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Abstract: Pulse signals refer to electromagnetic waveforms with short duration and high peak energy
in the time domain. Spatial electromagnetic pulse interference signals can be caused by various
factors such as lightning, arc discharge, solar disturbances, and electromagnetic disturbances in space.
Pulse disturbance signals appear as instantaneous, high-energy vertical-line pulse trains (VLPTs) on
the spectrogram. This paper uses computer vision techniques and unsupervised clustering algorithms
to process and analyze VLPT on very-low-frequency (VLF) waveform spectrograms collected by the
China Seismo-Electromagnetic Satellite (CSES) electric field detector. First, the waveform data are
transformed into time–frequency spectrograms with a duration of 8 s using the short-time Fourier
transform. Then, the spectrograms are subjected to grayscale transformation, vertical line feature
extraction, and binarization preprocessing. In the third step, the preprocessed data are dimensionally
reduced and fed into an unsupervised K-means++ clustering model to achieve automatic recognition
and labeling of VLPTs. By recognizing and studying VLPT, not only can interference be recognized,
but the temporal and spatial locations of these interferences can also be determined. This lays the
foundation for identifying VLPT sources and gaining deeper insights into the generation, propagation,
and characteristics of electromagnetic radiation.

Keywords: China Seismo-Electromagnetic Satellite (CSES); very low frequency (VLF); vertical-line
pulse train (VLPT); k-means + +; automatic recognition

1. Introduction

Since the mid-20th century, with the development of space technology, satellites have
been used as observation platforms to acquire electromagnetic wave data from Earth and
the universe. They have been widely applied in fields such as meteorology, geophysics,
environmental science, and astronomy [1–5]. Satellite observations provide global-scale
electromagnetic wave data, including a large number of electromagnetic disturbances such
as lightning, solar magnetic storms, and ionospheric disturbances [6–9]. By identifying
and studying these disturbances, we can not only monitor and predict space weather
phenomena and predict earthquakes but also provide information on ionospheric and
atmospheric activities for sectors such as aviation, aerospace, communications, and naviga-
tion. In addition, it helps to gain a deeper understanding of the generation, propagation,
and characteristics of electromagnetic radiation.
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Electromagnetic pulse interference signals refer to electromagnetic waveforms with
short time duration and high peak energy. Spatial electromagnetic pulse interference signals
can be caused by various factors, such as lightning, arc discharge, solar disturbances, and
spatial electromagnetic wave disturbances [10–12]. A spectrogram is a tool used to describe
the temporal and spectral variations of a signal. By applying time–frequency analysis
techniques (such as the short-time Fourier transform), we can visualize the temporal and
frequency domain information of the signal [13–16]. Pulse disturbance signals appear as
instantaneous, high-energy vertical lines on the spectrogram [17]. Pulse signals typically
have a wide frequency spectrum, so vertical lines on the spectrogram may cover multiple
frequencies. These vertical-line pulse trains (VLPTs) indicate the pulse occurrence time and
frequency distribution characteristics.

At present, the identification of different types of spatial electromagnetic waves on
spectrograms mainly focuses on two aspects: constant frequency electromagnetic wave
identification and L-shape whistler wave identification. However, there is currently limited
research and application for the identification of other types of electromagnetic waves.
Constant frequency electromagnetic wave identification refers to the classification and
identification of electromagnetic waves within specific frequency ranges, which appear
as horizontal lines on the spectrogram, such as wireless communication frequency bands.
By using computer techniques to identify horizontal lines on the spectrogram, different
types of constant-frequency electromagnetic wave sources can be distinguished, enabling
identification and classification [18–20]. L-shaped whistler waves, on the other hand, refer
to a special-shaped electromagnetic wave signal with unique spectral characteristics and
temporal patterns. L-shape whistler waves can be manually labeled with an L-shape tag
and be automatically identified using deep learning methods [21]. In addition, article [22]
introduces the method of using convolutional neural networks (ConvNet) for automated
ULF (ultra-low frequency) wave classification in swarm time series. However, for other
types of electromagnetic waves, such as random frequencies or irregular signal spectra,
there are currently no definite methods or research findings for their identification.

