Revisiting Climate-Related Agricultural Losses across South America and Their Future Perspectives
Abstract
:1. Introduction
2. General Overview of Climate Extremes and the Agricultural Sector
3. Climate-Related Agricultural Losses in South America in Recent Decades
4. End-of-Century Climate-Related Agricultural Losses in South America
4.1. Peru, Bolivia, Ecuador, and Venezuela
4.2. Chile
4.3. Argentina
4.4. Colombia
4.5. Brazil
5. Discussion
6. Final Remarks and Recommendation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ribeiro, A.F.S.; Russo, A.; Gouveia, C.M.; Páscoa, P.; Zscheischler, J. Risk of crop failure due to compound dry and hot extremes estimated with nested copulas. Biogeosciences 2020, 17, 4815–4830. [Google Scholar] [CrossRef]
- FAO. Global Outlook on Climate Services in Agriculture—Investment Opportunities to Reach the Last Mile; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- FAO. The Impact of Disasters and Crises on Agriculture and Food Security; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Chapter 11—Weather and Climate Extreme Events in a Changing Climate; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Pe, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Eds.; Cambridge University Press: Cambridge, UK, 2021; in press. [Google Scholar]
- FAO. Global Agriculture towards 2050. High Expert Forum. Rome. 2009. Available online: www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdf (accessed on 17 June 2023).
- Praveen, B.; Sharma, P. A review of literature on climate change and its impacts on agriculture productivity. J. Public Aff. 2019, 19, e1960. [Google Scholar] [CrossRef]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef]
- Sutanto, S.J.; Vitolo, C.; Di Napoli, C.; D’Andrea, M.; Van Lanen, H.Á.J. Heatwaves, droughts, and fires: Exploring compound and cascading dry hazards at the pan-European scale. Environ. Int. 2020, 134, 105276. [Google Scholar] [CrossRef]
- Gouveia, C.; Liberato, M.L.R.; DaCamara, C.C.; Trigo, R.M.; Ramos, A.M. Modelling past and future wine production in the Portuguese Douro Valley. Clim. Res. 2011, 48, 349–362. [Google Scholar] [CrossRef]
- FFeng, P.; Wang, B.; Liu, D.L.; Xing, H.; Ji, F.; Macadam, I.; Ruan, H.; Yu, Q. Impacts of rainfall extremes on wheat yield in semi-arid cropping systems in eastern Australia. Clim. Chang. 2018, 147, 555–569. [Google Scholar] [CrossRef]
- Feron, S.; Cordero, R.R.; Damiani, A.; Llanillo, P.J.; Jorquera, J.; Sepulveda, E.; Asencio, V.; Laroze, D.; Labbe, F.; Carrasco, J.; et al. Observations and Projections of Heat Waves in South America. Sci. Rep. 2019, 9, 8173. [Google Scholar] [CrossRef] [PubMed]
- Marengo, J.A.; Ambrizzi, T.; Barreto, N.; Cunha, A.P.; Ramos, A.M.; Skansi, M.; Carpio, J.M.; Salinas, R. The heat wave of October 2020 in central South America. Int. J. Climatol. 2022, 42, 2281–2298. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; 151p. [Google Scholar]
- Yamazaki, D.; Watanabe, S.; Hirabayashi, Y. Global Flood Risk Modeling and Projections of Climate Change Impacts. Geophys. Monogr. Ser. 2018, 185–203. [Google Scholar] [CrossRef]
- Mind’je, R.; Li, L.; Amanambu, A.C.; Nahayo, L.; Nsengiyumva, J.B.; Gasirabo, A.; Mindje, M. Flood susceptibility modelling and hazard perception in Rwanda. Int. J. Disaster Risk Reduct. 2019, 38, 101211. [Google Scholar] [CrossRef]
