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Abstract: As the most economically developed region in China, the Yangtze River Delta (YRD) region
contributed to ~17% of the total anthropogenic CO2 emissions from China. However, the studies of
atmospheric CO2 and CH4 in this area are relatively sparse and unsystematic. Here, we analyze the
changing characters of those gases in different development periods of China, based on the 11-year
atmospheric CO2 and CH4 records (from 2010 to 2020) at one of the four Chinese sites participating in
the World Meteorological Organization/Global Atmospheric Watch (WMO/GAW) program (Lin’an
regional background station), located in the center of YRD region, China. The annual average
atmospheric CO2 and CH4 mole fractions at LAN have been increasing continuously, with growth
rates of 2.57 ± 0.14 ppm yr−1 and 10.3 ± 1.3 ppb yr−1, respectively. Due to the complex influence
of regional sources and sinks, the characteristics of atmospheric CO2 and CH4 varied in different
periods: (i) The diurnal and seasonal variations of both CO2 and CH4 in different periods were
overall similar, but the amplitudes were different. (ii) The elevated mole fractions in all wind sectors
tended to be uniform. (iii) The potential source regions of both gases expanded over time. (iv) The
growth rate in recent years (2016–2020) changed significantly less than that in the earlier period
(2010–2015). Our results indicated that the CO2 and CH4 mole fractions were mainly correlated to
the regional economic development, despite the influence of special events such as the G20 Summit
and COVID-19 lockdown.
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1. Introduction

Carbon dioxide (CO2) and methane (CH4) are the main greenhouse gases (GHGs) that
contribute approximately 66% and 16%, respectively, of the total radiation forcing among
all the long-lived greenhouse gases [1,2]. Due to the influence of human activities since the
industrial revolution era, increasing atmospheric greenhouse gases have caused serious
climate change, which has exerted a huge impact on the economy, society, ecology, and
other aspects [3]. Since the pre-industrial era, atmospheric CO2 has increased rapidly, rising
by about 2~3 ppm per year from 2010 to 2020 [2]. Similarly, the global average CH4 mole
fraction reached a new height of 1889 ± 2 ppb in 2020, with a higher annual growth rate
(12.0 ppb yr−1) than the average over the past decade (8.0 ppb yr−1), and it has become the
fastest growing greenhouse gas [2].

Atmospheric CO2 is mainly emitted from anthropogenic sources (e.g., respiration,
fossil fuel, and biomass burning) [4]. Marine and terrestrial ecosystems are the major sinks
of atmospheric CO2, absorbing about half of the anthropogenic emissions, and the net
absorption has been increasing over the past 50 years [5–7]. Combined with the influence
of various transport processes, the source and sink distribution of global atmospheric CO2
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is patchy and has obvious spatial and temporal variations [8]. As for CH4, natural sources
including ruminants and wetlands account for 40%, while anthropogenic sources including
paddies, cattle ranch, fossil fuel, and biomass burning account for 60% [9–12]. Wetland
emissions dominate the interannual variation of methane sources, while fire emissions play
a minor role, except during El Niño [13–15]. The destruction of CH4 by hydroxyl radicals
in the troposphere is the main sink, accounting for 90% of the total loss [16].

Because of the massive increase in fossil fuel consumption in recent decades, China
has become the world’s largest emitter of greenhouse gases [17,18]. However, China started
relatively late in greenhouse gas background observation, and in situ atmospheric CO2 and
CH4 observations were not conducted until 1994 at Mount. Waliguan (WLG) Station in
Qinghai Province. Liu et al. [19] found that atmospheric CH4 at the WLG station increased
at an average annual growth rate of 5.1 ± 0.1 ppb yr−1 from 1994 to 2019, but it was close
to zero or negative in some specific periods. Fang et al. [20] analyzed the trends of CO2 and
CH4 at Shangdianzi (SDZ) regional station in China from 2009 to 2013. Because of the strong
anthropogenic emissions from Beijing-Tianjin-Hebei (BTH), the mole fractions and annual
growth rates for CO2 and CH4 at SDZ were distinctly higher. At Longfengshan (LFS) regional
station, the CO2 and CH4 mole fractions displayed increasing trends in 2009–2013, with a
growth rate of 3.1 ± 0.02 ppm yr−1 for CO2 and 8 ± 0.04 ppb yr−1 for CH4 [21].

The Yangtze River Delta (YRD), which includes Jiangsu Province, Zhejiang Province,
Anhui Province, and Shanghai, is one of China’s most developed regions and one of
the world’s largest greenhouse gas emitters [22–25]. The reported CO2 emissions in this
region accounted for about 17% of the total anthropogenic emissions in China in 2017 [26].
To understand the characteristics and the abundance of greenhouse gases in this region,
the Chinese Meteorological Administration (CMA) established the Lin’an (LAN) station
in the center of the Yangtze River Delta in 1983. The station is marked as a regional
weather station by the World Meteorological Organization/Global Atmospheric Watch
(WMO/GAW). There was no in situ CO2 and CH4 measuring system at LAN prior to the
installation of a cavity ring-down spectrometer (G1301, Picarro Inc., Santa Clara, CA, USA)
in January 2009. The long-term observation of atmospheric background CO2 and CH4
provides a scientific understanding of the CO2 and CH4 source/sink characteristics in YRD.

