Evolution of Atmospheric Carbon Dioxide and Methane Mole Fractions in the Yangtze River Delta, China
Abstract
:1. Introduction
2. Methodology
2.1. Sampling Site
2.2. Instrumental Set-Up
2.3. Data Processing
3. Results and Discussions
3.1. Extracting the Regional Atmospheric CO2 and CH4
3.2. Diurnal Variations
3.3. Variations of Wind-Rose Distribution Pattern
3.4. Long-Range Transport and Potential Source Distributions
3.5. Variation of Long-Term Records
3.5.1. Seasonal Cycles
3.5.2. Long-Term Trends
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jain, A.K.; Briegleb, B.P.; Minschwaner, K.; Wuebbles, D.J. Radiative forcings and global warming potentials of 39 greenhouse gases. J. Geophys. Res. 2000, 105, 20773–20790. [Google Scholar] [CrossRef]
- WMO Greenhouse Gas Bulletin: The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2021. 2022. Available online: https://community.wmo.int/en/activity-areas/gaw (accessed on 21 March 2023).
- IPCC. Climate Change 2014: Synthesis Report; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; 151p. [Google Scholar]
- Artuso, F.; Chamard, P.; Piacentino, S.; Sferlazzo, D.M.; De Silvestri, L.; di Sarra, A.; Meloni, D.; Monteleone, F. Influence of transport and trends in atmospheric CO2 at Lampedusa. Atmos. Environ. 2009, 43, 3044–3051. [Google Scholar] [CrossRef]
- Sabine, C.L.; Feely, R.A.; Gruber, N.; Key, R.M.; Lee, K.; Bullister, J.L.; Wanninkhof, R.; Wong, C.S.; Wallace, D.W.; Tilbrook, B.; et al. The oceanic sink for anthropogenic CO2. Science 2004, 305, 367–371. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef]
- Ballantyne, A.P.; Alden, C.B.; Miller, J.B.; Tans, P.P.; White, J.W. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature 2012, 488, 70–72. [Google Scholar] [CrossRef]
- Peters, W.; Jacobson, A.R.; Sweeney, C.; Andrews, A.E.; Conway, T.J.; Masarie, K.; Miller, J.B.; Bruhwiler, L.M.; Petron, G.; Hirsch, A.I.; et al. An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proc. Natl. Acad. Sci. USA 2007, 104, 18925–18930. [Google Scholar] [CrossRef] [PubMed]
- Archer, D.; Buffett, B.; Brovkin, V. Ocean methane hydrates as a slow tipping point in the global carbon cycle. Proc. Natl. Acad. Sci. USA 2009, 106, 20596–20601. Available online: https://www.pnas.org/cgi/doi/10.1073/pnas.0800885105 (accessed on 30 June 2022). [CrossRef] [PubMed]
- Dlugokencky, E.J.; Nisbet, E.G.; Fisher, R.; Lowry, D. Global atmospheric methane: Budget, changes and dangers, Philos. Trans. A Math. Phys. Eng. Sci. 2011, 369, 2058–2072. [Google Scholar] [CrossRef]
- Chang, J.; Peng, S.; Ciais, P.; Saunois, M.; Dangal, S.R.S.; Herrero, M.; Havlik, P.; Tian, H.; Bousquet, P. Revisiting enteric methane emissions from domestic ruminants and their δ13CCH4 source signature. Nat. Commun. 2019, 10, 3420. [Google Scholar] [CrossRef] [PubMed]
- Fujita, R.; Morimoto, S.; Maksyutov, S.; Kim, H.S.; Arshinov, M.; Brailsford, G.; Aoki, S.; Nakazawa, T. Global and regional CH4 emissions for 1995–2013 derived from atmospheric CH4, δ13C-CH4, and δD-CH4 observations and a chemical transport model. J. Geophys. Res. 2020, 125, e2020JD032903. [Google Scholar] [CrossRef]