During its five years of operation, the CSES satellite has accumulated a significant
amount of data resources, which contain rich and complex information on electromagnetic
wave disturbances in space. In order to delve into the inherent value of these data, there
is an urgent need to employ advanced batch processing techniques of big data to extract
hidden electromagnetic disturbance information from it.

This paper uses computer vision techniques and unsupervised clustering algorithms
to automatically recognize VLPTs on spectrogram of VLF waveform data collected by the
CSES electric field detector. By studying spectral distribution and duration, automatic
recognition of VLPT is realized. This study proposes new methods and approaches for
automatically recognizing VLPT and locating disturbance sources, providing technical
support for electromagnetic radiation research and related fields of application.

2. Data Collection

The China Seismo-Electromagnetic Satellite (CSES) was successfully launched on 2
February 2018. It is China’s first dedicated space science satellite for studying seismic
electromagnetics [23–27]. The CSES satellite is designed to investigate electromagnetic
phenomena and related physical mechanisms in the field of geophysics before and after
seismic events. CSES is equipped with a series of scientific instruments, including a
fluxgate magnetometer (FGM), electric field detector (EFD), plasma analyzer package
(PAP), Langmuir probe (LP), low-energy charged particle analyzer (LECPA), high-energy
particle detector (HEPD), seismo-electromagnetic (SEM) field detector, etc. [28–31]. These
instruments work together to study various phenomena in space, including electromagnetic
waves, plasma dynamics, magnetic field variations, and their interactions with seismic
activities on Earth. Since the launch of the CSES satellite, many studies and experiments
have been carried out, including space weather research, ionosphere and electromagnetic
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wave research, earthquake prediction research, and Earth observation and environmental
research [32–37].

In this experiment, we processed VLF waveform data collected by the CSES EFD
over the period 2019–2020. By performing short-time Fourier transform, we converted the
waveform data into a time–frequency spectrogram, as shown in Figure 1. The spectrogram
illustrates the temporal and frequency variations of an 8 s signal. In the spectrogram, the
x-axis represents time with a length of 8 s, the y-axis represents frequency, and the color
bar represents signal intensity. The time–frequency spectrogram obtained by short-time
Fourier transform provides an intuitive way to simultaneously display the time domain
and frequency domain information of the signal. By observing changes in the spectrogram,
we can analyze the temporal and frequency characteristics of the signal’s evolution, thus
gaining deeper insights into the behavior of very-low-frequency waveforms.
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Figure 1. Two spectrograms with a duration of 8 s. (a) The 103rd spectrogram of orbit number 109601;
(b) the 15th spectrogram of orbit number 109621.

3. Automatic Recognition Algorithm of VLPT

Clustering analysis, as an unsupervised learning method, involves grouping or catego-
rizing samples according to their measured similarity. This paper aims to use unsupervised
clustering learning methods to automatically recognize VLPTs with varying energies, as
shown by the different energy vertical lines in Figure 1b. The algorithm flowchart for VLPT
recognition is shown in Figure 2.

Atmosphere 2023, 14, x FOR PEER REVIEW 4 of 17 
 

 

6. Automatic marking: The identified lines are automatically marked, facilitating fur-
ther observation and analysis. 

 
Figure 2. Flow chart of automatic recognition algorithm of VLPT. Among them, the yellow box rep-
resents the object handled in this article, the red box indicates the preprocessing process for the 
spectrogram, and the green box represents the workflow for unsupervised clustering. 

3.1. Grayscale 
Grayscale conversion is the process of transforming a color image into a grayscale 

image, where the value of each pixel is represented in a grayscale color space instead of 
the RGB (red–green–blue) color space. This conversion is performed to reduce computa-
tional complexity and storage requirements and facilitate further image processing tasks. 
There are various methods available for grayscale conversion. In an RGB color image, each 
pixel consists of numerical values for the red (R), green (G), and blue (B) channels. The 
blue channel refers to the numerical value of the blue component for each pixel in the 
image. In this paper, the blue channel is used to achieve grayscale conversion [19]. 

