Intriguing Aspects of Polar-to-Tropical Mesospheric Teleconnections during the 2018 SSW: A Meteor Radar Network Study
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
3. Results and Discussions
3.1. SSW Event in February 2018 and Polar Middle Atmospheric Dynamics
3.2. Mesospheric Mean Wind Structure
3.3. Polar Stratosphere–Mesosphere Connection
3.4. Planetary Waves and Meridional Circulation
4. Conclusions
- The zonal wind reversal in the upper mesosphere (85–90 km) occurred on the peak SSW day in mid-latitudes with a maximum value of ~(−16) m/s, whereas in tropical- and high-latitude regions, the reversal occurred two days after the SSW day with a peak value of −13 m/s and −18 m/s, respectively. In the lower mesosphere (78–82 km), the mid-latitude zonal winds weakened but did not reverse; however, in the tropical/polar regions, the reversal started two weeks before the SSW day and attained a peak value (~−24 m/s and −13 m/s) three and two days after the SSW, respectively. Hence, the highest zonal wind reversal during 2018 SSW was noted in the tropical lower mesosphere with a maximum value of ~−24 m/s.
- The wavelet analysis of zonal winds both in the upper and lower mesosphere at the four observational stations shows the presence of a wide spectrum of PWs (~2–4 days, 8 days, and 12–16 days) and waves with an intra-seasonal period (30–60-day) oscillations. The signatures of 16-day waves at the polar and 12–14-day PWs in the tropical region in the upper mesosphere were observed well before the SSW but dissipated before the peak SSW. The 8-day PWs were observed at all the stations in the upper mesosphere during the SSW, while in the lower mesosphere, they presented only at the tropical and polar stations and disappeared at the mid-latitudes.
- We estimated the residual mean meridional circulation (RMC) and EP fluxes using UKMO data at different SSW stages showing a reversal of the RMC in the mesosphere during SSW, which contributes to the cooling of this area. Additionally, the increased PW activity in the stratosphere during the SSW contributes to the zonal polar vortex breakup and additional heating of the polar region.
- The radar observations showed that the ISOs were observed before the peak SSW at all stations in the upper and lower mesosphere; however, at the mid-latitudes, they attained peak amplitude after the SSW day. The latitudinal propagation of both ISOs and 8-day waves using ERA5 suggests that the ISO phase propagated to low latitudes (up to 20° N) from 60° N, before the SSW. A reverse phase propagation of the 8-day PWs was observed from the tropical to the polar regions. The superposition of this opposite phase propagation results in wind reversal in the mesosphere. The ISO and 8-day wave composite showed significant effects on the mesosphere wind reversal at the polar, mid-, and low latitudes in different time intervals and caused the delay of wind reversal both at the polar and tropical stations.