This study presents almost 11-year (from 2010 to 2020) ground-based observations of
CO2 and CH4 at the LAN background station in the YRD region. We analyze the evolution
characteristics and temporal-spatial distributions of the background CO2 and CH4 at the
site, which can be used to study the evolution of atmospheric greenhouse gases in eastern
China. In September 2020, China announced a new goal of “striving to achieve a carbon
peak by 2030 and achieve carbon neutrality by 2060” to tackle climate change. This study
provides a scientific basis for evaluating the effectiveness of greenhouse gas management
and emission control policies.

2. Methodology
2.1. Sampling Site

Lin’an (LAN) station (30◦18′ N, 119◦44′ E, 138.6 m a.s.l.), is one of the seven regional
atmospheric background stations operated by the CMA and also a member station of the
WMO/GAW program. The LAN station is located about 50 km west of Hangzhou (the
capital city of Zhejiang Province in China) and 150 km southwest of Shanghai (Figure 1).
North of the LAN station (1.4 km away) is a small factory that produces charcoal from
bamboo wood. The southwest and southeast of LAN are Lin’an Town and Qingshan
Lake, respectively. The observatory is on the top of a small hill with dense vegetation
coverage, surrounded by hilly lands and farming areas. The station is located in the humid
subtropical monsoon climate zone, with an average annual precipitation of 1480 mm and
an average temperature of 15.3 ◦C [27]. The wind directions of the LAN station were mainly
northeast and southwest accounting for 29.2% and 22.6%, respectively, and the frequency
of calm wind was 4% [25].
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Figure 1. Location of the LAN regional station. The red dots represent the LAN station and three
other background station (WLG, SDZ and LFS) in China. The blue dots represent the cities or towns
near the station. The China map was derived from the © National Geomatics Center of China
(http://www.ngcc.cn/ngcc/, accessed on 20 November 2022). The satellite maps were derived from
the © Google Maps (http://www.google.com/maps, last access: 10 January 2022).

2.2. Instrumental Set-Up

The CO2 and CH4 mole fractions are continuously observed by a CRDS analyzer set
up on 1 January 2009, which has been proven to be extremely suitable for accurate measure-
ment, as the analyzer’s responses to CO2 and CH4 are highly linear and stable [28,29]. The
instrument was initially G1301 (Picarro Inc., USA) and was upgraded to G2401 (Picarro
Inc., USA) in 2014. The air first passed through the filter screen by a vacuum pump (N022,
KNF Neuberger, Freiburg-Munzingen, Germany) into a dedicated 10 mm o.d. sampling
line. Then the air sample passed through a pressure releaser set at 1 atm gauge pressure
to release excess air pressure. The ambient air was dried to a dew point of about −60 ◦C
through a glass cold trap soaked in an ethanol bath of −70 ◦C. The VICI 8-port sample
selection valve was used to select ambient air or standard gas (T, WH, WL) for the sub-
sequent process. The detailed process of the observation system was described by Fang
et al. [30]. Throughout the system, the residence time of the air sample from the top of the
inlet to the CRDs analyzer was less than 30 s.

Two standards were used to calculate the CO2 and CH4 mole fractions. Linear two-
point fitting (WH and WL) was used to calibrate environmental measurements from the
latest Standard Gas Measurements. The CO2 and CH4 measurements were correlated
with the WMO CO2 X2019 and WMO CH4 X2004A scales, respectively. In addition, the
precision and stability of the system were checked periodically with the target gas (T). The
system analyzed the two standards and the target gas every 12 h. After calculating the mole

http://www.ngcc.cn/ngcc/
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fractions, the data were manually examined to flag any analysis or sampling problems,
which were then averaged into hourly segments for further processing and analysis. In this
study, CO2 and CH4 were given as atmospheric mole fractions in dry air.

2.3. Data Processing

The observations of atmospheric CO2 and CH4 were inevitably affected by complex
conditions such as local sources, transportation, and terrain change. Therefore, the records
were not fully representative of well-mixed regional atmospheric CO2 and CH4 [31]. To
obtain regionally representative data, we filtered the CO2 and CH4 data affected by local
sources near the site, such as towns, factories, and farmlands. The hourly CO2 and CH4
data were divided into local and regional representativeness according to essential me-
teorological information [27]. In this study, the CO2 records from these wind directions
(including NE-ENE, SSW-SW, NW in spring, SSW, W-WNW-NW-NNW in summer, SE-
SSE-S-SSW-SW-WSW in autumn, and NE-ENE-E-ESE-SE, WNW in winter), were flagged
as locally influenced. Similarly, the CH4 records from these wind directions (including
NNE-NE-ENE-E-ESE in spring, N-NNE-NE-ENE-E in summer, NE-ENE-E, SE, W-WNW in
autumn, and ENE-E-ESE-SE, WNW in winter), were flagged as locally influenced (31.79%
for CO2 and 34.72% for CH4). Whereafter, we chose the period of a day when the at-
mospheric boundary layer was high and the vertical mixing was fast and uniform, e.g.,
10:00–16:00 local time (LT) for both CO2 and CH4 data. The rest were flagged as locally
influenced (47.80% for CO2 and 47.04% for CH4). Finally, we filtered the CO2 and CH4 data
for surface wind speeds less than 1.5 m s−1 to local effects to minimize local accumulation
(4.10% for CO2 and 3.90% for CH4).