  ( , )= ( , )BGray x y RGB x y  (1) 

where, RGB refers to the original color spectrogram, (x, y) represents the coordinates of a 
pixel on the image, and it corresponds to the blue (B) channel. Figure 1b shows an original 
spectrogram to be recognized, and Figure 3 shows the resulting spectrogram after the 
grayscale conversion process. 

 
Figure 3. The result after grayscale conversion. 

3.2. Vertical Edge Features Enhancement 
Edge detection helps to capture the contour of edges between objects and the back-

ground in an image. To enhance the features of the vertical line edge in the image, a ver-
tical edge detection filter can be applied. In order to improve computation speed, this pa-
per uses a 1 × 3 convolution kernel, as shown in Equation (2). 

Figure 2. Flow chart of automatic recognition algorithm of VLPT. Among them, the yellow box
represents the object handled in this article, the red box indicates the preprocessing process for the
spectrogram, and the green box represents the workflow for unsupervised clustering.



Atmosphere 2023, 14, 1296 4 of 17

1. Grayscale: The color image is converted into a grayscale image.
2. Edge feature enhancement: Edge enhancement algorithms are applied to enhance the

edge features of vertical lines in the grayscale image.
3. Binarization: The enhanced grayscale image is converted into a binary image, where

each pixel has only two values, typically black and white.
4. Data dimensionality reduction: Each pixel column is treated as a recognition sample.
5. Unsupervised clustering: The K-means++ clustering algorithm is used to cluster pixel

columns into different clusters or categories based on their similarity.
6. Automatic marking: The identified lines are automatically marked, facilitating further

observation and analysis.

3.1. Grayscale

Grayscale conversion is the process of transforming a color image into a grayscale
image, where the value of each pixel is represented in a grayscale color space instead of the
RGB (red–green–blue) color space. This conversion is performed to reduce computational
complexity and storage requirements and facilitate further image processing tasks. There
are various methods available for grayscale conversion. In an RGB color image, each pixel
consists of numerical values for the red (R), green (G), and blue (B) channels. The blue
channel refers to the numerical value of the blue component for each pixel in the image. In
this paper, the blue channel is used to achieve grayscale conversion [19].

Gray(x, y) = RGBB(x, y) (1)

where, RGB refers to the original color spectrogram, (x, y) represents the coordinates of a
pixel on the image, and it corresponds to the blue (B) channel. Figure 1b shows an original
spectrogram to be recognized, and Figure 3 shows the resulting spectrogram after the
grayscale conversion process.
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3.2. Vertical Edge Features Enhancement

Edge detection helps to capture the contour of edges between objects and the back-
ground in an image. To enhance the features of the vertical line edge in the image, a vertical
edge detection filter can be applied. In order to improve computation speed, this paper
uses a 1 × 3 convolution kernel, as shown in Equation (2).

Kernel = [[1, 0,−1]] (2)

By applying the convolution Kernel to the convolution operation expression in Equation (3),
vertical edge feature enhancement is achieved.

Output(x, y) = ∑
s

∑
t

Kernel(s, t)Input(x − s, y − t) (3)
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where Input represents the input image, (x, y) represents the pixel coordinates, (s, t)
represents the position of the convolution kernel elements, and output represents the
output image. Step 1 is used, and pixel copy edge padding is used. By applying the vertical
edge enhancement filter to the grayscale image in Figure 3, the resulting image is shown in
Figure 4.
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3.3. Binarization

Image binarization is the process of setting pixel values in an image to either 0 or 255,
resulting in a clear black and white effect throughout the entire image. By binarizing the
image, it reduces the dimensionality of the image data while eliminating interference from
factors such as noise, allowing the contours of the regions of interest to be clearly displayed.
This method of processing provides clearer and more effective basic data for subsequent
image processing and analysis. The binarization formula is expression in Equation (4).