- The ISO propagation from 60° N to tropical regions during the SSW shows an indication of a reversed mean mesosphere meridional circulation during the SSW, which is in agreement with the estimated mean meridional circulation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scherhag, R. Die explosionsartige Stratosphärenerwärmung des Spätwinters 1951–1952. Ber. Dtsch. Wetterd. 1952, 6, 51–53. [Google Scholar]
- Matsuno, T. A dynamical model of the stratospheric sudden warming. J. Atmos. Sci. 1971, 28, 1479–1494. [Google Scholar] [CrossRef]
- Baldwin, M.P.; Ayarzagüena, B.; Birner, T.; Butchart, N.; Butler, A.H.; Charlton-Perez, A.J.; Domeisen, D.I.V.; Garfinkel, C.I.; Garny, H.; Gerber, E.P.; et al. Sudden Stratospheric Warmings. Rev. Geophys. 2021, 59, e2020RG000708. [Google Scholar] [CrossRef]
- Shi, C.; Xu, T.; Guo, D.; Pan, Z. Modulating Effects of Planetary Wave 3 on a Stratospheric Sudden Warming Event in 2005. J. Atmos. Sci. 2017, 74, 1549–1559. [Google Scholar] [CrossRef]
- Pedatella, N.M.; Chau, J.L.; Schmidt, H.; Goncharenko, L.P.; Stolle, C.; Hocke, K.; Harvey, V.L.; Funke, B.; Siddiqui, T.A. How Sudden Stratospheric Warming Affects the Whole Atmosphere. Eos 2018, 99. [Google Scholar] [CrossRef]
- Garfinkel, C.I.; Son, S.-W.; Song, K.; Aquila, V.; Oman, L.D. Stratospheric variability contributed to and sustained the recent hiatus in Eurasian winter warming. Geophys. Res. Lett. 2017, 44, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Karpechko, A.Y.; Charlton-Perez, A.; Balmaseda, M.; Tyrrell, N.; Vitart, F. Predicting Sudden Stratospheric Warming 2018 and Its Climate Impacts with a Multimodel Ensemble. Geophys. Res. Lett. 2018, 45, 13538–13546. [Google Scholar] [CrossRef]
- Butler, A.H.; Gerber, E.P. Optimizing the Definition of a Sudden Stratospheric Warming. J. Clim. 2018, 31, 2337–2344. [Google Scholar] [CrossRef]
- Butler, A.H.; Sjoberg, J.P.; Seidel, D.J.; Rosenlof, K.H. A sudden stratospheric warming compendium. Earth Syst. Sci. Data 2017, 9, 63–76. [Google Scholar] [CrossRef]
- van Loon, H.; Jenne, R.L.; Labitzke, K. Zonal harmonic standing waves. J. Geophys. Res. 1973, 78, 4463–4471. [Google Scholar] [CrossRef]
- Krüger, K.; Naujokat, B.; Labitzke, K. The Unusual Midwinter Warming in the Southern Hemisphere Stratosphere 2002: A Comparison to Northern Hemisphere Phenomena. J. Atmos. Sci. 2005, 62, 603–613. [Google Scholar] [CrossRef]
- Eswaraiah, S.; Kim, Y.H.; Hong, J.; Kim, J.-H.; Ratnam, M.V.; Chandran, A.; Rao, S.; Riggin, D. Mesospheric Signatures Observed during 2010 Minor Stratospheric Warming at King Sejong Station (62° S, 59° W). J. Atmos. Sol.-Terr. Phys. 2016, 140, 55–64. [Google Scholar] [CrossRef]
- Eswaraiah, S.; Kim, Y.H.; Liu, H.; Ratnam, M.V.; Lee, J. Do Minor Sudden Stratospheric Warmings in the Southern Hemisphere (SH) Impact Coupling between Stratosphere and Mesosphere-Lower Thermosphere (MLT) like Major Warmings? Earth Planets Space 2017, 69, 119. [Google Scholar] [CrossRef]