- Russo, A.; Gouveia, C.; Dutra, E.; Soares, P.M.M.; Trigo, R.M. The synergy between drought and extremely hot summers in the Mediterranean. Environ. Res. Lett. 2018, 14, 014011. [Google Scholar] [CrossRef]
- Gouveia, C.M.; Martins, J.P.; Russo, A.; Durão, R.; Trigo, I.F. Monitoring heat extremes across central Europe using land surface temperature data records from SEVIRI/MSG. Remote Sens. 2022, 14, 3470. [Google Scholar] [CrossRef]
- Barriopedro, D.; Fischer, E.M.; Luterbacher, J.; Trigo, R.M.; García-Herrera, R. The hot summer of 2010: Redrawing the temperature record map of Europe. Science 2011, 332, 220–224. [Google Scholar] [CrossRef]
- Barriopedro Cepero, D.; Sousa, P.M.; Trigo, R.M.; García Herrera, R.; Ramos, A.M. The exceptional Iberian heatwave of summer 2018. Bull. Am. Meteorol. Soc. 2020, 101, S29–S33. [Google Scholar] [CrossRef]
- Bastos, A.; Gouveia, C.M.; Trigo, R.M.; Running, S.W. Analysing the spatio-temporal impacts of the 2003 and 2010 extreme heatwaves on plant productivity in Europe. Biogeosciences 2014, 11, 3421–3435. [Google Scholar] [CrossRef]
- Duine, G.J.; Carvalho, L.M.; Jones, C. Mesoscale patterns associated with two distinct heatwave events in coastal Santa Barbara, California, and their impact on local fire risk conditions. Weather Clim. Extrem. 2022, 37, 100482. [Google Scholar] [CrossRef]
- WMO. 2019 State of Climate Services: Agriculture and Food Security; World Meteorological Organization: Geneva, Switzerland, 2021; ISBN 978-92-63-11242-2. [Google Scholar]
- Parker, L.E.; McElrone, A.J.; Ostoja, S.M.; Forrestel, E.J. Extreme heat effects on perennial crops and strategies for sustaining future production. Plant Sci. 2020, 295, 110397. [Google Scholar] [CrossRef]
- Williams, V. Identifying the economic effects of salt water intrusion after Hurricane Katrina. J. Sustain. Dev. 2010, 3, 29–37. [Google Scholar] [CrossRef]
- Ebi, K.L.; Vanos, J.; Baldwin, J.W.; Bell, J.E.; Hondula, D.M.; Errett, N.A.; Hayes, K.; Reid, C.E.; Saha, S.; Spector, J.; et al. Extreme weather and climate change: Population health and health system implications. Annu. Rev. Public Health 2021, 42, 293–315. [Google Scholar] [CrossRef]
- Liu, J.C.; Wilson, A.; Mickley, L.J.; Dominici, F.; Ebisu, K.; Wang, Y.; Sulprizio, M.P.; Peng, R.D.; Yue, X.; Son, J.-Y.; et al. Wildfire-specific fine particulate matter and risk of hospital admissions in urban and rural counties. Epidemiology 2017, 28, 77–85. [Google Scholar] [CrossRef]
- Lei, Y.; Yue, X.; Liao, H.; Zhang, L.; Yang, Y.; Zhou, H.; Tian, C.; Gong, C.; Ma, Y.; Gao, L.; et al. Indirect contributions of global fires to surface ozone through ozone–vegetation feedback. Atmos. Chem. Phys. 2021, 21, 11531–11543. [Google Scholar] [CrossRef]
- Ashmore, M.R. Assessing the future global impacts of ozone on vegetation. Plant Cell Environ. 2005, 28, 949–964. [Google Scholar] [CrossRef]
- Fumigalli, I.; Gimeno, B.; Velissariou, D.; de Temmerman, L.; Mills, G. Evidence of ozone-induced adverse effects on crops in the Mediterranean region. Atmos. Environ. 2001, 35, 2583–2587. [Google Scholar] [CrossRef]
- Velissariou, D. Toxic effects and losses of commercial value of lettuce and other vegetables due to photochemical air pollution in agricultural areas of Attica, Greece. In Critical Levels for Ozone—Level II; Fuhrer, J., Achermann, B., Eds.; Swiss Agency for Environment, Forest and Landscape: Bern, Switzerland, 1999; pp. 253–256. [Google Scholar]