- Bousquet, P.; Ciais, P.; Miller, J.B.; Dlugokencky, E.J.; Hauglustaine, D.A.; Prigent, C.; Van der Werf, G.R.; Peylin, P.; Brunke, E.G.; Carouge, C.; et al. Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 2006, 443, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Dlugokencky, E.J.; Bruhwiler, L.; White, J.W.C.; Emmons, L.K.; Novelli, P.C.; Montzka, S.A.; Masarie, K.A.; Lang, P.M.; Crotwell, A.M.; Miller, J.B.; et al. Observational constraints on recent increases in the atmospheric CH4 burden. Geophys. Res. Lett. 2009, 36, L18803. [Google Scholar] [CrossRef]
- Kirschke, S.; Bousquet, P.; Ciais, P.; Saunois, M.; Canadell, J.G.; Dlugokencky, E.J.; Bergamaschi, P.; Bergmann, D.; Blake, D.R.; Bruhwiler, L.; et al. Three decades of global methane sources and sinks. Nat. Geogr. 2013, 6, 813–823. [Google Scholar] [CrossRef]
- Bousquet, P.; Ringeval, B.; Pison, I.; Dlugokencky, E.J.; Brunke, E.G.; Carouge, C.; Chevallier, F.; Fortems-Cheiney, A.; Frankenberg, C.; Hauglustaine, D.A.; et al. Source attribution of the changes in atmospheric methane for 2006–2008. Atmos. Chem. Phys. 2011, 11, 3689–3700. [Google Scholar] [CrossRef]
- Zhang, F.; Fukuyama, Y.; Wang, Y.; Fang, S.; Li, P.; Fan, T.; Zhou, L.; Liu, X.; Meinhardt, F.; Emiliani, P. Detection and attribution of regional CO2 concentration anomalies using surface observations. Atmos. Environ. 2015, 123, 88–101. [Google Scholar] [CrossRef]
- Patra, P.K.; Saeki, T.; Dlugokencky, E.J.; Ishijima, K.; Umezawa, T.; Ito, A.; Aoki, S.; Morimoto, S.; Kort, E.A.; Crotwell, A.; et al. Regional Methane Emission Estimation Based on Observed Atmospheric Concentrations (2002–2012). J. Meteorol. Soc. Jpn. Ser. II 2016, 94, 91–113. [Google Scholar] [CrossRef]
- Liu, S.; Fang, S.; Liu, P.; Liang, M.; Guo, M.; Feng, Z. Measurement report: Changing characteristics of atmospheric CH4 in the Tibetan Plateau: Records from 1994 to 2019 at the Mount Waliguan station. Atmos. Chem. Phys. 2021, 21, 393–413. [Google Scholar] [CrossRef]
- Fang, S.; Tans, P.; Dong, F.; Zhou, H.; Luan, T. Characteristics of atmospheric CO2 and CH4 at the Shangdianzi regional background station in China. Atmos. Environ. 2016, 131, 1–8. [Google Scholar] [CrossRef]
- Fang, S.; Tans, P.; Yao, B.; Luan, T.; Wu, Y.; Yu, D. Study of atmospheric CO2 and CH4 at Longfengshan WMO/GAW regional station: The variations, trends, influence of local sources/sinks, and transport. Sci. China Earth Sci. 2017, 60, 1886–1895. [Google Scholar] [CrossRef]
- Gregg, J.S.; Andres, R.J.; Marland, G. China Emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production. Geophys. Res. Lett. 2008, 35, L08806. [Google Scholar] [CrossRef]
- Chan, C.; Yao, X. Air pollution in mega cities in China. Atmos. Environ. 2008, 42, 1–42. [Google Scholar] [CrossRef]