In order to study the pollution transport path of air masses at LAN, the Hybrid
Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) diffusion model was used,
based on the strength of gridded meteorological data (GDAS 1◦ data, 2010–2020) from
the National Oceanographic and Atmospheric Administration’s Air Resources Laboratory
(NOAA ARL). We computed the 72 h back trajectories with 500 m a.g.l. for the hourly CO2
and CH4 mole fractions. We calculated the trajectories for January, April, July, and October,
representing winter, spring, summer, and autumn, respectively. Based on the potential
source contribution function (PSCF) method, the conditional probability that the residence
times of air parcels with concentrations greater than the threshold would transport to the
exact acceptor location was calculated. Then, the annual spatial source distributions of CO2
and CH4 were analyzed [32]. In this study, the PSCF value was calculated in 0.5 × 0.5◦ grid
cell (i, j) as follows:

PSCFi j = mi j/ni j (1)

ni j represents the number of endpoints that terminate in the i j th grid cell, and mi j
represents the number of trajectories where the concentration exceeded the threshold
value [33]. In order to reduce the abnormal effect of small ni j values in some grid cells,
PSCFi j was further calculated by an arbitrary weighting function Wi j as follows:

Wi j =


1.00 3nave < ni j
0.70 1.5nave < ni j ≤ 3nave
0.42 nave < ni j ≤ 1.5nave
0.05 ni j ≤ nave

 (2)

Wi j represents the weight of cell (i, j), ni j represents the number of trajectory endpoints
falling in the i j th grid cell, and the nave represents the average of the endpoints in all
grid cells.
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To fill in the data gaps, we used the curve-fitting method of Thoning et al. [34] to
assess the long-term trends of CO2 and CH4. We also calculated the trend curve without
seasonal variation and then used the average of the first derivative of the trend curve to
find the annual growth rate. The function is as follows:

f(t) = a0 + a1t + a2t2 + · · ·+ a(k−1)t
(k−1) + ∑nh

n=1 cn[sin(2nπt) +ϕn] (3)

k represents the number of polynomial parts, and nh represents the number of harmonics
parts. In this study, we applied k = 3 polynomial terms (quadratic terms) to the multiyear
trends and nh = 4 annual harmonics to the seasonal cycles.

In addition, we also analyzed the interannual variation of CO2 and CH4 in different
periods from 2010 to 2020. According to the important phases or critical periods of atmo-
spheric CO2 and CH4 changes in previous studies (e.g., sharp changes in growth rates and
mole fractions in 2012, the impact of the Hangzhou G20 Summit in 2016, and COVID-19 epi-
demic in 2020), the leap years were taken as the time nodes and the whole time series was
divided into three observation periods, i.e., 2010–2012, 2013–2016, 2017–2020 [2,25,30,35].

3. Results and Discussions
3.1. Extracting the Regional Atmospheric CO2 and CH4

To accurately understand the variation of atmospheric CO2 and CH4 on a regional
scale, it is essential to identify CO2 and CH4 records influenced by local pollutants [31].
The filtered regional or local time series is shown in Figure 2. In this study, 83.69% of CO2
data and 85.66% of CH4 data were classified as locally representative, indicating that the
majority of the observed CO2 and CH4 records were influenced by very local sources and
sinks (e.g., factory, town), albeit the station was installed as a regional background station
in 1983. The urbanization in the east of China, as the most economically developed region
in the country, had a distinct influence on the atmospheric greenhouse gas mole fractions.
The mean CO2 and CH4 values affected by the local area were 424.66 ± 0.13 ppm and
2051.8 ± 0.8 ppb, respectively, which were both higher than the regional representative val-
ues (415.31 ± 0.26 ppm and 2007.3± 1.6 ppb). As shown in Figure 3, the annual mean mole
fractions of CO2 and CH4 have increased from 400.72 ± 0.73 ppm and 1949.9 ± 6.0 ppb in
2010 to 427.73 ± 0.65 ppm and 2035.1 ± 4.7 ppb in 2020, with an annual mean increase of
2.70 ppm and 8.5 ppb, respectively. Compared with the Marine Boundary Layer reference
surface values (30◦ N) of CO2 and CH4 in 2020 (414.62 ppm for CO2 and 1932.4 ppb for CH4)
(https://gml.noaa.gov/ccgg/mbl/mbl.html, accessed on 31 May 2022), the atmospheric
CO2 and CH4 mole fractions at the LAN station were 13.11 ppm and 102.7 ppb higher,
respectively. These results indicated that the YRD region in China was acting as a strong
source of atmospheric CO2 and CH4 in recent years [36,37].