- Eswaraiah, S.; Kim, Y.H.; Lee, J.; Ratnam, M.V.; Rao, S.V.B. Effect of Southern Hemisphere Sudden Stratospheric Warmings on Antarctica Mesospheric Tides: First Observational Study. J. Geophys. Res. Space Phys. 2018, 123, 2127–2140. [Google Scholar] [CrossRef]
- Eswaraiah, S.; Kim, J.; Lee, W.; Hwang, J.; Kumar, K.N.; Kim, Y.H. Unusual Changes in the Antarctic Middle Atmosphere During the 2019 Warming in the Southern Hemisphere. Geophys. Res. Lett. 2020, 47, e2020GL089199. [Google Scholar] [CrossRef]
- Lee, W.; Song, I.; Kim, J.; Kim, Y.H.; Jeong, S.; Eswaraiah, S.; Murphy, D.J. The Observation and SD-WACCM Simulation of Planetary Wave Activity in the Middle Atmosphere During the 2019 Southern Hemispheric Sudden Stratospheric Warming. J. Geophys. Res. Space Phys. 2021, 126, e2020JA029094. [Google Scholar] [CrossRef]
- Lim, E.-P.; Hendon, H.H.; Butler, A.H.; Thompson, D.W.J.; Lawrence, Z.D.; Scaife, A.A.; Shepherd, T.G.; Polichtchouk, I.; Nakamura, H.; Kobayashi, C.; et al. The 2019 Southern Hemisphere Stratospheric Polar Vortex Weakening and Its Impacts. Bull. Am. Meteorol. Soc. 2021, 102, E1150–E1171. [Google Scholar] [CrossRef]
- Fahimi, S.; Ahmadi-Givi, F.; Farahani, M.M.; Meshkatee, A.H. Investigation of the relationship between Euro-Atlantic and West Asia blockings and major stratospheric sudden warmings in the period of 1959–2018. Dyn. Atmos. Oceans 2021, 95, 101245. [Google Scholar] [CrossRef]
- Butler, A.H.; Lawrence, Z.D.; Lee, S.H.; Lillo, S.P.; Long, C.S. Differences between the 2018 and 2019 stratospheric polar vortex split events. Q. J. R. Meteorol. Soc. 2020, 146, 3503–3521. [Google Scholar] [CrossRef]
- White, I.P.; Lu, H.; Mitchell, N.J.; Phillips, T. Dynamical Response to the QBO in the Northern Winter Stratosphere: Signatures in Wave Forcing and Eddy Fluxes of Potential Vorticity. J. Atmos. Sci. 2015, 72, 4487–4507. [Google Scholar] [CrossRef]
- Laskar, F.I.; Chau, J.L.; Stober, G.; Hoffmann, P.; Hall, C.M.; Tsutsumi, M. Quasi-biennial oscillation modulation of the middle- and high-latitude mesospheric semidiurnal tides during August-September. J. Geophys. Res. Space Phys. 2016, 121, 4869–4879. [Google Scholar] [CrossRef]
- Lu, H.; Hitchman, M.H.; Gray, L.J.; Anstey, J.A.; Osprey, S.M. On the role of Rossby wave breaking in the quasi-biennial modulation of the stratospheric polar vortex during boreal winter. Q. J. R. Meteorol. Soc. 2020, 146, 1939–1959. [Google Scholar] [CrossRef]
- Andrews, D.G.; Holton, J.R.; Leovy, C.B. Middle Atmosphere Dynamics; Academic Press: San Diego, CA, USA, 1987; 489p. [Google Scholar]
- Laskar, F.I.; McCormack, J.P.; Chau, J.L.; Pallamraju, D.; Hoffmann, P.; Singh, R.P. Interhemispheric Meridional Circulation During Sudden Stratospheric Warming. J. Geophys. Res. Space Phys. 2019, 124, 7112–7122. [Google Scholar] [CrossRef]