- Du, M.; Peng, C.; Wang, X.; Chen, H.; Wang, M.; Zhu, Q. Quantification of methane emissions from municipal solid waste landfills in China during the past decade. Renew. Sustain. Energy Rev. 2017, 78, 272–279. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, Q.; Lin, W.; Xu, X.; Yao, J.; Gao, W. Measurement report: Long-term variations in carbon monoxide at a background station in China’s Yangtze River Delta region. Atmos. Chem. Phys. 2020, 20, 15969–15982. [Google Scholar] [CrossRef]
- Shan, Y.; Huang, Q.; Guan, D.; Hubacek, K. China CO2 emission accounts 2016–2017. Sci. Data 2020, 7, 54. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.; Tans, P.; Steinbacher, M.; Zhou, L.; Luan, T. Comparison of the regional CO2 mole fraction filtering approaches at a WMO/GAW regional station in China. Atmos. Meas. Tech. 2015, 8, 5301–5313. [Google Scholar] [CrossRef]
- Crosson, E.R. A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor. Appl. Phys. B 2008, 92, 403–408. [Google Scholar] [CrossRef]
- Welp, L.R.; Keeling, R.F.; Weiss, R.F.; Paplawsky, W.; Heckman, S. Design and performance of a Nafion dryer for continuous operation at CO2 and CH4 air monitoring sites. Atmos. Meas. Tech. 2013, 6, 1217–1226. [Google Scholar] [CrossRef]
- Fang, S.; Zhou, L.; Masarie, K.; Xu, L.; Rella, C.W. Study of atmospheric CH4 mole fractions at three WMO/GAW stations in China. J. Geophys. Res. 2013, 118, 4874–4886. [Google Scholar] [CrossRef]
- Liu, S.; Fang, S.; Liang, M.; Sun, W.; Feng, Z. Temporal patterns and source regions of atmospheric carbon monoxide at two background stations in China. Atmos. Res. 2019, 220, 169–180. [Google Scholar] [CrossRef]
- Ashbaugh, L.L.; Malm, W.C.; Sadeh, W.Z. A residence time probability analysis of sulfur concentrations at grand-canyon-national-park. Atmos. Environ. 1985, 19, 1263–1270. [Google Scholar] [CrossRef]
- Polissar, A.V.; Hopke, P.K.; Paatero, P.; Kaufmann, Y.J.; Hall, D.K.; Bodhaine, B.A.; Dutton, E.G.; Harris, J.M. The aerosol at Barrow, Alaska: Long-term trends and source locations. Atmos. Environ. 1999, 33, 2441–2458. [Google Scholar] [CrossRef]
- Thoning, K.W.; Tans, P.P.; Komhyr, W.D. Atmospheric carbon dioxide at Mauna Loa observatory: 2. Analysis of the NOAA GMCC data, 1974–1985. J. Geophys. Res. 1989, 94, 8549–8565. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, S.; Yang, K.; Zhu, Y.; Ma, Y. Spatio-Temporal Variations of CO2 Emission from Energy Consumption in the Yangtze River Delta Region of China and Its Relationship with Nighttime Land Surface Temperature. Sustainability 2020, 12, 8388. [Google Scholar] [CrossRef]
- Cheng, Y.; An, X.; Yun, F.; Zhou, L.; Liu, L.; Fang, S.; Xu, L. Simulation of CO2 variations at Chinese background atmospheric monitoring stations between 2000 and 2009: Applying a CarbonTracker model. Chin. Sci. Bull. 2013, 58, 3986–3993. [Google Scholar] [CrossRef]
- Liu, L.; Tans, P.; Xia, L.; Zhou, L.; Zhang, F. Analysis of patterns in the concentrations of atmospheric greenhouse gases measured in two typical urban clusters in China. Atmos. Environ. 2018, 173, 343–354. [Google Scholar] [CrossRef]
- Rigby, M.; Montzka, S.A.; Prinn, R.G.; White, J.W.C.; Young, D.; O’Doherty, S.; Lunt, M.F.; Ganesan, A.L.; Manning, A.J.; Simmonds, P.G.; et al. Role of atmospheric oxidation in recent methane growth. Proc. Natl. Acad. Sci. USA 2017, 114, 5373–5377. [Google Scholar] [CrossRef] [PubMed]