https://gml.noaa.gov/ccgg/mbl/mbl.html
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representative data. The red lines are the smooth curves of the regional data obtained by the curve-
fitting program [34]. There are data gaps caused by the malfunction of the instrument from 1 October
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3.2. Diurnal Variations

As shown in Figure 4, distinct diurnal variations were observed in four seasons during
2010–2020 at LAN. The diurnal variations of CO2 and CH4 mole fractions were similar,
i.e., reaching the maximum value in the morning, decreasing, appearing to trough in
the afternoon, and gradually increasing in the evening. These diurnal variations were
closely related to plant photosynthesis, biological respiration, and changes in atmospheric
boundary layer height [38,39]. Additionally, the high CO2 and CH4 mole fractions in the
evening and early morning were consistent with the urban vehicle emissions in the rush
hours [40]. For CO2 (Figure 4a), the highest mole fraction was 434.46 ± 1.08 ppm observed
at 7:00 (LT) in spring, while the lowest mole fraction was 406.05 ± 0.88 ppm observed
at 16:00 (LT) in summer, with the amplitude of 28.41 ± 1.40 ppm. For CH4 (Figure 4e),
both the highest and lowest mole fractions were observed in summer, 2073.8 ± 8.8 ppb at
7:00 (LT) and 2008.9 ± 8.6 ppb at 15:00 (LT), with an amplitude of 64.9 ± 12.3 ppb. The
smallest amplitudes were observed in winter, with values of 6.40 ± 1.52 ppm for CO2 and
19.8 ± 8.5 ppb for CH4, respectively.
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The diurnal cycle patterns of CO2 and CH4 also differ in different periods as shown
in Figure 4. From 2013 to 2016, the CO2 mole fractions in summer mornings were lower
than those of other seasons, because the wind speed in this period was lower than that
in other seasons, resulting in uneven atmospheric mixing. However, the CH4 mole frac-
tions in summer were higher than those in the other seasons during the same period,
because high temperatures and heavy precipitation were conducive to CH4 production in
wetlands [41,42], especially in 2016, when the precipitation in YRD in summer was 20%
to 1 time more than that in previous years. Additionally, the marine seeps from the East
China Sea may contribute to the higher CH4 mole fractions due to the high sea surface
temperature during 2013–2016 [9,43]. The peak-to-valley amplitudes of diurnal variation
also had significant differences. For CO2 (Figure 4b–d), the peak-to-valley amplitudes
increased with time. For example, the amplitudes for spring, in 2010–2012, 2013–2016, and
2017–2020 were 13.40 ± 2.20 ppm, 14.40 ± 2.22 ppm, and 16.14 ± 1.82 ppm, respectively,
which indicated that the LAN station was increasingly affected by anthropogenic activi-
ties. However, for CH4 (Figure 4f–h), the peak-to-valley amplitudes changed with time
in different seasons. The amplitude was almost constant in spring. However, in summer,
autumn, and winter, the amplitudes were quite different from 2010–2012 and 2013–2020
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(about 10 ppb). Although the paddy rice field area decreased in recent decades with the
continuous expansion of urbanization area in the YRD region, the rice yields increased,
leading to the increase of anthropogenic CH4 emissions in summer and autumn [42,44].
In addition, energy consumption generally increased in winter, especially of natural gas,
leading to higher CH4 mole fractions [45].

3.3. Variations of Wind-Rose Distribution Pattern

In order to further study the influence of local sources/sinks on the temporal dis-
tribution of atmospheric CO2 and CH4, the hourly CO2 and CH4 mole fractions were
clustered by considering the surface wind direction (16 wind directions). The observed
mole fractions were divided into March to May as spring, June to August as summer,
September to November as autumn, and December to February as winter, to draw the
wind rose distribution chart. As shown in Figure 5a,e, there were seasonal differences in
CO2 and CH4 mole fraction in each wind direction. In spring and winter, the high CO2
mole fractions mainly came from the NE-ENE-E-ESE-SE sectors in the east, indicating that
the high CO2 mole fractions in spring and summer were mainly caused by the emission
transports from the eastern cities of Shanghai, Hangzhou, Suzhou, etc. [23,46,47]. However,
the high CO2 mole fractions came from W-WNW-NNW and SSW-WSW-WSW-W in the
west in summer and autumn, respectively, affected by crop straw burning during the
harvest [48,49]. Unlike CO2, the high CH4 mole fractions in all seasons came from the east,
and there were also strong sources in WSW-W-WNW in autumn and winter, possibly due
to the combined effect of wetland and urban emissions.
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Figure 5. The wind rose distributions of average CO2 and CH4 mole fractions in the 16 sectors from
2010 to 2020 at the LAN station. The top and bottom panels show the wind rose distributions of
CO2 (a–d) and CH4 (e–h) in different periods, i.e., 2010–2020 (a,e), 2010–2012 (b,f), 2013–2016 (c,g),
2017–2020 (d,h), respectively. The different colors represent the CO2 and CH4 data for different
seasons. The error bars represent 95% confidence intervals.