- Rao, J.; Garfinkel, C.I.; White, I.P. Predicting the Downward and Surface Influence of the February 2018 and January 2019 Sudden Stratospheric Warming Events in Subseasonal to Seasonal (S2S) Models. J. Geophys. Res. Atmos. 2020, 125, e2019JD031919. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.N.; Sharma, S.K.; Joshi, V.; Ramkumar, T. Middle atmospheric planetary waves in contrasting QBO phases over the Indian low latitude region. J. Atmos. Sol. -Terr. Phys. 2019, 193, 105068. [Google Scholar] [CrossRef]
- Vargin, P.N.; Kiryushov, B.M. Major Sudden Stratospheric Warming in the Arctic in February 2018 and Its Impacts on the Troposphere, Mesosphere, and Ozone Layer. Russ. Meteorol. Hydrol. 2019, 44, 112–123. [Google Scholar] [CrossRef]
- Chandran, A.; Collins, R.L. Stratospheric sudden warming effects on winds and temperature in the middle atmosphere at middle and low latitudes: A study using WACCM. Ann. Geophys. 2014, 32, 859–874. [Google Scholar] [CrossRef]
- Liu, H.; Jin, H.; Miyoshi, Y.; Fujiwara, H.; Shinagawa, H. Upper atmosphere response to stratosphere sudden warming: Local time and height dependence simulated by GAIA model. Geophys. Res. Lett. 2013, 40, 635–640. [Google Scholar] [CrossRef]
- Liu, H.; Miyoshi, Y.; Miyahara, S.; Jin, H.; Fujiwara, H.; Shinagawa, H. Thermal and dynamical changes of the zonal mean state of the thermosphere during the 2009 SSW: GAIA simulations. J. Geophys. Res. Space Phys. 2014, 119, 6784–6791. [Google Scholar] [CrossRef]
- Stober, G.; Kuchar, A.; Pokhotelov, D.; Liu, H.; Liu, H.-L.; Schmidt, H.; Jacobi, C.; Baumgarten, K.; Brown, P.; Janches, D.; et al. Interhemispheric differences of mesosphere–lower thermosphere winds and tides investigated from three whole-atmosphere models and meteor radar observations. Atmos. Meas. Tech. 2021, 21, 13855–13902. [Google Scholar] [CrossRef]
- Satterfield, E.A.; Waller, J.A.; Kuhl, D.D.; Hodyss, D.; Hoppel, K.W.; Eckermann, S.D.; McCormack, J.P.; Ma, J.; Fritts, D.C.; Iimura, H.; et al. Statistical Parameter Estimation for Observation Error Modeling: Application to Meteor Radars. In Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. IV); Park, S.K., Xu, L., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Quiroz, R.S. The Warming of the Upper Stratosphere in February 1966 and the Associated Structure of the Mesosphere. Mon. Wea. Rev. 1969, 97, 541–552. [Google Scholar] [CrossRef]
- Jacobi, C.; Kürschner, D.; Muller, H.; Pancheva, D.; Mitchell, N.; Naujokat, B. Response of the mesopause region dynamics to the February 2001 stratospheric warming. J. Atmos. Sol. -Terr. Phys. 2003, 65, 843–855. [Google Scholar] [CrossRef]
- Hoffmann, P.; Singer, W.; Keuer, D.; Hocking, W.; Kunze, M.; Murayama, Y. Latitudinal and longitudinal variability of mesospheric winds and temperatures during stratospheric warming events. J. Atmos. Sol. -Terr. Phys. 2007, 69, 2355–2366. [Google Scholar] [CrossRef]
- Zülicke, C.; Becker, E. The structure of the mesosphere during sudden stratospheric warmings in a global circulation model. J. Geophys. Res. Atmos. 2013, 118, 2255–2271. [Google Scholar] [CrossRef]
