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Abstract: As the penetration rate of wind power in the grid continues to increase, wind speed forecast-
ing plays a crucial role in wind power generation systems. Wind speed prediction helps optimize the
operation and management of wind power generation, enhancing efficiency and reliability. However,
wind speed is a nonlinear and nonstationary system, and traditional statistical methods and classical
intelligent algorithms struggle to cope with dynamically updating operating conditions based on
sampled data. Therefore, from the perspective of optimizing intelligent algorithms, a wind speed
prediction model for wind farms was researched. In this study, we propose the Deterministic Broad
Learning System (DBLS) algorithm for wind farm wind speed prediction. It effectively addresses the
issues of data saturation and local minima that often occur in continuous-time system modeling. To
adapt to the continuous updating of sample data, we improve the sample input of the Broad Learning
System (BLS) by using a fixed-width input. When new samples are added, an equivalent number of
old samples is removed to maintain the same input width, ensuring the feature capture capability
of the model. Additionally, we construct a dataset of wind speed samples from 10 wind farms in
Gansu Province, China. Based on this dataset, we conducted comparative experiments between the
DBLS and other algorithms such as Random Forest (RF), Support Vector Regression (SVR), Extreme
Learning Machines (ELM), and BLS. The comparison analysis of different algorithms was conducted
using Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). Among them,
the DBLS algorithm exhibited the best performance. The RMSE of the DBLS ranged from 0.762 m/s
to 0.776 m/s, and the MAPE of the DBLS ranged from 0.138 to 0.149.

Keywords: wind speed; modeling; Deterministic Broad Learning System (DBLS)

1. Introduction

Today, the collection of time series data is widely used in many fields. By processing
and analyzing historical time series data, complex system models can be established [1].
These models can predict the development trends of systems and effectively solve problems
where the operating mechanisms of complex systems are difficult to analyze [2–4]. Based on
the nature of time series data, the requirements of the system problem, and the suitability
of algorithms, common processing algorithms for time series data include univariate
processing algorithms, multivariate processing algorithms [5], flat processing algorithms,
linear processing algorithms, nonlinear processing algorithms, and algorithms for handling
different time scales [6]. Researchers aim to develop models that accurately predict future
values and thus forecast the numerical values, trends, or patterns of future time points or
periods based on existing historical data [7–9].

Researchers have conducted extensive research on the analysis of complex system
problems and the stability and accuracy of time series prediction models. Many well-
performing research outcomes have been achieved. Common statistical algorithms include
Auto Regression Moving Average (ARMA) [10], Auto Regressive Integrated Moving Aver-
age (ARIMA) [11], Seasonal Auto-Regressive Integrated Moving Average (SARIMA) [12],

Atmosphere 2023, 14, 1308. https://doi.org/10.3390/atmos14081308 https://www.mdpi.com/journal/atmosphere

https://doi.org/10.3390/atmos14081308
https://doi.org/10.3390/atmos14081308
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://doi.org/10.3390/atmos14081308
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos14081308?type=check_update&version=1


Atmosphere 2023, 14, 1308 2 of 17

Seasonal Trend Loss (STL) [13], Exponential Smoothing, Linear Regression, and General-
ized Auto Regressive Conditional Heteroskedasticity (GARCH) [14]. Common intelligent
algorithms include Artificial Neural Networks (ANNs) [15], Long Short-Term Memory
(LSTM) [16] and its variants, Convolutional Neural Networks (CNNs) [17,18] and their
variants, Support Vector Regression (SVR) [19,20] and its variants, Random Forest [21–23],
Deep Learning [24,25] and its variants, and Genetic Algorithms [26,27] and their variants.
These algorithms represent static nonlinear mapping relationships, and the stability and
accuracy of prediction models are affected when sample data are dynamically updated.
Additionally, most of these algorithms are based on iterative processes using gradient
information, which results in time-consuming model updates and high computational
resource utilization when sample data are dynamically updated.

