Concentrations Based on Himawari-8 and
NAQPMS Data over Sichuan-Chongqing. Appl. Sci. 2022, 12, 7065. [CrossRef]

20. Mariano, P.; Almeida, S.M.; Santana, P. On the automated learning of air pollution prediction models from data collected by
mobile sensor networks. Energy Sources Part A Recovery Util. Environ. Eff. 2021, 2021, 1–17. [CrossRef]

21. Wu, Z.; Liu, N.; Li, G.; Liu, X.; Wang, Y.; Zhang, L. Learning Adaptive Probabilistic Models for Uncertainty-Aware Air Pollution
Prediction. IEEE Access 2023, 11, 24971–24985. [CrossRef]

22. Barnard, J.C.; Fast, J.D.; Paredes-Miranda, G.; Arnott, W.P.; Laskin, A. Technical Note: Evaluation of the WRF-Chem
“Aerosol Chemical to Aerosol Optical Properties” Module using data from the MILAGRO campaign. Atmos. Chem. Phys.
2010, 10, 7325–7340. [CrossRef]

23. Jiang, F.; Liu, Q.; Huang, X.; Wang, T.; Zhuang, B.; Xie, M. Regional modeling of secondary organic aerosol over China using
WRF/Chem. J. Aerosol Sci. 2012, 43, 57–73. [CrossRef]

24. Zhang, Y.; Pan, Y.; Wang, K.; Fast, J.D.; Grell, G.A. WRF/Chem-MADRID: Incorporation of an aerosol module into WRF/Chem
and its initial application to the TexAQS2000 episode. J. Geophys. Res. Atmos. 2010, 115, 3443. [CrossRef]

25. Ge, B.Z.; Wang, Z.F.; Xu, X.B.; Wu, J.B.; Yu, X.L.; Li, J. Wet deposition of acidifying substances in different regions of China and
the rest of East Asia: Modeling with updated NAQPMS. Environ. Pollut. 2014, 187, 10–21. [CrossRef] [PubMed]

26. Tie, X.; Brasseur, G.; Ying, Z. Impact of model resolution on chemical ozone formation in Mexico City: Application of the
WRF-Chem model. Atmos. Chem. Phys. 2010, 10, 8983–8995. [CrossRef]

27. Tan, J.; Liu, H.; Li, Y.; Yin, S.; Yu, C. A new ensemble spatio-temporal PM2.5 prediction method based on graph attention recursive
networks and reinforcement learning. Chaos Solitons Fractals 2022, 162, 112405. [CrossRef]

28. Masood, A.; Ahmad, K. Data-driven predictive modeling of PM2.5 concentrations using machine learning and deep learning
techniques: A case study of Delhi, India. Environ. Monit. Assess. 2022, 195, 60. [CrossRef] [PubMed]

https://doi.org/10.1007/s10311-016-0589-8
https://doi.org/10.1080/00167428.2021.1897811
https://doi.org/10.3390/ijerph120708187
https://www.ncbi.nlm.nih.gov/pubmed/26193289
https://doi.org/10.3390/ijerph14040428
https://www.ncbi.nlm.nih.gov/pubmed/28420157
https://doi.org/10.1016/j.scitotenv.2020.137445
https://doi.org/10.1016/j.envres.2019.108730
https://doi.org/10.1029/2006JD007608
https://doi.org/10.1109/ACCESS.2018.2820164
https://doi.org/10.3390/atmos12030411
https://doi.org/10.5194/acp-16-10333-2016
https://doi.org/10.5194/acp-17-12449-2017
https://www.ncbi.nlm.nih.gov/pubmed/29681922
https://doi.org/10.1029/2011JD016302
https://doi.org/10.1016/j.atmosenv.2020.118004
https://doi.org/10.3390/s19051207
https://www.ncbi.nlm.nih.gov/pubmed/30857313
https://doi.org/10.3390/app12147065
https://doi.org/10.1080/15567036.2021.1968076
https://doi.org/10.1109/ACCESS.2023.3247956
https://doi.org/10.5194/acp-10-7325-2010
https://doi.org/10.1016/j.jaerosci.2011.09.003
https://doi.org/10.1029/2009JD013443
https://doi.org/10.1016/j.envpol.2013.12.014
https://www.ncbi.nlm.nih.gov/pubmed/24418974
https://doi.org/10.5194/acp-10-8983-2010
https://doi.org/10.1016/j.chaos.2022.112405
https://doi.org/10.1007/s10661-022-10603-w
https://www.ncbi.nlm.nih.gov/pubmed/36326946