- Medvedeva, I.; Semenov, A.; Pogoreltsev, A.; Tatarnikov, A. Influence of sudden stratospheric warming on the mesosphere/lower thermosphere from the hydroxyl emission observations and numerical simulations. J. Atmos. Sol. -Terr. Phys. 2019, 187, 22–32. [Google Scholar] [CrossRef]
- Luo, J.; Gong, Y.; Ma, Z.; Zhang, S.; Zhou, Q.; Huang, C.; Huang, K.; Yu, Y.; Li, G. Study of the Quasi 10-Day Waves in the MLT Region During the 2018 February SSW by a Meteor Radar Chain. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028367. [Google Scholar] [CrossRef]
- Shepherd, M.; Wu, D.; Fedulina, I.; Gurubaran, S.; Russell, J.; Mlynczak, M.; Shepherd, G. Stratospheric warming effects on the tropical mesospheric temperature field. J. Atmos. Sol. -Terr. Phys. 2007, 69, 2309–2337. [Google Scholar] [CrossRef]
- Sathishkumar, S.; Sridharan, S.; Jacobi, C. Dynamical response of low-latitude middle atmosphere to major sudden stratospheric warming events. J. Atmos. Sol. -Terr. Phys. 2009, 71, 857–865. [Google Scholar] [CrossRef]
- Eswaraiah, S.; Ratnam, M.V.; Kim, Y.H.; Kumar, K.N.; Chalapathi, G.V.; Ramanajaneyulu, L.; Lee, J.; Prasanth, P.V.; Thyagarajan, K.; Rao, S. Advanced meteor radar observations of mesospheric dynamics during 2017 minor SSW over the tropical region. Adv. Space Res. 2019, 64, 1940–1947. [Google Scholar] [CrossRef]
- Vineeth, C.; Pant, T.K.; Sridharan, R. Equatorial counter electrojets and polar stratospheric sudden warmings—A classical example of high latitude-low latitude coupling? Ann. Geophys. 2009, 27, 3147–3153. [Google Scholar] [CrossRef]
- Rao, S.V.B.; Eswaraiah, S.; Ratnam, M.V.; Kosalendra, E.; Kumar, K.K.; Kumar, S.S.; Patil, P.T.; Gurubaran, S. Advanced meteor radar installed at Tirupati: System details and comparison with different radars. J. Geophys. Res. Atmos. 2014, 119, 11893–11904. [Google Scholar] [CrossRef]
- Wang, Y.; Shulga, V.; Milinevsky, G.; Patoka, A.; Evtushevsky, O.; Klekociuk, A.; Han, W.; Grytsai, A.; Shulga, D.; Myshenko, V.; et al. Winter 2018 major sudden stratospheric warming impact on midlatitude mesosphere from microwave radiometer measurements. Atmos. Meas. Tech. 2019, 19, 10303–10317. [Google Scholar] [CrossRef]
- Liu, G.; Huang, W.; Shen, H.; Aa, E.; Li, M.; Liu, S.; Luo, B. Ionospheric Response to the 2018 Sudden Stratospheric Warming Event at Middle- and Low-Latitude Stations Over China Sector. Space Weather. 2019, 17, 1230–1240. [Google Scholar] [CrossRef]
- Shi, Y.; Shulga, V.; Ivaniha, O.; Wang, Y.; Evtushevsky, O.; Milinevsky, G.; Klekociuk, A.; Patoka, A.; Han, W.; Shulga, D. Comparison of Major Sudden Stratospheric Warming Impacts on the Mid-Latitude Mesosphere Based on Local Microwave Radiometer CO Observations in 2018 and 2019. Remote Sens. 2020, 12, 3950. [Google Scholar] [CrossRef]
- Matthias, V.; Stober, G.; Kozlovsky, A.; Lester, M.; Belova, E.; Kero, J. Vertical Structure of the Arctic Spring Transition in the Middle Atmosphere. J. Geophys. Res. Atmos. 2021, 126, e2020JD034353. [Google Scholar] [CrossRef]