- Niu, Z.; Zhou, W.; Feng, X.; Hou, Y.; Chen, N.; Du, H.; Wu, S.; Fu, Y.; Lu, X.; Cheng, P.; et al. Determining diurnal fossil fuel CO2 and biological CO2 by Δ14CO2 observation on certain summer and winter days at Chinese background sites. Sci. Total Environ. 2020, 718, 136864. [Google Scholar] [CrossRef]
- Hao, Y.; Song, X. Research on trends and spatial distribution of vehicular emissions and its control measure assessment in the Yangtze River Delta, China, for 1999-2015. Environ. Sci. Pollut. Res. Int. 2018, 25, 36503–36517. [Google Scholar] [CrossRef]
- Wania, R.; Melton, J.; Hodson, E.; Poulter, B.; Ringeval, B.; Spahni, R.; Bohn, T.; Avis, A.; Chen, G.; Eliseev, A.V.; et al. Present state of global wetland extent and wetland methane modelling: Methodology of a model inter-comparison project (WETCHIMP). Geosci. Model Dev. 2013, 6, 617–641. [Google Scholar] [CrossRef]
- Huang, W.; Griffis, T.J.; Hu, C.; Xiao, W.; Lee, X.H. Seasonal Variations of CH4 Emissions in the Yangtze River Delta Region of China Are Driven by Agricultural Activities. Adv. Atmos. Sci. 2021, 38, 1537–1551. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, G.; Ma, X.; Cao, X.; Mao, X.; Li, J.; Ye, W.; Liu, S. Dissolved methane in the East China Sea: Distribution, seasonal variation and emission. Mar. Chem. 2018, 202, 12–26. [Google Scholar] [CrossRef]
- Center for Yangtze River Delta and Economic Belt Research: Yangtze River Delta Agricultural Development Overview and Regional Comparison. Available online: https://cyrdebr.sass.org.cn/2020/1120/c5524a99196/page.htm (accessed on 25 November 2021).
- Pu, J.; Xu, H.; Gu, J.; Ma, Q.; Fang, S.; Zhou, L. Impacts of meteorological factors on atmospheric methane mole fractions in the background area of Yangtze River Delta. China Environ. Sci. 2013, 34, 835–841. [Google Scholar] [CrossRef]
- Kuc, T.; Rozanski, K.; Zimnoch, M.; Necki, J.M.; Korus, A. Anthropogenic emissions of CO2 and CH4 in an urban environment. Appl. Energy 2003, 75, 193–203. [Google Scholar] [CrossRef]
- Wei, C.; Wang, M.; Fu, Q.; Dai, C.; Huang, R.; Bao, Q. Temporal characteristics of greenhouse gases (CO2 and CH4) in the megacity Shanghai, China: Association with air pollutants and meteorological conditions. Atmos. Res. 2020, 235, 104759. [Google Scholar] [CrossRef]
- Wu, J.; Kong, S.; Wu, F.; Cheng, Y.; Zheng, S.; Yan, Q.; Zheng, H.; Yang, G.; Zheng, M.; Liu, D.; et al. Estimating the open biomass burning emissions in central and eastern China from 2003 to 2015 based on satellite observation. Atmos. Chem. Phys. 2018, 18, 11623–11646. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, Y. Quantification and evaluation of atmospheric pollutant emissions from open biomass burning with multiple methods: A case study for the Yangtze River Delta region, China. Atmos. Chem. Phys. 2019, 19, 327–348. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China: China Statistic Yearbook. Available online: http://www.stats.gov.cn/sj/ndsj/2021/indexch.htm (accessed on 25 June 2022).