Single-Layer Feedforward Neural Networks (SLFNs) are widely used for time se-
ries data modeling due to their simple structure and high computational efficiency [28].
However, SLFNs are sensitive to parameter settings and learning rates. In light of this,
some researchers have proposed the Random Vector Functional-Link Neural Network
(RVFLNN) [29], which is widely applied in time series modeling analysis and control
systems due to its approximation performance and fast learning characteristics. However,
the predictive performance and stability of the RVFLNN model are diminished when
dealing with high-dimensional and time-varying datasets. Chen C L P and his colleagues
proposed the Broad Learning System (BLS) [30–32], which is suitable for multidimensional
and time-varying datasets. This algorithm enables fast modeling and rapid model updates,
making it applicable in various fields. Cheng Y and others proposed the D-BLS algorithm
for load trend prediction [33]. Wang M and his team combined adaptive Kalman filtering
with the BLS for battery-charging-state detection, achieving excellent detection results [34].
Pu X and his colleagues developed an online semisupervised Broad Learning System and
applied it to industrial fault detection, obtaining satisfactory performance [35]. Chu F and
his collaborators applied the BLS to nonlinear systems, effectively capturing nonlinear
features and system descriptions, thus improving the predictive accuracy and robustness
of the model [36]. Additionally, the BLS has also found numerous applications in the
energy sector.

Wind condition prediction in wind farms plays a crucial role in optimizing the power
output of wind turbines, ensuring the efficient operation of the wind farm, and facilitating
the grid integration and scheduling of wind power. Wind conditions in wind farms are
influenced by factors such as temperature, pressure, humidity, altitude, season, atmospheric
circulation, time, latitude and longitude, and geographical environment. A wind farm
is a complex and nonlinear system with multiple couplings, representing a continuous-
time series system. Currently, scholars have conducted extensive research to establish
accurate and effective wind condition models for wind farms. Chen, CL Philip provided
an approximation proof of the BLS in the literature [37] and applied it to wind speed
prediction, greatly reducing the training time of samples. Wang S and others combined
statistics with the Broad Learning System to effectively predict the formation of offshore
storms [38]. Jiao, Xuguo, and their team developed the VMD-BLS wind speed prediction
model and improved the model’s prediction accuracy through error compensation [39].
However, when considering the continuous-time updating of sample data, the stability and
accuracy of the prediction models for wind farm conditions and power generation have
difficulty meeting the desired expectations.

When the sample data are continuously updated, the aforementioned algorithms
are prone to data saturation and getting trapped in local minima. In most cases, the
stability and accuracy of the prediction models are greatly reduced. It is difficult to achieve
reliable predictions under the continuous updating of sample data. In the context of
continuous updates to wind farm wind speed, the mentioned algorithms may experience
data saturation, leading to a loss of the ability to capture dynamic features within the
models. The algorithms mentioned above may encounter data saturation and lose the
ability to capture dynamic features when the sample data are continuously updated. In
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this paper, we propose the DBLS algorithm and apply it to wind speed prediction under
continuous operating conditions, resulting in stable and accurate prediction models. To
adapt to the continuous updating of sample data, the system input is changed to a fixed-
width input. When new samples are added, an equal number of old samples are removed
to maintain a constant input width for the system. This approach preserves some of the
original features while incorporating new system characteristics through the addition of
new samples. We established a sample dataset of wind speed from 10 wind farms in Gansu
Province, China, and applied the DBLS algorithm to the constructed dataset. Furthermore,
comparative experiments were conducted between the DBLS algorithm and the RF, SVR,
ELM, and BLS algorithms. The experimental results demonstrate that the DBLS algorithm
exhibits good stability and prediction accuracy.

The main contributions of this research are as follows:

1. The primary contribution of this research project is the introduction of the Deter-
ministic Broad Learning System, addressing the issues of data saturation and local
minima that commonly occur when the sample data are continuously updated. By
adapting the system input to a fixed-width input, the proposed model achieves good
prediction accuracy.

2. The collection and establishment of a sample dataset of wind speed from 10 wind
farms in Gansu Province, China.

3. The application of the DBLS algorithm to wind speed prediction in wind farms, with
comparative experiments conducted against RF, SVR, ELM, and BLS. The experimen-
tal results demonstrate that the DBLS algorithm performs well in terms of stability
and prediction accuracy.

2. BLS

Chen [30] presented the BLS architecture based on RVFLNNs. Unlike deep networks,
it does not have multiple layers of deep network superposition, only containing an input
layer, feature layer, and output layer. The characteristics of the BLS are as follows:

(1) The input of the BLS is to perform a linear random mapping of samples to form
feature nodes, which facilitates the network to be easily integrated with other neural
networks when required.

(2) In the output layer, the BLS takes the feature node and the enhancement node together
as the input of the output layer. Here, we notice that the feature node is a linear
mapping of the input sample, which can effectively reduce the loss of sample features.