- Wang, Y.; Milinevsky, G.; Evtushevsky, O.; Klekociuk, A.; Han, W.; Grytsai, A.; Antyufeyev, O.; Shi, Y.; Ivaniha, O.; Shulga, V. Planetary Wave Spectrum in the Stratosphere–Mesosphere during Sudden Stratospheric Warming 2018. Remote Sens. 2021, 13, 1190. [Google Scholar] [CrossRef]
- Li, N.; Luan, X.; Lei, J.; Bolaji, O.S.; Owolabi, C.; Chen, J.; Xu, Z.; Li, G.; Ning, B. Variations of Mesospheric Neutral Winds and Tides Observed by a Meteor Radar Chain Over China During the 2013 Sudden Stratospheric Warming. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027443. [Google Scholar] [CrossRef]
- Ma, Z.; Gong, Y.; Zhang, S.; Zhou, Q.; Huang, C.; Huang, K.; Yu, Y.; Li, G.; Ning, B.; Li, C. Responses of Quasi 2 Day Waves in the MLT Region to the 2013 SSW Revealed by a Meteor Radar Chain. Geophys. Res. Lett. 2017, 44, 9142–9150. [Google Scholar] [CrossRef]
- Koushik, N.; Kumar, K.K.; Ramkumar, G.; Subrahmanyam, K.V.; Hocking, W.K.; He, M.; Latteck, R. Planetary waves in the mesosphere lower thermosphere during stratospheric sudden warming: Observations using a network of meteor radars from high to equatorial latitudes. Clim. Dyn. 2020, 54, 4059–4074. [Google Scholar] [CrossRef]
- Korotyshkin, D.; Merzlyakov, E.; Sherstyukov, O.; Valiullin, F. Mesosphere/lower thermosphere wind regime parameters using a newly installed SKiYMET meteor radar at Kazan (56° N, 49° E). Adv. Space Res. 2019, 63, 2132–2143. [Google Scholar] [CrossRef]
- Jacobi, C.; Arras, C.; Geißler, C.; Lilienthal, F. Quarterdiurnal signature in sporadic E occurrence rates and comparison with neutral wind shear. Ann. Geophys. 2019, 37, 273–288. [Google Scholar] [CrossRef]
- Mitchell, N.J.; Pancheva, D.; Middleton, H.R.; Hagan, M.E. Mean winds and tides in the Arctic mesosphere and lower thermosphere. J. Geophys. Res. Atmos. 2002, 107, SIA 2-1–2-14. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Rüfenacht, R.; Baumgarten, G.; Hildebrand, J.; Schranz, F.; Matthias, V.; Stober, G.; Lübken, F.-J.; Kämpfer, N. Intercomparison of middle-atmospheric wind in observations and models. Atmos. Meas. Tech. 2018, 11, 1971–1987. [Google Scholar] [CrossRef]
- Tarek, M.; Brissette, F.P.; Arsenault, R. Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America. Hydrol. Earth Syst. Sci. 2020, 24, 2527–2544. [Google Scholar] [CrossRef]
- Delhasse, A.; Kittel, C.; Amory, C.; Hofer, S.; Fettweis, X. Brief Communication: Interest of a Regional Climate Model against ERA5 to Simulate the near-Surface Climate of the Greenland Ice Sheet. Cryosph. Discuss. 2019, 5, 1–12. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Swinbank, R.; O’Neill, A.; Lorenc, A.C.; Ballard, S.P.; Bell, R.S.; Ingleby, N.B.; Andrews, P.L.F.; Barker, D.M.; Bray, J.R.; Clayton, A.M.; et al. Stratospheric Assimilated Data. Tech. Rep. 2006. British Atmospheric Data Centre, Oxfordshire, UK. Available online: http://badc.nerc.ac.uk/data/assim/ (accessed on 5 June 2022).