- Emberson, L.D.; Ashmore, M.R.; Murray, F. Air Pollution Impacts on Crops and Forests—A Global Assessment; Imperial College Press: London, UK, 2003. [Google Scholar]
- Emberson, L.; Ashmore, M.; Murray, F.; Kuylenstierna, J.; Percy, K.; Izuta, T.; Zheng, Y.; Shimizu, H.; Sheu, B.; Liu, C.; et al. Impacts of air pollutants on vegetation in developing countries. Water Air Soil Pollut. 2001, 130, 107–118. [Google Scholar] [CrossRef]
- de Bauer, M.L. Air pollution impacts on vegetation in Mexico. In Air Pollution Impacts on Crops and Forests—A Global Assessment; Emberson, L.D., Ashmore, M.R., Murray, F., Eds.; Imperial College Press: London, UK, 2003; pp. 263–286. [Google Scholar]
- Mills, G.; Pleijel, H.; Malley, C.S.; Sinha, B.; Cooper, O.R.; Schultz, M.G.; Neufeld, H.S.; Simpson, D.; Sharps, K.; Feng, Z.; et al. Tropospheric Ozone Assessment Report: Present-Day Tropospheric Ozone Distribution and Trends Relevant to Vegetation; Elementa: Science of the Anthropocene 6; 2018. Available online: https://online.ucpress.edu/elementa/article/doi/10.1525/elementa.302/112843/Tropospheric-Ozone-Assessment-Report-Present-day (accessed on 17 June 2023).
- Sheu, B.H.; Liu, C.P. Air pollution impacts on vegetation in Taiwan. In Air Pollution Impacts on Crops and Forests—A Global Assessment; Emberson, L.D., Ashmore, M.R., Murray, F., Eds.; Imperial College Press: London, UK, 2003; pp. 145–163. [Google Scholar]
- Lal, S.; Venkataramani, S.; Naja, M.; Kuniyal, J.C.; Mandal, T.K.; Bhuyan, P.K.; Kumari, K.M.; Tripathi, S.N.; Sarkar, U.; Das, T.; et al. Loss of crop yields in India due to surface ozone: An estimation based on a network of observations. Environ. Sci. Pollut. Res. Int. 2017, 24, 20972–20981. [Google Scholar] [CrossRef]
- Huffman, W.E.; Jin, Y.; Xu, Z. The economic impacts of technology and climate change: New evidence from US corn yields. Agric. Econ. 2018, 49, 463–479. [Google Scholar] [CrossRef]
- Tol, R.S. The economic impacts of climate change. Rev. Environ. Econ. Policy 2018, 12, 4–25. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Elliott, J.; Deryng, D.; Ruane, A.C.; Müller, C.; Arneth, A.; Boote, K.J.; Folberth, C.; Glotter, M.; Khabarov, N.; et al. Assessing Agricultural Risks of Climate Change in the 21st Century in a Global Gridded Crop Model Intercomparison. Proc. Natl. Acad. Sci. USA 2014, 111, 3268–3273. [Google Scholar] [CrossRef] [PubMed]
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.O.; Roberts, D.; Skea, J.; Shukla, P.R. Global Warming of 1.5 °C: An IPCC Special Report on the Impacts of Global Warming of 1.5 °C; Cambridge University Press: Cambridge, UK, 2018; pp. 43–50. [Google Scholar]
- Chavez Michaelsen, A.; Huamani Briceño, L.; Vilchez Baldeon, H.; Perz, S.G.; Quaedvlieg, J.; Rojas, R.O.; Brown, I.F.; Pinedo Mora, R. The effects of climate change variability on rural livelihoods in Madre de Dios, Peru. Reg. Environ. Chang. 2020, 20, 70. [Google Scholar] [CrossRef]
- Parry, M.L.; Rosenzweig, C.; Iglesias, A.; Livermore, M.; Fischer, G. Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Glob. Environ. Chang. 2004, 14, 53–67. [Google Scholar] [CrossRef]
- Andersen, L.; Mamani, R. Cambio climático en Bolivia hasta 2100: Síntesis de costos y oportunidades. Estud. Reg. Econ. Cambio Climático Sudamérica. 2009. Available online: https://www.researchgate.net/publication/242477920_Cambio_Climatico_en_Bolivia_hasta_2100_Sintesis_de_Costos_y_Oportunidades (accessed on 17 June 2023).