Atmosphere 2023, 14, 1294 15 of 16

29. Xu, Y.; Zhao, X.; Chen, Y. Short-term PM2.5 prediction based on a data-driven heuristic approach. In Proceedings of the 2022 3rd
International Conference on Electronic Communication and Artificial Intelligence (IWECAI), Zhuhai, China, 14–16 January 2022;
pp. 534–539.

30. Lai, X.; Li, H.; Pan, Y. A combined model based on feature selection and support vector machine for PM2.5 prediction. J. Intell.
Fuzzy Syst. 2021, 40, 10099–10113. [CrossRef]

31. Mogollón-Sotelo, C.; Casallas, A.; Vidal, S.; Celis, N.; Ferro, C.; Belalcazar, L. A support vector machine model to forecast
ground-level PM2.5 in a highly populated city with a complex terrain. Air Qual. Atmos. Health 2021, 14, 399–409. [CrossRef]

32. Babu, S.; Thomas, B. A survey on air pollutant PM2.5 prediction using random forest model. Environ. Health Eng. Manag. J.
2023, 10, 157–163. [CrossRef]

33. Wang, Y.; Du, Y.; Fang, J.; Dong, X.; Wang, Q.; Ban, J.; Sun, Q.; Ma, R.; Zhang, W.; He, M.Z.; et al. A Random Forest Model for
Daily PM2.5 Personal Exposure Assessment for a Chinese Cohort. Environ. Sci. Technol. Lett. 2022, 9, 466–472. [CrossRef]

34. Liu, H.; Jin, K.; Duan, Z. Air PM2.5 concentration multi-step forecasting using a new hybrid modeling method: Comparing cases
for four cities in China. Atmos. Pollut. Res. 2019, 10, 1588–1600. [CrossRef]

35. Kim, H.S.; Han, K.M.; Yu, J.; Kim, J.; Kim, K.; Kim, H. Development of a CNN+LSTM Hybrid Neural Network for Daily PM2.5
Prediction. Atmosphere 2022, 13, 2124. [CrossRef]

36. Dong, J.; Liu, P.; Song, H.; Yang, D.; Yang, J.; Song, G.; Miao, C.; Zhang, J.; Zhang, L. Effects of anthropogenic precursor emissions
and meteorological conditions on PM2.5 concentrations over the “2+26” cities of northern China. Environ. Pollut. 2022, 315, 120392.
[CrossRef]

37. Zhang, J.; Liu, P.; Song, H.; Miao, C.; Yang, J.; Zhang, L.; Dong, J.; Liu, Y.; Zhang, Y.; Li, B. Multi-Scale Effects of Meteorological
Conditions and Anthropogenic Emissions on PM2.5 Concentrations over Major Cities of the Yellow River Basin. Int. J. Environ.
Res. Public Health 2022, 19, 15060. [CrossRef]

38. Xing, Q.; Sun, M. Characteristics of PM2.5 and PM10 Spatio-Temporal Distribution and Influencing Meteorological Conditions in
Beijing. Atmosphere 2022, 13, 1120. [CrossRef]