The wind rose distribution of CO2 and CH4 mole fractions showed that the elevated
CO2 and CH4 mole fractions varied in different periods. During 2010–2012 (Figure 5b,f)
and 2013–2016 (Figure 5c,g), there was an obvious increase of CO2 and CH4 mole fractions
in some wind directions, while during 2017–2020 (Figure 5d,h), the elevated CO2 and CH4
mole fractions in all wind directions tended to be uniform, suggesting that CO2 and CH4
sources may be present in all wind directions in recent years, which corresponded to the
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economy development and increased energy consumption in the YRD region. According
to the statistical book of China, the annual Gross Domestic Product (GDP) growth rates of
the YRD region have been above 7% except for 2020 [50]. In addition, the magnitude of the
enhancement was also increasing with the years. Local surface winds from urban areas had
an increasing influence on the atmospheric CO2 and CH4 at the LAN station [51,52]. The
high CO2 and CH4 mole fractions came from different wind directions in different periods,
which indicated that sources located upwind were also changing with time. Compared
with 2010–2012 and 2013–2016, the elevated CO2 and CH4 mole fractions in different wind
directions showed a westward shifting trend, while in 2017–2020, the degree of trend
weakened and even moved east again. For example, in spring, the high CO2 and CH4 mole
fractions came from N-NNE-NE-ENE during 2010–2012, WNW-NW during 2013–2016, and
NW-NNW-N during 2017–2020. This was mainly due to the industrial development of
Anhui Province in the west. In China’s 12th Five-Year Plan (2011–2015), the Wanjiang city
belt in Anhui Province accepted most of the industrial transfer from the YRD. The number
of industrial enterprises increased from 12,432 in 2011 to 19,838 in 2016 but then began
to decrease, and the number returned to 17,761 in 2019 [50]. Although the CO2 and CH4
mole fractions were dominated by emissions from the core region of YRD in the east of
LAN station, the influence of Anhui Province and other central China regions in the west
of LAN station could not be neglected.

3.4. Long-Range Transport and Potential Source Distributions

To investigate the contribution of long-range transport, we used the Hybrid Single-
Particle Lagrangian Integrated Trajectory (HYSPLIT) to calculate a 72 h back trajectory
consistent with the time of the observed regional CO2 and CH4 events. We used the back
trajectories in January, April, July, and October, respectively, to represent winter, spring,
summer, and autumn. Figure 6 and Table 1 showed the results of back trajectory cluster
analysis for the four seasons from 2010 to 2020, as well as the average CO2 and CH4 mole
fractions on each cluster.
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Table 1. The statistics of the cluster analysis result for hourly CO2 and CH4 data from 2010 to 2020 at
the LAN station.

Season Cluster Number of
Trajectories

Average CO2 Mole
Fraction (ppm)

Average CH4 Mole
Fraction (ppb)

Spring
1 3427 418.19 ± 1.34 1989.3 ± 6.0
2 2304 420.24 ± 1.73 1990.3 ± 6.1
3 2187 421.80 ± 1.60 1992.4 ± 8.8

Summer
1 1668 411.10 ± 1.50 2022.1 ± 22.8
2 4058 405.20 ± 1.04 1934.9 ± 5.8
3 2122 408.70 ± 1.44 1928.4 ± 17.0

Autumn
1 2637 414.67 ± 1.02 2007.4 ± 7.7
2 1801 417.66 ± 1.66 2039.5 ± 12.7
3 3482 414.39 ± 1.09 2000.5 ± 6.8

Winter
1 3701 424.10 ± 1.23 2033.2 ± 6.5
2 2134 426.17 ± 2.02 2051.4 ± 11.2
3 2077 425.48 ± 2.28 2025.8 ± 10.7

In spring, the air mass with the highest average CO2 and CH4 mole fractions were from
the east and northeast (Cluster 3), from the Yellow Sea and the East China Sea. However,
after passing through Hangzhou and other cities, the CO2 and CH4 mole fractions increased
by 2.10 ppm and 2.1 ppb relative to the seasonal average (Table 1). In summer, due to
the influence of the monsoon, the air mass mainly came from the eastern, southwestern,
and southeastern regions. The highest CO2 and CH4 mole fractions were observed in
the eastern sector (Cluster 1), which passed over the Hangzhou Bay area, surrounded by
Shanghai, Hangzhou and other megacities. Compared to CO2, the enhancement of CH4
mole fraction was 80.7 ppb, much larger than the seasonal average, since there are many
wetlands (1221.5 km2 in 2017) in the Hangzhou Bay area in addition to many industries [53].
Thus, both human emission and wetland emission led to high CH4 mole fractions [23,54].
In autumn, most air masses were from north and northeast China, but the high CO2 and
CH4 mole fractions came from the Yangtze Estuary and Hangzhou Bay regions, the center
of the YRD region. In winter, the air mass mainly came from North China, but the air
mass from the northwest region of YRD (Cluster 2) brought the highest CO2 and CH4
mole fractions, indicating that the inland region of YRD was becoming strong sources
contributed to the LAN station in winter. In conclusion, it is dominant that the YRD region
has a great influence on the elevated CO2 and CH4 mole fractions at LAN station.