- Torres, F.; Peña, F.; Cruz, R.; Gómez, E. Impacto de El Niño sobre los cultivos vegetales y la productividad primaria en la sierra central de Piura. In El Niño en América Latina, Impactos Biológicos y Sociales; Tarazona, J., Arntz, W., Castillo, E., Eds.; Editorial Omega S.A.: Barcelona, Spain, 2001. [Google Scholar]
- Arenas, J.C. La Economía del Cambio Climático en Bolivia: Impactos de Eventos Extremos Sobre Infraestructura y Producción Agropecuaria; Banco Interamericano para el Desarrollo: La Paz, Bolivia, 2014; Available online: https://repositorio.cepal.org/bitstream/handle/11362/39833/1/2014-290_CCBol_eventos_extremos.pdf (accessed on 17 June 2023).
- Ecuador. Third National Communication to the UNFCCC. 2017. Available online: https://unfccc.int/documents/77568 (accessed on 17 June 2023).
- UNDP. National Adaptation Plans in Focus: Lessons from Ecuador. 2018. Available online: https://www.adaptation-undp.org/sites/default/files/resources/nap_in_focus_lessons_from_ecuador_english.pdf (accessed on 17 June 2023).
- Ecuador. National Climate Change Plan 2015–2018. 2015. Available online: https://info.undp.org/docs/pdc/Documents/ECU/PLAN%20NACIONAL%20DE%20CAMBIO%20CLIMÁTICO.pdf (accessed on 17 June 2023).
- FAO. Subregional Strategy to Prevent the Introduction of Foot-and-Mouth Disease, and Plan of Action to Improve the Management and Attention of Health Emergencies. Family Farming Knowledge Platform. 2019. Available online: http://www.fao.org/3/ca5163es/CA5163ES.pdf (accessed on 17 June 2023).
- Wehner, M.; Seneviratne, S.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Di Luca, A.; Ghosh, S.; Iskandar, I.; Kossin, J.; et al. Weather and climate extreme events in a changing climate. In Proceedings of the AGU Fall Meeting 2021, New Orleans, LA, USA, 13–17 December 2021. [Google Scholar]
- Academia Chilena de Ciencias Agronómicas. Cambio Climático: Efectos Sobre la Producción Hortofrutícola y Estrategias de Adaptación en Chile. 74p. Juan Izquierdo, J., Ed.; 2020. Available online: www.academiaagronomica.cl (accessed on 17 June 2023).
- Ortiz, R. El Cambio Climático y la Producción Agrícola. s.l., BID, 2012. 41p. Available online: https://keneamazon.net/Documents/Publications/Virtual-Library/Economia-Desarrollo/99.pdf (accessed on 17 June 2023).
- Ministerio del Medio Ambiente. Elaboración de una Base Digital del Clima Comunal de Chile: Línea Base (1980–2010) y Proyección al año 2050. 2016. Available online: http://portal.mma.gob.cl/wp-content/doc/Clima-Comu-nal_Informe_Final_29_08_2016-web.pdf (accessed on 17 June 2023).