- Pu, J.; Xu, H.; He, J.; Fang, S.; Zhou, L. Estimation of regional background concentration of CO2 at Lin’an Station in Yangtze River Delta, China. Atmos. Environ. 2014, 94, 402–408. [Google Scholar] [CrossRef]
- Zhu, X.; Zou, J.; Feng, C. Analysis of industrial energy-related CO2 emissions and the reduction potential of cities in the Yangtze River Delta region. J. Clean. Prod. 2017, 168, 791–802. [Google Scholar] [CrossRef]
- Peng, X.; Lin, X.; Fang, J.; Wang, T.; Jiang, X. Analysis on Coastline and Coastal Wetland Changes in the Hangzhou Bay in Recent 30 Years. J. Ocean Tech. 2020, 39, 4. [Google Scholar] [CrossRef]
- Xiong, J.; Sheng, X.; Wang, M.; Wu, M.; Shao, X. Comparative study of methane emission in the reclamation-restored wetlands and natural marshes in the Hangzhou Bay coastal wetland. Ecol. Eng. 2022, 175, 106473. [Google Scholar] [CrossRef]
- Xia, L.; Zhang, G.; Zhan, M.; Li, B.; Kong, P. Seasonal variations of atmospheric CH4 at Jingdezhen station in Central China: Understanding the regional transport and its correlation with CO2 and CO. Atmos. Res. 2020, 241, 104982. [Google Scholar] [CrossRef]
- Hu, C.; Liu, S.; Wang, Y.; Zhang, M.; Xiao, W.; Wang, W.; Xu, J. Anthropogenic CO2 emissions from a megacity in the Yangtze River Delta of China. Environ. Sci. Pollut. Res. Int. 2018, 25, 23157–23169. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Huang, X.; Kwan, M.P.; Yang, H.; Chuai, X. The effect of urbanization on carbon dioxide emissions efficiency in the Yangtze River Delta, China. J. Clean. Prod. 2018, 188, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Wang, T.; Talbot, R.; Xie, M.; Mao, H.; Li, S.; Zhuang, B.; Yang, X.; Fu, C.; Zhu, J.; et al. Temporal characteristics of atmospheric CO2 in urban Nanjing, China. Atmos. Res. 2015, 153, 437–450. [Google Scholar] [CrossRef]
- WMO World Data Centre for Greenhouse Gases (WDCGG) Data Summary: Greenhouse Gases and Other Atmospheric Gases, No. 44. Japan Meteorological Agency. Available online: https://gaw.kishou.go.jp/static/publications/summary/sum44/sum44.pdf (accessed on 23 June 2022).
- Zhang, D.; Tang, J.; Shi, G.; Nakazawa, T.; Aoki, S.; Sugawara, S.; Wen, M.; Morimoto, S.; Patra, P.; Hayasaka, T.; et al. Temporal and spatial variations of the atmospheric CO2 concentration in China. Geophys. Res. Lett. 2008, 35, L03801. [Google Scholar] [CrossRef]
- Zhang, Y.; Jin, J.; Yan, P.; Tang, J.; Fang, S.; Lin, W.; Lou, M.; Liang, M.; Zhou, Q.; Jing, J.; et al. Long-term variations of major atmospheric compositions observed at the background stations in three key areas of China. Adv. Clim. Chang. Res. 2020, 11, 370–380. [Google Scholar] [CrossRef]
- Cheng, S.; Zhou, L.; Tans, P.; An, X.; Liu, Y. Comparison of atmospheric CO2 mole fractions and source–sink characteristics at four WMO/GAW stations in China. Atmos. Environ. 2018, 180, 216–225. [Google Scholar] [CrossRef]
- Fang, S.; Zhou, L.; Tans, P.; Ciais, P.; Steinbacher, M.; Xu, L.; Luan, T. In situ measurement of atmospheric CO2 at the four WMO/GAW stations in China. Atmos. Chem. Phys. 2014, 14, 2541–2554. [Google Scholar] [CrossRef]
- Carbon Emission Accounts and Datasets (CEADs): Emission Inventories for 30 Provinces 2019. Available online: https://www.ceads.net/data/province/ (accessed on 25 November 2021).