39. Górka, M.; Trzyna, A.; Lewandowska, A.; Drzeniecka-Osiadacz, A.; Miazga, B.; Rybak, J.; Widory, D. The impact of seasonality
and meteorological conditions on PM2.5 carbonaceous fractions coupled with carbon isotope analysis: Advantages, weaknesses
and interpretation pitfalls. Atmos. Res. 2023, 290, 106800. [CrossRef]

40. Niu, M.; Zhang, Y.; Ren, Z. Deep Learning-Based PM2.5 Long Time-Series Prediction by Fusing Multisource Data—A Case Study
of Beijing. Atmosphere 2023, 14, 340. [CrossRef]

41. Kim, B.-Y.; Lim, Y.-K.; Cha, J.W. Short-term prediction of particulate matter (PM10 and PM2.5) in Seoul, South Korea using
tree-based machine learning algorithms. Atmos. Pollut. Res. 2022, 13, 101547. [CrossRef]

42. Zheng, Q.; Tian, X.; Yu, Z.; Jiang, N.; Elhanashi, A.; Saponara, S.; Yu, R. Application of wavelet-packet transform driven deep
learning method in PM2.5 concentration prediction: A case study of Qingdao, China. Sustain. Cities Soc. 2023, 92, 104486.
[CrossRef]

43. Yan, L.; Zhou, M.; Wu, Y.; Yan, L. Long Short Term Memory Model for Analysis and Forecast of PM2.5. In Proceedings of the
Cloud Computing and Security, Haikou, China, 8–10 June 2018; pp. 623–634.

44. Moursi, A.S.A.; El-Fishawy, N.; Djahel, S.; Shouman, M.A. Enhancing PM2.5 Prediction Using NARX-Based Combined CNN and
LSTM Hybrid Model. Sensors 2022, 22, 4418. [CrossRef]

45. Liu, X.; Li, W. MGC-LSTM: A deep learning model based on graph convolution of multiple graphs for PM2.5 prediction. Int. J.
Environ. Sci. Technol. 2022, 20, 10297–10312. [CrossRef]

46. Huang, G.; Li, X.; Zhang, B.; Ren, J. PM2.5 concentration forecasting at surface monitoring sites using GRU neural network based
on empirical mode decomposition. Sci. Total Environ. 2021, 768, 144516. [CrossRef] [PubMed]

47. Faraji, M.; Nadi, S.; Ghaffarpasand, O.; Homayoni, S.; Downey, K. An integrated 3D CNN-GRU deep learning method for
short-term prediction of PM2.5 concentration in urban environment. Sci. Total Environ. 2022, 834, 155324. [CrossRef] [PubMed]

48. Karimian, H.; Li, Y.; Chen, Y.; Wang, Z. Evaluation of different machine learning approaches and aerosol optical depth in PM2.5
prediction. Environ. Res. 2023, 216, 114465. [CrossRef] [PubMed]

49. Gokul, P.R.; Mathew, A.; Bhosale, A.; Nair, A.T. Spatio-temporal air quality analysis and PM2.5 prediction over Hyderabad City,
India using artificial intelligence techniques. Ecol. Inform. 2023, 76, 102067. [CrossRef]

50. Zhou, H.; Zhang, F.; Du, Z.; Liu, R. A theory-guided graph networks based PM2.5 forecasting method. Environ. Pollut.
2022, 293, 118569. [CrossRef] [PubMed]

51. Zhang, Q.; Yang, G.; Yuan, E. PM2.5 Spatial-Temporal Long Series Forecasting Based on Deep Learning and EMD. In Proceedings
of the Knowledge and Systems Sciences, Singapore, 11–12 June 2022; pp. 3–19.