- Rolla, A.L.; Nuñez, M.N.; Guevara, E.R.; Meira, S.G.; Rodriguez, G.R.; de Zárate, M.I.O. Climate impacts on crop yields in Central Argentina. Adaptation strategies. Agric. Syst. 2018, 160, 44–59. [Google Scholar] [CrossRef]
- Castro-Llanos, F.; Hyman, G.; Rubiano, J.; Ramirez-Villegas, J.; Achicanoy, H. Climate change favors rice production at higher elevations in Colombia. Mitig. Adapt. Strat. Glob. Chang. 2019, 24, 1401–1430. [Google Scholar] [CrossRef]
- Medeiros Silva, W.K.; de Freitas, G.P.; Junior, L.M.C.; de Almeida Pinto, P.A.L.; Abrahão, R. Effects of climate change on sugarcane production in the state of Paraíba (Brazil): A panel data approach (1990–2015). Clim. Chang. 2019, 154, 195–209. [Google Scholar] [CrossRef]
- Gondim, R.; Silveira, C.; de Souza Filho, F.; Vasconcelos, F.; Cid, D. Climate change impacts on water demand and availability using CMIP5 models in the Jaguaribe basin, semi-arid Brazil. Environ. Earth Sci. 2018, 77, 550. [Google Scholar] [CrossRef]
- Costa, L.C.; Justino, F.; Oliveira, L.J.C.; Sediyama, G.C.; Ferreira, W.P.M.; Lemos, C.F. Potential forcing of CO2, technology and climate changes in maize (Zea mays) and bean (Phaseolus vulgaris) yield in southeast Brazil. Environ. Res. Lett. 2009, 4, 014013. [Google Scholar] [CrossRef]
- Grossi, M.C.; Justino, F.; Andrade, C.D.L.T.; Santos, E.A.; Rodrigues, R.A.; Costa, L.C. Modeling the impact of global warming on the sorghum sowing window in distinct climates in Brazil. Eur. J. Agron. 2013, 51, 53–64. [Google Scholar] [CrossRef]
- Grossi, M.C.; Justino, F.; Rodrigues, R.D.Á.; Andrade, C.L.T. Sensitivity of the sorghum yield to individual changes in climate parameters: Modelling based approach. Bragantia 2015, 74, 341–349. [Google Scholar] [CrossRef]
- Pereira-Flores, M.E.; Justino, F.; Ruiz-Ver, U.M.; Stordal, F.; Melo, A.A.M.; de Avila Rodrigues, R. Response of soybean yield components and allocation of dry matter to increased temperature and CO2 concentration. Aust. J. Crop Sci. 2016, 10, 808–818. Available online: https://search.informit.org/doi/10.3316/informit.323038266929010 (accessed on 17 June 2023). [CrossRef]
- do Rio, A.; Sentelha, P.C.; Farias, J.R.B.; Sibaldell, R.N.; Ferreir, R.C. Alternative sowing dates as a mitigation measure to reduce climate change impacts on soybean yields in southern Brazil. Int. J. Climatol. 2016, 36, 3664–3672. [Google Scholar] [CrossRef]
- Hampf, A.C.; Stella, T.; Berg-Mohnicke, M.; Kawohl, T.; Kilian, M.; Nendel, C. Future yields of double-cropping systems in the Southern Amazon, Brazil, under climate change and technological development. Agric. Syst. 2020, 177, 102707. [Google Scholar] [CrossRef]
- Justino, F.; Oliveira, E.C.; Rodrigues, R.D.A.; Gonçalves, P.H.L.; Souza, P.J.O.P.; Stordal, F.; Marengo, J.; da Silva, T.G.; Delgado, R.C.; da Silva Lindemann, D.; et al. Mean and interannual variability of maize and soybean in Brazil under global warming conditions. Am. J. Clim. Chang. 2013, 2013, 40455. [Google Scholar] [CrossRef]
- Pires, G.F.; Abrahão, G.M.; Brumatti, L.M.; Oliveira, L.J.; Costa, M.H.; Liddicoat, S.; Kato, E.; Ladle, R.J. Increased climate risk in Brazilian double cropping agriculture systems: Implications for land use in Northern Brazil. Agric. For. Meteorol. 2016, 228, 286–298. [Google Scholar] [CrossRef]
- Sivakumar, M.V.K.; Das, H.P.; Brunini, O. Impacts of present and future climate variability and change on agriculture and forestry in the arid and semi-arid tropics. In Increasing Climate Variability and Change; Springer: Dordrecht, The Netherlands, 2005; pp. 31–72. [Google Scholar]
- Cogato, A.; Meggio, F.; De Antoni Migliorati, M.; Marinello, F. Extreme weather events in agriculture: A systematic review. Sustainability 2019, 11, 2547. [Google Scholar] [CrossRef]
- Nogales, R.; Córdova, P. Gestión de Riesgos Climáticos en Bolivia: Condiciones y Mecanismos para la Creación de un Seguro agrícola Basado en Índices Climáticos; Centro de Investigaciones Económicas y Empresariales (CIEE)-Universidad Privada Boliviana: La Paz, Bolivia, 2013. [Google Scholar]
- Lipper, L.; Thornton, P.; Campbell, B.M.; Baedeker, T.; Braimoh, A.; Bwalya, M.; Caron, P.; Cattaneo, A.; Garrity, D.; Henry, K.; et al. Climate-smart agriculture for food security. Nat. Clim. Chang. 2014, 4, 1068–1072. Available online: https://www.nature.com/articles/nclimate2437 (accessed on 17 June 2023). [CrossRef]
- AGRIMED. Sistema de Gestión de Riesgos Agroclimáti-cos para la Adaptación a Nuevos Escenarios Climáticos. 2019. Available online: http://www.fondefriesgos.agrimed.cl/contenido.asp?Id=10 (accessed on 17 June 2023).