The BLS network structure is shown in Figure 1. The input sample X is mapped as
a feature node through a linear random link function. The feature nodes as a whole map
different enhancement nodes through nonlinear random functions. The middle layer of the
BLS is composed of feature nodes and enhancement nodes. The specific operation principle
will be analyzed in detail in the following content.

The mathematical theoretical support for the BLS is given in [37]. Therefore, only a
brief overview of the principles of the BLS is provided. Feature nodes are calculated using
Equation (1) [37].

Zi = φi(XWei + βei), i = 1, 2, · · · , n (1)

In Equation (1), {X, Y} ∈ RN×(M+C) is the input sample set. Zi is the ith feature
window obtained by solving Formula (1). φi is the linear mapping function. Wei and βei are
randomly generated weights and offsets, respectively.
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The enhancement nodes are obtained via Equation (2) [37], which is a linear function.

Hj = ξ j

(
XWhj + βhj

)
, j = 1, 2, · · · , m (2)

where Whj and βhj are randomly generated weights and offsets.
On the basis of Equations (1) and (2), the output layer of the BLS can be expressed via

Equation (3) [37].
Y = [Z1, Z2, · · · , Zn, H1, H2, · · · , Hm]Wm

= [Zn, Hm]Wm (3)

where Wm = [Zn, Hm]+Y. Wm is the output function weight.

3. Incremental Broad Learning System

In order to better apply the BLS network, the continuous updating of network input is
studied. Generally, when the input sample is updated, most network structures update
the weight and bias via retraining, while the BLS can update the weight and bias without
retraining. This feature greatly reduces the training time and provides a good basis for
online training.

Let the original input sample dataset be X = [xk, · · · , xk+n−1], where xk+n is an
additional input sample. At this point, the structure of the BLS network is shown in
Figure 2. The middle layer of the BLS can be represented as A(k,k+n). A(k,k+n) can be found
using Equation (4).

A(k+1,k+n) =

[
A(k,k+n−1)
AT

xk+n

]
=

[
Zk, Zk+1, · · · Zk+n−1|H1, H2, · · · Zm

[φ(Xk+nWe1 + βe1), · · · , φ(Xk+nWen + βen)|ξ(Zk+nWh1 + βh1), · · · , ξ(Zk+nWhm + βhm) ]
T

] (4)
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In Equation (4), A(k,k+n−1) represents the intermediate layer of the BLS at the time of
the original sample set input. AT

xk+n
is the middle layer addition variable corresponding to

the added input sample xk+n.
The output weights of the BLS network are updated to W(k,k+n), which can be obtained

by deriving Equation (5).

min
W(k,k+n)

= ‖A(k,k+n)W(k,k+n) −Y(k,k+n)‖ (5)

thus finding

W(k,k+n) = (AT
(k,k+n)A(k,k+n))

−1
AT
(k,k+n)Y(k,k+n) (6)

Yxk+n is the label for the new input sample xk+n+1.
Let B(k,k+n−1) = AT

(k,k+n−1)A(k,k+n−1). Furthermore, it follows that

B(k,k+n) =

[
AT
(k,k+n−1)
Axk+n

]T[
A(k,k+n−1)

AT
xk+n

]
= B(k,k+n−1) + Axk+n AT

xk+n

(7)

By deducing from Equation (6), it follows that

W(k,k+n) = (AT
(k,k+n)A(k,k+n))

−1 AT
(k,k+n)Y(k,k+n)

= B−1
(k,k+n−1)

l=k+n
∑

l=k
Axl Yl

= B−1
(k,k+n−1)[A

T
(k,k+n−1)Y(k,k+n−1) + Axk+n Yxk+n ]

= W(k,k+n−1) + B−1
(k,k+n)Axk+n [Yxk+n − AT

xk+n
W(k,k+n−1)]

(8)

B−1
(k,k+n) = B−1

(k,k+n−1) − B−1
(k,k+n−1)Axk+n [I + AT

xk+n
B−1
(k,k+n−1)Axk+n ]

−1 AT
xk+n

B−1
(k,k+n−1)

= [I−
B−1
(k,k+n−1)Axk+n AT

xk+n
1+AT

xk+n
B−1
(k,k+n−1)Axk+n

]B−1
(k,k+n−1)

(9)
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4. Deterministic Broad Learning System

From Equations (8) and (9), it can be obtained that data saturation linearity will occur
as n tends to infinity. Therefore, when introducing the BLS into dynamic systems, the
Deterministic Broad Learning System (DBLS) is proposed to solve the data saturation
problem. The structure of the DBLS is shown in Figure 3.