dst(x, y) =
{

maxVal if src(x, y) > thresh
0 otherwise

(4)

Here dst is the output image, maxVal is the maximum value set (in this experiment, it is
set to 255), src is the input image, thresh is the fixed threshold value set (in this experiment,
thresh is set to 35). Pixels with values greater than 35 are set to 255, while pixels with
values less than 35 are set to 0. (x, y) represents the coordinates of pixels. The results of
binarization are shown in Figure 5.
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3.4. Data Dimensionality Reduction

The purpose of this experiment is to identify vertical lines. Clustering algorithms
typically group data samples based on some similarity measure to maximize intra-cluster
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similarity and minimize inter-cluster similarity. In order to extract the features of these
vertical lines and understand the data, we perform dimensionality reduction on the image
before clustering. We use the column pixels of the image as the basic processing unit for
this dimensionality reduction.

Assuming there is an m × n binary image corresponding to a two-dimensional data
matrix, where each column represents a feature, resulting in a total of n features.

3.5. Unsupervised Clustering

Unsupervised clustering is a machine learning task that aims to partition data samples
into similar groups or clusters without requiring prior knowledge of labels or class informa-
tion. Unlike supervised learning, where models rely on external guidance, unsupervised
learning performs clustering by discovering the inherent structure and similarities within
the data [38].

In unsupervised clustering tasks, algorithms automatically identify and learn simi-
larities between data samples. They assign similar data points to the same cluster while
assigning dissimilar data points to different clusters. Unsupervised clustering finds wide
applications in many fields and domains, including data mining, image analysis, text
mining, recommendation systems, and more. Unsupervised clustering models belong to a
class of models in unsupervised learning used to discover underlying categories or cluster
structures in unlabeled datasets. Here are several common clustering models: K-means
clustering [39], hierarchical clustering [40], density-based spatial clustering of applications
with noise (DBSCAN) [41], spectral clustering (SC) [42], etc.

The computational complexity of K-means clustering is relatively low, and it is compu-
tationally efficient. The trained model can be pre-trained and used to predict new samples.
Spectral clustering is a clustering algorithm based on graph theory. It constructs a graph us-
ing similarity between data samples and performs dimensionality reduction and clustering
based on graph features. Spectral clustering, in contrast to traditional clustering algorithms
such as K-means, does not generate a model that can be used to predict new samples.

Therefore, in this experiment, combining the idea of dimensionality reduction with
spectral clustering, we use the K-means model to train and predict the reduced matrix. First,
we perform dimensionality reduction and clustering on feature vectors by considering
them as column vectors. Then, we preprocess and reduce a set of clear VLPT spectrograms,
as shown in Figure 1b, which serve as training samples for the K-means model. We use the
trained model to predict new samples.

Unsupervised clustering model K-means clustering: Using selected cluster centers as
initial centers, run the allocation and update steps of the K-means algorithm iteratively
until the convergence condition is met. K-means++ is an improved version of the K-means
algorithm that enhances the selection of initial cluster centers to improve the accuracy and
stability of clustering results. Here are the steps of the K-means algorithm:

1. Randomly select a data point as the first cluster center.
2. For each data point, calculate the squared distance to the cluster centers already

selected and use it as a weight.
3. Based on distance weights, select the next cluster center with a higher probability.

For each data point, normalize the weights, and then select the next cluster center
probabilistically.

4. Repeat steps 2 and 3 until K cluster centers are selected.

3.6. The Predetermined Number of Clusters, K

In the K-means algorithm, K refers to the number of clusters to be formed, also known
as the predetermined number of clusters. The appropriate value of K is crucial for the
effectiveness of the K-means algorithm and the quality of clustering results. A common
method of determining the value of K is experimentation and adjustment based on data
characteristics and domain knowledge. There are also quantitative methods such as the
elbow method, silhouette coefficient, and within-cluster sum of squares (WCSS) to assist in
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this determination. The elbow method involves plotting the curve of the sum of squared
errors (SSE) of clusters under different K values and selecting the K value at the “elbow”
point where the curve begins to level off. The silhouette coefficient, on the other hand,
evaluates the compactness and separation of clustering results based on similarity and
dissimilarity among samples as shown as Figure 6.
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Figure 6. When K = 2, an elbow occurs.