- Rubilar, F.I.Z. Riesgo, Clima y Decisiones de Cultivo en Chile. Master’s Thesis, Facultad de Ciencias Económicas y Administrativas, Universidad de Concepción, Concepción, Chile, 2018. [Google Scholar]
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- Notari, C.M.; Valenzuela, R.A. Cambio climático y producción de cultivos anuales esenciales. Una mirada desde la seguridad alimentaria en Chile. Rev. Política Estrateg. 2017, 129, 157–187. [Google Scholar]
Precipitation | Barley | Rice | Sorghum | Wheat | Maize | Potatoes | Sugarcane | ||
---|---|---|---|---|---|---|---|---|---|
Venezuela | + | ++ | + | +++ | + | + | − | ||
Argentina | + | ± | ++ | ++ | ++ | ++ | + | ++ | + |
Bolivia | − | − | + | ++ | − | + | + | ||
Brazil | ++ | ± | ++ | +++ | + | ++ | + | ++ | ++ |
Chile | + | + | ++ | ++ | +++ | + | + | ||
Colombia | + | ± | + | ++ | + | + | + | + | ++ |
Ecuador | + | − | + | ++ | − | + | |||
Paraguay | + | − | +++ | ++ | ++ | + | + | + | |
Peru | + | ± | + | +++ | + | + | + | + | −− |
Uruguay | + | − | ++ | +++ | ++ | ++ | + | + | + |
Adaptation Measures | Irrigation | CO2 Fertilization | Rainfed | Rainfed 2 Crops | Fertilizers |
---|---|---|---|---|---|
Wheat | Argentina ↓ | Chile ↓ Chile ↑ * | |||
Maize | Argentina ↑ | Brazil ↓ | Brazil ↓ | ||
Wine | Chile ↑ | ||||
Soybean | Brazil ↑ | Argentina ↑ | |||
Potatoes | Brazil ↑ | ||||
North Chile |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gouveia, C.M.; Justino, F.; Gurjao, C.; Zita, L.; Alonso, C. Revisiting Climate-Related Agricultural Losses across South America and Their Future Perspectives. Atmosphere 2023, 14, 1303. https://doi.org/10.3390/atmos14081303
Gouveia CM, Justino F, Gurjao C, Zita L, Alonso C. Revisiting Climate-Related Agricultural Losses across South America and Their Future Perspectives. Atmosphere. 2023; 14(8):1303. https://doi.org/10.3390/atmos14081303
Chicago/Turabian StyleGouveia, Célia M., Flávio Justino, Carlos Gurjao, Lormido Zita, and Catarina Alonso. 2023. "Revisiting Climate-Related Agricultural Losses across South America and Their Future Perspectives" Atmosphere 14, no. 8: 1303. https://doi.org/10.3390/atmos14081303
APA StyleGouveia, C. M., Justino, F., Gurjao, C., Zita, L., & Alonso, C. (2023). Revisiting Climate-Related Agricultural Losses across South America and Their Future Perspectives. Atmosphere, 14(8), 1303. https://doi.org/10.3390/atmos14081303