W(k+1,k+n) = (AT
(k+1,k+n)A(k+1,k+n))

−1 AT
(k+1,k+n)Y(k+1,k+n)

= B−1
(k+1,k+n)

l=k+n
∑

l=k+1
Axl Yl

= B−1
(k+1,k+n)[B(k,k+n)W(k,k+n) − Axk Yxk ]

= W(k,k+n) − B−1
(k+1,k+n)Axk [Yxk − AT

xk
W(k,k+n)]

(10)
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Figure 3. DBLS structure with input samples.

The DBLS uses a fixed input dimension, i.e., for each new set of data, an old set of
data is removed. For example, let the input dimension of F be fixed as n. A new set of
data (xk+n, Yk+n) is added, and a set of old data (xk, Yk) is removed to maintain the fixed
dimension. Here, the weight of F can be calculated via Equations (10) and (11).

B−1
(k+1,k+n) = B−1

(k,k+n) + B−1
(k,k+n)Axk [I− AT

xk
B−1
(k,k+n)Axk ]

−1 AT
xk

B−1
(k,k+n)

= [I +
B−1
(k,k+n)Axk AT

xk
1−AT

xk
B−1
(k,k+n)Axk

]B−1
(k,k+n)

(11)

The DBLS is effective in overcoming data saturation, as demonstrated below. The
relevant proof is made using the counterfactual method.

(1) The difference equation for the error vector W̃(k+1,k+n+1) = W0 −W(k+1,k+n+1)
with respect to the DBLS output weights is constructed.
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We perform a difference operation on both ends of Equation (10) with W0, and we
derive

W0 −W(k+1,k+n) = W0 −W(k,k+n) + B−1
(k+1,k+n)Axk [Yxk − AT

xk
W(k,k+n)]

W̃(k+1,k+n) = W̃(k,k+n) + B−1
(k+1,k+n)Axk [Yxk − AT

xk
W(k,k+n)]

= W̃(k,k+n) + B−1
(k+1,k+n)Axk [A

T
xk

W0 + ε(k)− AT
xk

W(k,k+n)]

=
[
I + B−1

(k+1,k+n)Axk AT
xk

]
W̃(k,k+n) + B−1

(k+1,k+n)Axk ε(k)

(12)

such that
L(k+1,k+n) = I + B−1

(k+1,k+n)Axk AT
xk

= B−1
(k+1,k+n)

[
B(k+1,k+n) + Axk AT

xk

]
= B−1

(k+1,k+n)B(k,k+n)

(13)

The difference equation for W̃(k+1,k+n) can be derived via

W̃(k+1,k+n) = L(k+1,k+n)W̃(k,k+n) + B−1
(k+1,k+n)Axk ε(k) (14)

(2) Stability analysis of Equation (14)
Let the eigenvalue of L(k+1,k+n) be λ and the corresponding eigenvector be x1. We

have that
L(k+1,k+n)x1 = λx1 (15)

Taking Equation (15) into Equation (13), we have

L(k+1,k+n)x1 = B−1
(k+1,k+n)B(k,k+n)x1

=
[

B(k,k+n) − Axk AT
xk

]−1
B(k,k+n)x1

= λx1

(16)

We further transform Equation (16) to obtain

(1− λ)B(k,k+n)x1 = −λAxk AT
xk

x1 (17)

Since both B(k,k+n) and Axk AT
xk

are positive definite matrices, it can be deduced from
Equation (17) that

(1− λ)λ < 0 (18)

We can obtain by solving Equation (18) that λ < 0 or λ > 1.
Equation (14) is unstable, so we can obtain

lim
k→∞

W̃(k+1,k+n) 6= 0 (19)

Clearly contradicting the previous assumptions, the DBLS does not suffer from data
update saturation and is able to converge stably. The DBLS algorithm is presented in
Algorithm 1. The DBLS algorithm flowchart is shown in Figure 4.
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Figure 4. DBLS algorithm flowchart.
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Algorithm 1 Deterministic Broad Learning System