After dimensionality reduction, the data about Figure 5 is fed into the K-means++
model for training. The curve of the sum of squared errors (SSE) at different values of K is
plotted, and the value of K is chosen based on the location where the curve exhibits an elbow
bend. It is observed that the optimal number of clusters corresponds to the inflection point,
which in this case is K = 2. This result is further supported by calculating the silhouette
coefficient, also yielding K = 2. Furthermore, considering the practical requirements of the
experiment to divide the data into two categories: straight lines and non-straight lines,
K = 2 is appropriate based on the actual application.

Therefore, in this paper, we set K = 2, representing two categories: straight lines and
non-straight lines. The clustering operation is performed on each column as the clustering
element. After clustering, each row is assigned a label representing either a straight line or
a non-straight line. The visualization of the labeled straight lines after training the model is
shown in Figure 7.
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3.7. Automatic Labeling of Recognition Results

After clustering, column pixels are classified into straight-line and non-straight-line
classes. To facilitate further visual observation and analysis, the pixel columns identified
are marked with red lines. Due to variations in the energy and color of VLPTs in the original
image, in order to observe the clustering results clearly, red lines are used for marking on
the grayscale image. Figure 8 shows an example of the marked results.
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4. Experimental Setup and Results Analysis
4.1. Experimental Environment

For this experiment, MATLAB 2020 was used to generate spectrograms. Python 3.7
was used with the OpenCV and Scikit-learn libraries for feature extraction and clustering
algorithms. This implementation enabled automatic recognition of electromagnetic pulse
sequence signals.

4.2. Experimental Data

The experimental data used in this study were obtained from VLF waveform data
collected by the CSES EFD from 2019 to 2020. They include complete revisited track
cycle waveform data and a random set of waveform data. A total of 8558 spectrograms
were produced.

4.3. Experimental Method
4.3.1. Data Preprocessing

For each track dataset, multiple spectrograms with a duration of 8 s were generated.
The following preprocessing steps were applied to each spectrogram: grayscale conversion,
edge feature enhancement, and binarization. Taking a spectrogram (denoted Figure 9a)
with fewer vertical lines as an example, the results of each preprocessing step are shown in
Figure 9b–d.
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4.3.2. Model Training

A K-means++ model is established with K = 2. A spectrogram with clear and abundant
vertical lines, such as shown in Figure 10a, is selected. After the aforementioned preprocess-
ing steps, each column of pixels is treated as a sample vector and undergoes dimensionality
reduction. These vectors are then fed into the model for training. By accessing the label
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attribute of the K-means++ model, the clustering labels of each column vector sample can
be obtained. The labels representing the vertical lines are visualized in Figure 10b.
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Figure 10. Spectrograms of training samples. (a) A spectrogram which can be used as training samples
after preprocessing; (b) visualization of the labels representing the vertical lines in the samples.

4.3.3. Prediction

After training the K-means++ model and obtaining the clustering labels for the training
samples, we can now use this trained model to make predictions on new or unseen samples.

To predict on new samples, we apply the same preprocessing steps as before to
obtain the binary image data. We then pass these data to the model’s prediction method.
The model will assign each new sample a clustering label based on the similarity to the
existing clusters.

For example, in the case of the 2D image shown in Figure 10d, after performing
dimensionality reduction and passing it to the trained model, we obtain the predicted
clustering labels. The visualization of the labels representing the vertical lines in the new
samples is displayed in Figure 11a. Additionally, the predicted results can be observed in
Figure 11b.
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4.4. Comparative Analysis of Results from Different Experimental Methods and Conclusions

In this experiment, we tested different line recognition algorithms and clustering
algorithms, including Hough line detection, hierarchical clustering, DBScan clustering,
spectral clustering, and improved K-means++ clustering. The results of each algorithm’s
line recognition are shown in Figure 12.
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model; (f) K-means++ model after dimensionality reduction.