- Hocking, W.; Fuller, B.; Vandepeer, B. Real-time determination of meteor-related parameters utilizing modern digital technology. J. Atmos. Sol. -Terr. Phys. 2001, 63, 155–169. [Google Scholar] [CrossRef]
- Holdsworth, D.A.; Reid, I.M.; Cervera, M.A. Buckland Park All-Sky Interferometric Meteor Radar. Radio Sci. 2004, 39, 1–12. [Google Scholar] [CrossRef]
- Koval, A.V.; Chen, W.; Didenko, K.A.; Ermakova, T.S.; Gavrilov, N.M.; Pogoreltsev, A.I.; Toptunova, O.N.; Wei, K.; Yarusova, A.N.; Zarubin, A.S. Modelling the residual mean meridional circulation at different stages of sudden stratospheric warming events. Ann. Geophys. 2021, 39, 357–368. [Google Scholar] [CrossRef]
- Kozubek, M.; Lastovicka, J.; Krizan, P. Comparison of Key Characteristics of Remarkable SSW Events in the Southern and Northern Hemisphere. Atmosphere 2020, 11, 1063. [Google Scholar] [CrossRef]
- Jacobi, C. 6 year mean prevailing winds and tides measured by VHF meteor radar over Collm (51.3° N, 13.0° E). J. Atmos. Sol. -Terr. Phys. 2012, 78–79, 8–18. [Google Scholar] [CrossRef]
- Kumar, G.K.; Ratnam, M.V.; Patra, A.K.; Rao, V.V.M.J.; Rao, S.V.B.; Kumar, K.K.; Gurubaran, S.; Ramkumar, G.; Rao, D.N. Low-latitude mesospheric mean winds observed by Gadanki mesosphere-stratosphere-troposphere (MST) radar and comparison with rocket, High Resolution Doppler Imager (HRDI), and MF radar measurements and HWM93. J. Geophys. Res. Atmos. 2008, 113, 1–12. [Google Scholar] [CrossRef]
- Sharma, A.; Gaikwad, H.; Ratnam, M.V.; Gurav, O.; Ramanjaneyulu, L.; Chavan, G.; Sathishkumar, S. Diurnal, monthly and seasonal variation of mean winds in the MLT region observed over Kolhapur using MF radar. J. Atmos. Sol. -Terr. Phys. 2018, 169, 91–100. [Google Scholar] [CrossRef]
- Xiao, C.; Hu, X.; Zhang, X.; Zhang, D.; Wu, X.; Gong, X.; Igarashi, K. Interpretation of the mesospheric and lower thermospheric mean winds observed by MF radar at about 30° N with the 2D-SOCRATES model. Adv. Space Res. 2007, 39, 1267–1277. [Google Scholar] [CrossRef]
- Zhou, B.; Xue, X.; Yi, W.; Ye, H.; Zeng, J.; Chen, J.; Wu, J.; Chen, T.; Dou, X. A Comparison of MLT Wind between Meteor Radar Chain and SD-WACCM Results. Earth Planet. Phys. 2022, 6, 451–464. [Google Scholar] [CrossRef]
- Kodera, K. Influence of stratospheric sudden warming on the equatorial troposphere. Geophys. Res. Lett. 2006, 33, 1–4. [Google Scholar] [CrossRef]
- Eguchi, N.; Kodera, K. Impact of the 2002, Southern Hemisphere, Stratospheric Warming on the Tropical Cirrus Clouds and Convective Activity. Geophys. Res. Lett. 2007, 34, 1–5. [Google Scholar] [CrossRef]
- Manney, G.L.; Lawrence, Z.D.; Santee, M.L.; Read, W.G.; Livesey, N.J.; Lambert, A.; Froidevaux, C.; Pumphrey, H.C.; Schwartz, M.J. A minor sudden stratospheric warming with a major impact: Transport and polar processing in the 2014/2015 Arctic winter. Geophys. Res. Lett. 2015, 42, 7808–7816. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P.A. Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Jacobi, C.; Samtleben, N.; Stober, G. Meteor radar observations of mesopause region long-period temperature oscillations. Adv. Radio Sci. 2016, 14, 169–174. [Google Scholar] [CrossRef]