Input: training sample X;
Output: W

1. For i = 0, i ≤ n, do
2. Random Wei, βei;
3. Zi = φi(XWei + βei), i = 1, 2, · · · , n;
4. end
5. Let Zn = [Z1, · · · , Zn];
6. For j = 0, j ≤ mdo;
7. Random Whj, βhj;

8. Hj = ξ j

(
XWhj + βhj

)
, j = 1, 2, · · · , m;

9. end
10. Let Hm = [H1, · · · , Hm];
11. Calculate W(k,k+n−1) with Equation (3);
12. while the training is doing do
13. New inputs are added as xk+n;
14. Calculate B−1

(k,k+n) with Equation (9);

15. Calculate W(k,k+n) by (8);
16. The original input xk is removed;
17. Calculate B−1

(k+1,k+n) with Equation (11);

18. Calculate W(k+1,k+n) by Equation (10);
19. end

Set W(k+1,k+n)

5. Validation and Analysis

The dataset was derived from ten wind farms located in Gansu Province, China. The
dataset includes information such as time, wind speed, temperature, air pressure, and
humidity at 70 m. It encompasses data from the year 2021. The training and testing sample
information used during the experimental analysis is presented in Table 1. Table 1 provides
the basic information of the dataset, where the four features related to wind speed are time,
temperature, pressure, and humidity. Wind speed is the label in the dataset; therefore,
the dataset encompasses a total of five categories, including time, temperature, pressure,
humidity, and wind speed.

Table 1. The dataset information.

Dataset Training Samples Testing Samples Features Classifications

Wind farm 1 28,790 6240 4 5
Wind farm 2 28,800 6200 4 5
Wind farm 3 28,700 6300 4 5
Wind farm 4 28,650 6400 4 5
Wind farm 5 28,880 6100 4 5
Wind farm 6 28,780 6250 4 5
Wind farm 7 28,790 6250 4 5
Wind farm 8 28,700 6240 4 5
Wind farm 9 28,800 6200 4 5
Wind farm

10 28,850 6300 4 5

Before conducting the experiments, the dataset was preprocessed. The DBLS model
was applied to the dataset consisting of 10 wind farms. Additionally, comparative experi-
ments were conducted between the DBLS and other algorithms such as RF, SVR, ELM, and
BLS. During the experiments, the parameters of the DBLS model were set as follows:
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1. The initial values B−1
(k,k+n−1) and W−1

(k,k+n−1) of the DBLS algorithm were derived
offline using batch BLS.

2. Number of feature windows (NnmWin): Selected from {5, 6, . . ., 20}, and in this
experiment, NnmWin was set to 7.

3. Number of feature nodes (NumFea): Selected from {5, 6, . . ., 30}, and in this experi-
ment, NumFea was set to 10.

4. Number of enhancement nodes (NumEnhan): Selected from {100, 200, . . ., 1000}, and
in this experiment, NumEnhan was set to 300.

5. Scaling factor (s) for enhancement nodes: Set to 0.8 in this experiment.
6. Regularization parameter (C): Set to 2−30 in this experiment.

The experiment utilized the data from the first 25 days of each month as the training
set, while the remaining days of the month were used as the testing set. When using the
DBLS for wind speed prediction, the Root Mean Square Error (RMSE) and Mean Absolute
Percentage Error (MAPE) are commonly adopted as evaluation metrics for assessing
prediction performance. The formulas for calculating RMSE and MAPE are as follows:

RMSE =

√√√√1
l

l

∑
i=1

(yi − ŷi)
2 (20)

MAPE =
1
l

l

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (21)

where l represents the number of samples, yi denotes the actual observed values, and ŷi
represents the predicted values.

While conducting experiments on the wind speed of the established wind farm dataset,
the DBLS model was configured with the following parameters: the feature layer window
size was set to 7, each window had 10 nodes, the enhancement nodes were set to 300,
and the regularization parameter ranged from 2−30. In order to compare the predictive
performance of the models, taking the wind speed dataset at 70 m as an example, the
DBLS model was compared with the BLS, RF, SVR, and ELM models through experiments.
Table 2 presents the parameter settings for the comparative experiments with different
models. Figure 5 presents the prediction results of different algorithms.
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Table 2. Parameter settings for different model experiments.