Figures 7 and 8 showed the spatial distribution of CO2 and CH4 sources probabili-
ties during the observation period by using the Weighted Potential Source Contribution
Function (WPSCF), and the potential sources in different periods were analyzed, namely,
2010–2012, 2013–2016, and 2017–2020. In general, the strongest source was located to the
east of the LAN station. The high value of WPSCF was mainly distributed in northern Zhe-
jiang Province, southern Jiangsu Province, and Shanghai. However, due to the impact of
industrial transfer, the high value of WPSCF in winter in 2013–2016 (Figures 7k and 8k) was
distributed in Anhui Province. High temperature in summer led to more CH4 emissions
from anaerobic activities, and high WPSCF values were distributed in rice fields to the
west of LAN Station (Figure 8e) and in Hangzhou Bay area to the east (Figure 8f) [54,55].
In addition, the source areas varied seasonally. The potential source area in summer was
mainly located in the south while in spring, autumn, and winter, it was mainly located in
the north, due to the difference of the east Asian monsoon.
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Figure 7. The geographical distribution of CO2 weighted potential sources in different periods from
2010 to 2020 at the LAN station. The gradient colors represent the intensity of potential source regions
in different seasons, i.e., spring (a–c), summer (d–f), autumn (g–i), and winter (j–l) and different
periods, i.e., 2010–2012 (a,d,g,j), 2013–2016 (b,e,h,k), and 2017–2020 (c,f,i,l).

The potential source areas of CO2 and CH4 varied over the periods, almost always
increasing with time, and emission intensity from the core area has also been strengthened.
For example, in the spring during 2010–2012 (Figure 7a), CO2 sources were mainly con-
centrated in the YRD region. However, during 2013–2016 (Figure 7b), CO2 sources shifted
from the western area to inland China. As a result, it can be concluded that the atmospheric
CO2 and CH4 at LAN were more severely influenced by regional sources and sinks, due
to the rapid economic development in the YRD region. The expansion pattern of strong
sources suggested that inland provinces surrounding the YRD, such as Anhui Province,
were becoming stronger CO2 and CH4 emitters, in addition to the eastern coastal region
of the YRD where LAN was located [56]. In recent years, as a member of the YRD region,
Anhui Province has been developing rapidly, with the number of factories (12,432 in 2011
and increased to 17,761 in 2019 [50]) and gross value of industrial output (2.59 trillion yuan
in 2011 and increased to 4.34 trillion yuan in 2016 [50]) increasing, which caused a large
amount of CO2 and CH4 to transfer eastward to Zhejiang Province, Shanghai and Jiangsu
Province [57].
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Figure 8. The geographical distribution of CH4 weighted potential sources in different periods from
2010 to 2020 at the LAN station. The gradient colors represent the intensity of potential source regions
in different seasons, i.e., spring (a–c), summer (d–f), autumn (g–i), and winter (j–l) and different
periods, i.e., 2010–2012 (a,d,g,j), 2013–2016 (b,e,h,k), and 2017–2020 (c,f,i,l).

3.5. Variation of Long-Term Records
3.5.1. Seasonal Cycles

Figure 9 shows the monthly changes in regional CO2 and CH4 mole fractions in
various periods from 2010 to 2020. On the whole, the monthly variation trend of regionally
representative CO2 and CH4 mole fractions at the LAN region was almost identical in
each period. The CO2 mole fractions were high in winter and low in summer, while the
CH4 mole fractions fluctuated and were low in April and July. The monthly variation
trend of CO2 mole fractions was similar to the observations at the SDZ station and LFS
station in China [21,58]. However, there was also an obvious difference for CH4, which was
mainly caused by the seasonal variations of vegetation growth and energy consumption
in each region [45]. The CH4 mole fractions at LFS peaked in summer and autumn due
to the emissions from rice fields [21]. The seasonal variation of CH4 from south and
northwest at SDZ showed double peak and single peak, with the lowest in May and
July, respectively [20], while the seasonal variation of CH4 at LAN showed triple peaks,
with the lowest in July. Compared with the other periods, CO2 and CH4 mole fractions
from 2010 to 2012 peaked in February. Local customs such as setting off fireworks and
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worshiping during the Chinese Spring Festival in February contributed to massive CO2 and
CH4 emissions [58], but megacities in the YRD such as Hangzhou, Nanjing, and Shanghai
have adopted strict bans on fireworks since 2014, leading to a reduction in emissions.
The monthly peak and valley amplitudes of CO2 and CH4 mole fractions also changed
over time. For CO2, peak-to-valley amplitudes were 19.49 ± 0.90 ppm from 2010 to 2012,
increased to 23.06 ± 1.24 ppm from 2013 to 2016, and 23.47 ± 1.13 ppm from 2017 to 2020.
The same is true for CH4, which revealed that the LAN was intensively affected by stronger
regional sources over time.
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Figure 10 displayed the average monthly variation of regional and local mole fractions
at LAN and the simulated surface values from the Marine Boundary Layer (MBL) reference
calculated by the National Oceanic & Atmospheric Administration/Global Monitoring
Laboratory (NOAA/GML) from 2010–2020 (https://gml.noaa.gov/ccgg/mbl/mbl.html,
accessed on 31 May 2022), also compared with the results at Mt. Waliguan (WLG; 36.28◦