According to the experimental results, we can observe the following: the Hough
line detection method detects both horizontal and vertical lines as line segments; the
hierarchical clustering model recognizes many false detections; the DBScan clustering
model misses many line detections; spectral clustering and the improved K-means++
approach used in this study have similar identification performance. However, K-means++
demonstrates higher time efficiency. The statistical analysis of spectral clustering and
K-means++ clustering is shown in Table 1.

Table 1. Statistical analysis of spectral clustering and improved K-means + + clustering Vertical lines
recognition results.

Spectral Clustering K-Means++

Accuracy (%) 0.96 ± 0.01 0.98 ± 0.01
Missed Detection Rate (%) 0.04 ± 0.01 0.02 ± 0.01

Error Rate (%) 0 0
Time (s/per image) 0.042 0.013

In terms of time efficiency, K-means++ outperforms spectral clustering because K-
means++ can be pre-trained, eliminating the need for training the model from scratch each
time. This makes K-means++ more time-efficient than spectral clustering. Therefore, in this
experiment, we combined the dimensionality reduction concept of spectral clustering with
the high time efficiency of K-means++. This algorithm not only achieves high recognition
accuracy, but also demonstrates high efficiency.

4.5. VLPTs Recognition

According to the method described above for recognizing straight lines on the spectro-
gram, Figure 13 shows the results of vertical line recognition in different spectrograms.
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Figure 13. The recognition results of different spectrograms, and the more column vectors repre-
senting line clusters there are, the greater the disturbance. (a) The results of line recognition; (b) the
original spectrograms.

By comparing Figure 13, we can observe that the greater the number of recognized
lines, the greater the disturbance. To optimize the recognition process, we introduced a
variable linesnum, which represents the number of column vectors representing row clusters
detected in an 8 s spectrogram. Analyzing linesnum, we found that spectrograms with
linesnum > 60 usually indicate significant perturbations. We recorded the spectrograms with
linesnum > 60. Using this method, we can not only recognize prominent VLPTs that indicate
significant perturbations but also determine their spatial and temporal perturbations. The
following two sets of spectrograms are examples of VLPTs found in a massive dataset, as
shown as Figures 14 and 15, all of which satisfy linesnum > 60. This method effectively
filters out high-energy VLPTs from vast amounts of data and obtains their spatial and
temporal information.
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number 106561.

5. Discussion

There can be multiple causes for VLPT generation, and here are some potential sources:
Lightning is the result of charge separation and discharge in the atmosphere, which can
generate intense pulsed electromagnetic radiation [10–12]. Solar activities, such as solar
flares and solar bursts, can also cause pulsed electromagnetic wave radiation, and the en-
ergy released from these solar activities can trigger electromagnetic pulses in nearby space
on Earth. The ionosphere, which is a layer of ionized gas in the Earth’s atmosphere, plays
an important role in the propagation and reflection of electromagnetic waves. Disturbances
in the ionosphere, such as ionospheric irregularities, shear layers, and fluctuations, can
cause pulsed electromagnetic wave radiation. Conforming propagation is a phenomenon
in the propagation of electromagnetic waves, where pulsed signals may be formed due
to interference from different paths after the reflection of electromagnetic waves in the
atmosphere. These are just some of the possible reasons for VLPT generation, and the
actual situation may be more complex and require specific analysis based on the data
and scenario.