- Matthias, V.; Hoffmann, P.; Rapp, M.; Baumgarten, G. Composite analysis of the temporal development of waves in the polar MLT region during stratospheric warmings. J. Atmos. Sol. -Terr. Phys. 2012, 90–91, 86–96. [Google Scholar] [CrossRef]
- Lawrence, Z.D.; Perlwitz, J.; Butler, A.H.; Manney, G.L.; Newman, P.A.; Lee, S.H.; Nash, E.R. The Remarkably Strong Arctic Stratospheric Polar Vortex of Winter 2020: Links to Record-Breaking Arctic Oscillation and Ozone Loss. J. Geophys. Res. Atmos. 2020, 125, e2020JD033271. [Google Scholar] [CrossRef]
- Giarnetti, S.; Leccese, F.; Caciotta, M. Non recursive multi-harmonic least squares fitting for grid frequency estimation. Measurement 2015, 66, 229–237. [Google Scholar] [CrossRef]
- Qin, Y.; Gu, S.; Dou, X. A New Mechanism for the Generation of Quasi-6-Day and Quasi-10-Day Waves During the 2019 Antarctic Sudden Stratospheric Warming. J. Geophys. Res. Atmos. 2021, 126, e2021JD035568. [Google Scholar] [CrossRef]
- Gong, Y.; Xue, J.; Ma, Z.; Zhang, S.; Zhou, Q.; Huang, C.; Huang, K.; Li, G. Observations of a Strong Intraseasonal Oscillation in the MLT Region During the 2015/2016 Winter Over Mohe, China. J. Geophys. Res. Space Phys. 2022, 127, e2021JA030076. [Google Scholar] [CrossRef]
- Niranjankumar, K.; Ramkumar, T.K.; Krishnaiah, M. Vertical and lateral propagation characteristics of intraseasonal oscillation from the tropical lower troposphere to upper mesosphere. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
Tirupati | Collm | Kazan | Esrange | |
---|---|---|---|---|
(13.5° N, 79.4° E) | (51° N, 13° E) | (56° N, 49° E) | (67° N, 21° E) | |
Freequency | 35.25 MHz | 36.2 MHz | 29.75 MHz | 32.5 MHz |
Peak Power | 40 kW | 40 kW | 15 kW | 6 kW |
PRF | 430 Hz | 430 Hz | 1590 Hz | 2144 Hz |
Altitude coverage | 70–110 km | 70–110 km | 80–105 km | 80–98 k |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eswaraiah, S.; Seo, K.-H.; Kumar, K.N.; Koval, A.V.; Ratnam, M.V.; Mengist, C.K.; Chalapathi, G.V.; Liu, H.; Kwak, Y.-S.; Merzlyakov, E.; et al. Intriguing Aspects of Polar-to-Tropical Mesospheric Teleconnections during the 2018 SSW: A Meteor Radar Network Study. Atmosphere 2023, 14, 1302. https://doi.org/10.3390/atmos14081302
Eswaraiah S, Seo K-H, Kumar KN, Koval AV, Ratnam MV, Mengist CK, Chalapathi GV, Liu H, Kwak Y-S, Merzlyakov E, et al. Intriguing Aspects of Polar-to-Tropical Mesospheric Teleconnections during the 2018 SSW: A Meteor Radar Network Study. Atmosphere. 2023; 14(8):1302. https://doi.org/10.3390/atmos14081302
Chicago/Turabian StyleEswaraiah, Sunkara, Kyong-Hwan Seo, Kondapalli Niranjan Kumar, Andrey V. Koval, Madineni Venkat Ratnam, Chalachew Kindie Mengist, Gasti Venkata Chalapathi, Huixin Liu, Young-Sil Kwak, Eugeny Merzlyakov, and et al. 2023. "Intriguing Aspects of Polar-to-Tropical Mesospheric Teleconnections during the 2018 SSW: A Meteor Radar Network Study" Atmosphere 14, no. 8: 1302. https://doi.org/10.3390/atmos14081302
APA StyleEswaraiah, S., Seo, K. -H., Kumar, K. N., Koval, A. V., Ratnam, M. V., Mengist, C. K., Chalapathi, G. V., Liu, H., Kwak, Y. -S., Merzlyakov, E., Jacobi, C., Kim, Y. -H., Rao, S. V. B., & Mitchell, N. J. (2023). Intriguing Aspects of Polar-to-Tropical Mesospheric Teleconnections during the 2018 SSW: A Meteor Radar Network Study. Atmosphere, 14(8), 1302. https://doi.org/10.3390/atmos14081302