N, 100.09◦ E, 3816 m a.s.l.; 2010–2019) [59]. On the whole, the monthly regional CO2 and

https://gml.noaa.gov/ccgg/mbl/mbl.html
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CH4 mole fractions varied greatly at the LAN station. The CO2 mole fractions were mainly
low in summer and high in winter, with a peak-to-valley amplitude of 21.22 ± 1.54 ppm.
In contrast, the CH4 mole fractions were consistently low in summer and high in spring
and autumn, with a peak-to-valley amplitude of 75.1 ± 7.8 ppb. The CO2 and CH4 mole
fractions at the LAN station were higher than the MBL values and the results at WLG.
It was clear that atmospheric CO2 and CH4 mole fractions were influenced by regional
terrestrial ecosystems as well as anthropogenic emissions [60,61]. The monthly variation
of average CO2 mole fractions at LAN was unimodal, with the lowest in August and the
highest in December. Cooler temperatures in winter led to increasing energy consumption
and consequently higher CO2 and CH4 mole fractions [22,62]. On the contrary, in summer,
the CO2 mole fractions decreased due to the intense plant photosynthesis and the higher
atmospheric boundary layer height [36]. Due to the heavy photochemical pollution in the
YRD in July, the concentrations of ·OH in the atmosphere were high, and strengthened the
CH4 sinks [38]. At the same time, because the LAN station was in the subtropical monsoon
area, the CH4 mole fractions were mainly affected by marine air mass in summer. Although
the ocean was a significant source of atmospheric CH4, its emission was much lower than
that of the YRD urban agglomeration, so the CH4 mole fractions tended to be low by the
dilution effect of marine air mass [37,43]. In September, when the solar radiation is weak,
the concentrations of ·OH in the atmosphere decreased and the sinks of CH4 weakened [38].
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standard deviations with confidence intervals of 95%.

3.5.2. Long-Term Trends

The growth rates of CO2 and CH4 from 2010 to 2020 calculated by using the first
derivative of the trend curve were presented in Figure 11. The regional average annual
growth rates of CO2 and CH4 at LAN were 2.57 ± 0.14 ppm yr−1 and 10.3 ± 1.3 ppb yr−1.
Compared with previous studies (3.7 ± 1.2 ppm yr−1 for CO2 and 8.0 ± 1.2 ppb yr−1

for CH4 in 2009–2010) at LAN station, the growth rates of CO2 were lower, while the
growth rates of CH4 were higher [30,63]. Moreover, as the Chinese government announced
a carbon reduction strategy to reduce CO2 emissions, the intense emissions from heavy
industries were restricted in recent years [19]. From 2010 to 2015, the annual increment
of carbon emissions in the Yangtze River Delta region was about 40.3 Mt CO2 yr−1 but
decreased to 24.6 Mt CO2 yr−1 in recent years (2016–2019) [64].
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Figure 11. The annual growth rates of the atmospheric CO2 and CH4 from 2010 to 2020 at the LAN
station. The black line represents the filtered value, which was calculated from the first derivative of
the trend curves. The red line represents the slope, which was calculated by linear regression.

The annual growth rates of CO2 and CH4 were both higher than the global average
(2.40 ppm yr−1 for CO2 and 8.0 ppb yr−1 for CH4) over the past decade [2,65]. As shown
in Table 2, the observed results of CO2 and CH4 at LAN were higher than those at the
background site in China. The observations from Lamto in West Africa from 2008 to
2018 showed that the annual growth rates of CO2 and CH4 were approximately 2.24
ppm yr−1 and 7 ppb yr−1, respectively, both lower than those at LAN [66]. Nguyen
et al. [67] presented 20-year (2001–2020) records of atmospheric CO2 at Lutjewad in the
Netherlands and Mace Head in Ireland, with annual growth rates of 2.31 ± 0.07 ppm yr−1

and 2.22 ± 0.04 ppm yr−1, respectively. The higher growth rate indicated that there was
a strong difference between economically developed zones and remote areas, and the
LAN station was strongly influenced by regional sources/sinks [59,68]. In addition, the
annual average growth rate of CO2 at LAN was lower than that at LFS and SDZ because
LFS and SDZ were located in Northeast and North China, respectively, where fossil fuel
consumption was high in heavy industry and winter heating [21,58]. However, the annual
growth rate of CH4 was completely opposite, which was mainly due to high emissions
from rice fields and wetland in the YRD [42].
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Table 2. Comparison of annual average CO2 and CH4 growth rates at the background stations of
Lin’an (LAN), Longfengshan (LFS), Shangdianzi (SDZ), Mt. Waliguan (WLG) in China.

Site Years CO2 Growth
Rate (ppm yr−1)

CH4 Growth
Rate (ppb yr−1) Ref.