52. Yang, H.C.; Yang, M.C.; Wong, G.W.; Chen, M.C. Extreme Event Discovery With Self-Attention for PM2.5 Anomaly Prediction.
IEEE Intell. Syst. 2023, 38, 36–45. [CrossRef]

53. Zhou, L.; Wu, T.; Pu, L.; Meadows, M.; Jiang, G.; Zhang, J.; Xie, X. Spatially heterogeneous relationships of PM2.5 concentrations
with natural and land use factors in the Niger River Watershed, West Africa. J. Clean. Prod. 2023, 394, 136406. [CrossRef]

54. Li, J.; Dai, Y.; Zhu, Y.; Tang, X.; Wang, S.; Xing, J.; Zhao, B.; Fan, S.; Long, S.; Fang, T. Improvements of response surface modeling
with self-adaptive machine learning method for PM2.5 and O3 predictions. J. Environ. Manag. 2022, 303, 114210. [CrossRef]

55. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.
Adv. Neural Inf. Process. Syst. 2017, 30. [CrossRef]

https://doi.org/10.3233/JIFS-202812
https://doi.org/10.1007/s11869-020-00945-0
https://doi.org/10.34172/EHEM.2023.18
https://doi.org/10.1021/acs.estlett.1c00970
https://doi.org/10.1016/j.apr.2019.05.007
https://doi.org/10.3390/atmos13122124
https://doi.org/10.1016/j.envpol.2022.120392
https://doi.org/10.3390/ijerph192215060
https://doi.org/10.3390/atmos13071120
https://doi.org/10.1016/j.atmosres.2023.106800
https://doi.org/10.3390/atmos14020340
https://doi.org/10.1016/j.apr.2022.101547
https://doi.org/10.1016/j.scs.2023.104486
https://doi.org/10.3390/s22124418
https://doi.org/10.1007/s13762-022-04553-6
https://doi.org/10.1016/j.scitotenv.2020.144516
https://www.ncbi.nlm.nih.gov/pubmed/33453525
https://doi.org/10.1016/j.scitotenv.2022.155324
https://www.ncbi.nlm.nih.gov/pubmed/35452742
https://doi.org/10.1016/j.envres.2022.114465
https://www.ncbi.nlm.nih.gov/pubmed/36241075
https://doi.org/10.1016/j.ecoinf.2023.102067
https://doi.org/10.1016/j.envpol.2021.118569
https://www.ncbi.nlm.nih.gov/pubmed/34848289
https://doi.org/10.1109/MIS.2023.3236561
https://doi.org/10.1016/j.jclepro.2023.136406
https://doi.org/10.1016/j.jenvman.2021.114210
https://doi.org/10.48550/arXiv.1706.03762


Atmosphere 2023, 14, 1294 16 of 16

56. Castangia, M.; Grajales, L.M.M.; Aliberti, A.; Rossi, C.; Macii, A.; Macii, E.; Patti, E. Transformer neural networks for interpretable
flood forecasting. Environ. Model. Softw. 2023, 160, 105581. [CrossRef]

57. Kumbalaparambi, T.S.; Menon, R.; Radhakrishnan, V.P.; Nair, V.P. Assessment of urban air quality from Twitter communication
using self-attention network and a multilayer classification model. Environ. Sci. Pollut. Res. 2023, 30, 10414–10425. [CrossRef]

58. Han, X.-H.; Chen, Y.-W. Residual Sparse Autoencoders for Unsupervised Feature Learning and Its Application to HEp-2
Cell Staining Pattern Recognition. In Deep Learning in Healthcare: Paradigms and Applications; Chen, Y.-W., Jain, L.C., Eds.;
Springer International Publishing: Cham, Switzerland, 2020; pp. 181–199.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.envsoft.2022.105581
https://doi.org/10.1007/s11356-022-22836-w

	Introduction 
	Materials 
	Methodology 
	Overview of the MSAFormer Model 
	Meteorological Sparse Autoencoding Module 
	Meteorological Positional Embedding Module 
	PM2.5 Prediction Transformer Module 
	Training Strategy 

	Results and Discussion 
	Data Preparation and Evaluation Metrics 
	Models Comparation and Performance Analysis 
	Sensitivity Analysis of the MSAFormer Model 

	Conclusions 
	References