- Xia, L.; Zhou, L.; Tans, P.; Liu, L.; Zhang, G.; Wang, H.; Luan, T. Atmospheric CO2 and its δ13C measurements from flask sampling at Lin’an regional background station in China. Atmos. Environ. 2015, 117, 220–226. [Google Scholar] [CrossRef]
- Tiemoko, T.D.; Ramonet, M.; Yoroba, F.; Kouassi, K.B.; Kouadio, K.; Kazan, V.; Kaiser, C.; Truong, F.; Vuillemin, C.; Delmotte, M.; et al. Analysis of the temporal variability of CO2, CH4 and CO concentrations at Lamto, West Africa. Tellus B Chem. Phys. Meteorol. 2020, 73, 1–24. [Google Scholar] [CrossRef]
- Nguyen, L.N.T.; Meijer, H.A.J.; van Leeuwen, C.; Kers, B.A.M.; Scheeren, H.A.; Jones, A.E.; Brough, N.; Barningham, T.; Pickers, P.A.; Manning, A.C.; et al. Two decades of flask observations of atmospheric δ(O2/N2), CO2, and APO at stations Lutjewad (the Netherlands) and Mace Head (Ireland), and 3 years from Halley station (Antarctica). Earth Syst. Sci. Data 2022, 14, 991–1014. [Google Scholar] [CrossRef]
- Guo, M.; Fang, S.; Liu, S.; Liang, M.; Wu, H.; Yang, L.; Li, Z.; Liu, P.; Zhang, F. Comparison of atmospheric CO2, CH4, and CO at two stations in the Tibetan Plateau of China. Earth Space Sci. 2020, 7, e2019EA001051. [Google Scholar] [CrossRef]
- Shi, X.; Brasseur, G.P. The Response in Air Quality to the Reduction of Chinese Economic Activities during the COVID-19 Outbreak. Geophys. Res. Lett. 2020, 47, e2020GL088070. [Google Scholar] [CrossRef] [PubMed]
- Zambrano-Monserrate, M.A.; Ruano, M.A.; Sanchez-Alcalde, L. Indirect effects of COVID-19 on the environment. Sci. Total Environ. 2020, 728, 138813. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Li, X.; Xiao, W.; Ciren, W.; Wen, X.; Liu, S.; Du, X.; Cao, C. 13C-based sources partitioning of atmospheric CO2 during Youth Olympic Games, Nanjing. China Environ. Sci. 2016, 37, 4514–4523. [Google Scholar] [CrossRef]
- Hu, C.; Liu, C.; Hu, N.; Hong, J.; Ai, X. Government environmental control measures on CO2 emission during the 2014 Youth Olympic Games in Nanjing: Perspectives from a top-down approach. J. Environ. Sci. 2022, 113, 165–178. [Google Scholar] [CrossRef] [PubMed]
- Pu, J.; Xu, H.; Jiang, Y.; Du, R.; Qi, B. Characteristics of an factors affecting atmospheric CO2 concentration in Hangzhou. China Environ. Sci. 2018, 39, 3082–3089. [Google Scholar] [CrossRef]
- Tohjima, Y.; Patra, P.K.; Niwa, Y.; Mukai, H.; Sasakawa, M.; Machida, T. Detection of fossil-fuel CO2 plummet in China due to COVID-19 by observation at Hateruma. Sci. Rep. 2020, 10, 18688. [Google Scholar] [CrossRef]
- Liu, C.; Huang, Z.; Huang, J.; Liang, C.; Ding, L.; Lian, X.; Liu, X.; Zhang, L.; Wang, D. Comparison of PM2.5 and CO2 Concentrations in Large Cities of China during the COVID-19 Lockdown. Adv. Atmos. Sci. 2022, 39, 861–875. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, Z.; Lin, B.; Liu, H.; Wang, R.; Zhou, B.; Hao, J.M. Energy consumption and CO2 emission impacts of vehicle electrification in three developed regions of China. Energy Policy. 2012, 48, 537–550. [Google Scholar] [CrossRef]
- Xu, X.; Tan, Y.; Chen, S.; Yang, G.; Su, W.Z. Urban household carbon emission and contributing factors in the Yangtze River Delta, China. PLoS ONE 2015, 10, e0121604. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Yang, G.; Tan, Y.; Zhuang, Q.; Tang, X.; Zhao, K.; Wang, S. Factors influencing industrial carbon emissions and strategies for carbon mitigation in the Yangtze River Delta of China. J. Clean. Prod. 2017, 142, 3607–3616. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, X.; Cai, J.; Baležentis, T.; Li, Y. The Impact of “Coal to Gas” Policy on Air Quality: Evidence from Beijing, China. Energies 2020, 13, 3876. [Google Scholar] [CrossRef]