LAN, China
2010–2013 3.00 ± 0.38 16.1 ± 3.3

This study2010–2016 2.52 ± 0.21 13.8 ± 2.0
2010–2020 2.57 ± 0.14 10.3 ± 1.3

LFS, China 2009–2013 3.10 ± 0.02 8.0 ± 0.04 Fang et al. [21]

SDZ, China 2009–2013 3.80 ± 0.01 10.0 ± 0.1 Fang et al. [20]

WLG, China 2010–2016 2.45 ± 0.02 8.2 ± 0.1 Guo et al. [68]

The growth rate of CO2 and CH4 at the LAN fluctuated greatly in the early stage,
decreased rapidly in 2012 and 2014, leveled off again in 2016–2018, and then fluctuated
slightly after 2018, which may be caused by the Nanjing Youth Olympic Games in 2014,
the Hangzhou G20 Summit in 2016, and the COVID-19 event in early 2020 [69,70]. During
the Nanjing Youth Olympic Games in 2014 and the Hangzhou G20 Summit in 2016, the
Chinese government implemented a series of joint anti-pollution measures, such as traffic
restrictions and factory shutdowns, in cities in the YRD region [25]. Xu et al. [71] found
that during the Nanjing Youth Olympic Games, the YRD region has actually reduced coal
emissions by 5%, and the atmospheric CO2 mole fractions were lower than at other times.
The carbon emissions of Jiangsu Province decreased by 38% during the period, mainly in
the power industry, non-metallic mineral production, and manufacturing combustion [72].
Similarly, Pu et al. [73] found that CO2 mole fractions in urban and exurbs of Hangzhou
have decreased significantly compared to the same period in 2015, due to the impact of the
Hangzhou G20 Summit. In addition, the COVID-19 pandemic has significantly reduced
China’s carbon emissions in February–March 2020, but the variation of growth rate was
slight due to the huge atmospheric storage and long lifetime [74]. The COVID-19 pandemic
lockdown lasted nearly a month, and CO2 emissions rebounded as city lockdowns were
lifted and production resumed [75]. Therefore, short-term emission reduction activities
cannot effectively inhibit the rising trend of CO2 mole fraction.

The growth rate of regional CO2 was almost stable and positive in the long term,
except in 2012, resulting in a continuous rise of the regional CO2 mole fractions, which
indicated that although a series of management steps to limit CO2 emissions have been
taken in the YRD region (e.g., vehicle electrification, industrial restructuring, and carbon
trading), there was still a long way to achieve the carbon neutrality goal [31,76–78]. The
high growth rate of CH4 in the early period may be attributed to the increase in natural
gas consumption. As a clean energy source, natural gas is gradually replacing coal, oil,
and other traditional energy sources, for example, with the coal-to-gas policy in China [79].
Moreover, China’s West-to-East Power Transmission Project has made it convenient for YRD
to obtain natural gas. The number of natural-gas-fueled vehicles in China has increased
fast, with about 6000 in 2000 increasing to 6.08 million in 2017. Especially in 2012–2014, the
annual growth rate of natural-gas-fueled vehicles reached about 1.00 million per year [80].
Taking Zhejiang Province as an example, the proportion of natural gas in total energy
consumption increased rapidly during 2013–2014 (3.6%–4.9%) and 2017–2018 (6.0%–7.5%)
but decreased in 2020 (7.4%), which was basically consistent with the CH4 growth rate [50].
China implemented the Air Pollution Prevention and Control Action Plan in September
2013, which resulted in a significant decrease in the growth rate of CO2 and CH4. With
the implementation of anthropogenic pollution control measures in the YRD (e.g., electric
vehicles promotion and energy structure optimization), the regional CH4 growth rate has
been declining in the long run [81,82]. Finally, due to the absence of CO2 data from October
2012 to June 2013 and CH4 data from October 2012 to October 2013, there may be bias on
the estimation on the CO2 and CH4 growth rates.
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4. Conclusions

In this study, we present an 11-year (from 2010 to 2020) ground-based observation of
atmospheric CO2 and CH4 at the Lin’an (LAN) regional background station and analyze the
changing characters of those gases to understand the influence of anthropogenic emissions.
Our results show that with the development of the Chinese economy, the observed CO2
and CH4 mole fractions in recent years were severely influenced by local sources, and
only 16.31% of CO2 and 14.34% of CH4 mole fractions represent the events on the regional
scale. The regional background mole fractions of CO2 and CH4 in the YRD region had
distinct diurnal distribution and seasonal fluctuation characteristics. The local surface wind
impacts, long-range transport, and potential source distributions in different periods all
indicated that the LAN station was mainly affected by the source and sink in the YRD
region, and Anhui Province in the west of YRD has been becoming a strong contributor
to CO2 and CH4 emissions. In the long run, the growth rates of CH4 at the LAN station
were continuously decreasing, and the growth rates of CO2 remained stable, due to the
strict emission control measures in the YRD region. However, with the rapid growth of
the regional economy, CO2 and CH4 mole fractions were still increasing with the years
except for some specific years. We found that LAN was increasingly influenced by local
anthropogenic activities. In addition, the complex changes and high average annual growth
rates of CO2 and CH4 indicated that controlling CO2 and CH4 emissions remained a priority
for the Chinese government.
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