There have been many methods proposed by previous researchers for the identifica-
tion of pulse signals. One approach is based on the extraction of time–domain features,
such as pulse width, peak value, and pulse shape, for signal classification and recogni-
tion [43,44]. Another approach is through frequency–domain feature extraction: the pulse
signal is transformed using Fourier transform or wavelet transform, and features such



Atmosphere 2023, 14, 1296 14 of 17

as spectral distribution and frequency components are extracted for signal classification
and recognition [45,46]. The third method utilizes morphological transformations to pro-
cess the pulse signal and extract morphological features, such as skeleton, convex hull,
and valleys, for signal classification and recognition [47,48]. The fourth method involves
using machine learning algorithms for pulse signal classification, such as support vector
machines, artificial neural networks, and decision trees [49,50]. Although these are some
common methods for pulse signal extraction, and in practical applications, specific tasks
and data characteristics may require the selection of appropriate methods. For example,
reference [43] proposed a pulse signal analysis and recognition method based on multiscale
morphological component analysis. It applies multiscale morphological transformations to
the original signal, extracts specific features from the transformed results, and then utilizes
a classifier for signal recognition. The success of this method is sensitive to parameter
selection, as the choice of parameters can significantly impact the final recognition results.
Reference [51] presented a feature extraction framework for underwater pulse signals
based on morphology and wavelet packet transform, specifically for the field of ocean
and underwater signal processing. This method has the capability of multiscale analysis
and powerful spectral analysis, but its applicability may be limited to specific types of
underwater pulse signals or specific application scenarios. Reference [52] used a Gaussian
distribution-based electromagnetic pulse model and estimated parameters such as shape,
amplitude, and duration of the pulse to describe the characteristics of ultra-wideband
electromagnetic pulses. The methods for estimating these parameters are detailed in the
article, and their effectiveness is validated through experimental results. However, this
method is only applicable to Gaussian-distribution-based electromagnetic pulses and may
not be suitable for other pulse distributions.

This paper employs computer vision techniques and unsupervised clustering algo-
rithms on the spectrogram obtained through the Fourier transform to realize automatic
recognition of VLPT. The vertical line recognition algorithm proposed in the paper is appli-
cable to the recognition of vertical lines on any type of spectrogram. And this method not
only identifies VLPT but also discovers their spatiotemporal locations.

Although this method allows us to find the spatiotemporal positions of these sig-
nificant electromagnetic disturbances, further confirmation is needed to determine the
sources of these disturbances. In addition, research is needed on the physical characteris-
tics, propagation mechanisms, and potential effects of electromagnetic pulse radiation on
electronic systems.

6. Conclusions

This study used computer vision techniques and unsupervised clustering algorithms
to process and analyze VLF waveform data collected by the CSES satellite’s EFD. First,
the waveform data were transformed into an 8 s spectrogram using the short-time Fourier
transform. The spectrogram was then processed by grayscale conversion, vertical edge
feature enhancement, and binarization. The preprocessed data were columnwise dimen-
sionality reduced and fed into an unsupervised K-means++ clustering model for training
and prediction, enabling the identification of vertical lines on the spectrogram. Any vertical
line on the spectrogram identified as exceeding 60 lines is considered the recognized VLPT
result. It realized automatic recognition and labeling of VLPT disturbances as well as
localization of the spatiotemporal positions of pulse signals.

Pulse interference signals can potentially disrupt satellite communication or obser-
vation tasks. By promptly identifying and locating the source of interference and im-
plementing appropriate interventions, the normal operation of satellites can be ensured.
Additionally, in applications such as satellite communication and radar systems, analyzing
the spectrogram of pulse signals allows for the study of signal propagation effects in the
atmosphere, ionosphere, or other media. This analysis further enables the optimization of
signal transmission and reception performance.
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In conclusion, the results of this study provide new methods and approaches for
automatic recognition and localization of VLPTs. This provides the basis for electromagnetic
wave disturbance monitoring, space weather research, earthquake prediction, and related
applications. It will contribute to enhancing our understanding of environmental changes
and natural phenomena and provide more reliable data support for the development and
application of relevant industries. Future work will focus on the following areas:

1. Further study of spectral distribution, duration, power characteristics, etc., of interfer-
ence signals to enhance the ability to identify different types of interference sources.
By establishing a library of interference signals, modeling and classifying signals
generated by different interference sources can improve the accuracy of identification.

2. Research and apply more efficient data preprocessing and noise reduction techniques
to improve the quality of VLF waveform data. For example, filtering methods are
used to optimize signal to noise ratio.
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