- Da, P.; Tao, L.; Sun, K.; Golston, L.M.; Miller, D.J.; Zhu, T.; Qin, Y.; Zhang, Y.; Mauzerall, D.L.; Zondlo, M.A. Methane emissions from natural gas vehicles in China. Nat. Commun. 2020, 11, 4588. [Google Scholar] [CrossRef]
- Rigby, M.; Prinn, R.G.; Fraser, P.J.; Simmonds, P.G.; Langenfelds, R.L.; Huang, J.; Cunnold, D.M.; Steele, L.P.; Krummel, P.B.; Weiss, R.F.; et al. Renewed growth of atmospheric methane. Geophys. Res. Lett. 2008, 35, L22805. [Google Scholar] [CrossRef]
- Turner, A.J.; Frankenberg, C.; Wennberg, P.O.; Jacob, D.J. Ambiguity in the causes for decadal trends in atmospheric methane and hydroxyl. Proc. Natl. Acad. Sci. USA 2017, 114, 5367–5372. [Google Scholar] [CrossRef]
Season | Cluster | Number of Trajectories | Average CO2 Mole Fraction (ppm) | Average CH4 Mole Fraction (ppb) |
---|---|---|---|---|
Spring | 1 | 3427 | 418.19 ± 1.34 | 1989.3 ± 6.0 |
2 | 2304 | 420.24 ± 1.73 | 1990.3 ± 6.1 | |
3 | 2187 | 421.80 ± 1.60 | 1992.4 ± 8.8 | |
Summer | 1 | 1668 | 411.10 ± 1.50 | 2022.1 ± 22.8 |
2 | 4058 | 405.20 ± 1.04 | 1934.9 ± 5.8 | |
3 | 2122 | 408.70 ± 1.44 | 1928.4 ± 17.0 | |
Autumn | 1 | 2637 | 414.67 ± 1.02 | 2007.4 ± 7.7 |
2 | 1801 | 417.66 ± 1.66 | 2039.5 ± 12.7 | |
3 | 3482 | 414.39 ± 1.09 | 2000.5 ± 6.8 | |
Winter | 1 | 3701 | 424.10 ± 1.23 | 2033.2 ± 6.5 |
2 | 2134 | 426.17 ± 2.02 | 2051.4 ± 11.2 | |
3 | 2077 | 425.48 ± 2.28 | 2025.8 ± 10.7 |
Site | Years | CO2 Growth Rate (ppm yr−1) | CH4 Growth Rate (ppb yr−1) | Ref. |
---|---|---|---|---|
LAN, China | 2010–2013 | 3.00 ± 0.38 | 16.1 ± 3.3 | This study |
2010–2016 | 2.52 ± 0.21 | 13.8 ± 2.0 | ||
2010–2020 | 2.57 ± 0.14 | 10.3 ± 1.3 | ||
LFS, China | 2009–2013 | 3.10 ± 0.02 | 8.0 ± 0.04 | Fang et al. [21] |
SDZ, China | 2009–2013 | 3.80 ± 0.01 | 10.0 ± 0.1 | Fang et al. [20] |
WLG, China | 2010–2016 | 2.45 ± 0.02 | 8.2 ± 0.1 | Guo et al. [68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, K.; Ma, Q.; Zang, K.; Lin, Y.; Chen, Y.; Liu, S.; Qing, X.; Qiu, S.; Xiong, H.; Hong, H.; et al. Evolution of Atmospheric Carbon Dioxide and Methane Mole Fractions in the Yangtze River Delta, China. Atmosphere 2023, 14, 1295. https://doi.org/10.3390/atmos14081295
Jiang K, Ma Q, Zang K, Lin Y, Chen Y, Liu S, Qing X, Qiu S, Xiong H, Hong H, et al. Evolution of Atmospheric Carbon Dioxide and Methane Mole Fractions in the Yangtze River Delta, China. Atmosphere. 2023; 14(8):1295. https://doi.org/10.3390/atmos14081295
Chicago/Turabian StyleJiang, Kai, Qianli Ma, Kunpeng Zang, Yi Lin, Yuanyuan Chen, Shuo Liu, Xuemei Qing, Shanshan Qiu, Haoyu Xiong, Haixiang Hong, and et al. 2023. "Evolution of Atmospheric Carbon Dioxide and Methane Mole Fractions in the Yangtze River Delta, China" Atmosphere 14, no. 8: 1295. https://doi.org/10.3390/atmos14081295
APA StyleJiang, K., Ma, Q., Zang, K., Lin, Y., Chen, Y., Liu, S., Qing, X., Qiu, S., Xiong, H., Hong, H., Li, J., & Fang, S. (2023). Evolution of Atmospheric Carbon Dioxide and Methane Mole Fractions in the Yangtze River Delta, China. Atmosphere, 14(8), 1295. https://doi.org/10.3390/atmos14081295