Dataset
RF SVR ELM BLS DBLS

Estimators Min Samples Split Max
Depth C γ C Hidden

Num
Num
Win

Num
Fea

Num
Enhan C Num

Win
Num
Fea

Num
Enhan C

Wind farm 1 100 200 20 10 0.01 10 300 7 8 800 2−30 6 10 400 2−30

Wind farm 2 200 300 20 1 0.1 1 200 6 10 900 2−30 8 12 500 2−30

Wind farm 3 100 400 30 1 0.01 10 300 5 13 600 2−30 7 10 300 2−30

Wind farm 4 150 300 40 10 0.1 1 200 10 15 500 2−30 9 12 500 2−30

Wind farm 5 120 200 40 1 0.01 10 200 8 8 700 2−30 10 10 600 2−30

Wind farm 6 140 300 50 10 0.1 10 300 6 7 400 2−30 6 9 400 2−30

Wind farm 7 150 400 40 1 0.1 1 200 7 10 500 2−30 5 8 500 2−30

Wind farm 8 200 200 20 10 0.01 10 200 10 16 700 2−30 6 9 600 2−30

Wind farm 9 150 200 20 10 1 10 300 9 14 400 2−30 7 9 400 2−30

Wind farm
10 200 300 30 1 0.1 1 300 10 15 700 2−30 7 10 300 2−30
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Figure 5. The prediction results of different algorithms: (a) Comparison graph between the wind
speed model at 30 m based on the RF algorithm and the original wind speed. (b) Comparison graph
between the wind speed model at 70 m based on the SVR algorithm and the original wind speed.
(c) Comparison graph between the wind speed model at 70 m based on the ELM algorithm and the
original wind speed. (d) Comparison graph between the wind speed model at 70 m based on the
BLS algorithm and the original wind speed. (e) Comparison graph between the wind speed model at
70 m based on the DBLS algorithm and the original wind speed.

In Table 2, the RF model includes the following parameters: estimators represent the
number of trees, min_samples_split represents the minimum number of samples required
to split a node, and max_depth represents the maximum depth of the trees. In the SVR
model, C represents the penalty factor for error terms, and γ represents the coefficient
of the kernel function. For the ELM model, C represents the regularization coefficient
and Hidden Num represents the number of hidden layers. In the BLS and DBLS models,
Num Win represents the number of windows in the feature layer, Num Fea represents the
number of nodes in each window, Num Enhan represents the number of enhancement
nodes, and C represents the regularization parameter. After setting the parameters, the
DBLS model was validated using the aforementioned dataset. The wind speed was used as
the target variable in this experiment, and the remaining features were used as input data.
The predictive metrics for different models on various datasets are presented in Table 3.

Table 3. RMSE and MAPE for different models.

Dataset
RF SVR ELM BLS DBLS

RMSE
m/s

MAPE
%

RMSE
m/s

MAPE
%

RMSE
m/s

MAPE
%

RMSE
m/s

MAPE
%

RMSE
m/s

MAPE
%

Wind farm 1 1.562 0.429 1.242 0.403 0.956 0.390 0.805 0.170 0.765 0.140
Wind farm 2 1.559 0.426 1.230 0.402 0.955 0.389 0.808 0.171 0.767 0.142
Wind farm 3 1.575 0.424 1.248 0.405 0.958 0.392 0.811 0.173 0.768 0.142
Wind farm 4 1.572 0.420 1.249 0.406 0.957 0.393 0.815 0.175 0.766 0.140
Wind farm 5 1.580 0.427 1.242 0.401 0.952 0.390 0.817 0.176 0.762 0.138
Wind farm 6 1.574 0.423 1.243 0.402 0.955 0.391 0.819 0.179 0.765 0.140
Wind farm 7 1.582 0.430 1.246 0.408 0.961 0.392 0.821 0.181 0.769 0.143
Wind farm 8 1.585 0.432 1.249 0.410 0.965 0.395 0.825 0.184 0.772 0.146
Wind farm 9 1.587 0.435 1.251 0.413 0.968 0.397 0.827 0.186 0.776 0.149

Wind farm 10 1.583 0.431 1.259 0.416 0.969 0.398 0.828 0.189 0.771 0.145

Based on the data in Table 3, it can be observed that the DBLS performs better than
the other models in predicting wind speed. In the application experiments involving
10 wind farms, a comparison between the DBLS and BLS algorithms reveals a significant
improvement in the learning accuracy of the DBLS, validating the findings in Figure 4.
Under the condition of continuous system updates and dynamic prediction, the weight
values of the BLS algorithm cannot be promptly adjusted, resulting in a weakened ability to
capture new features. However, the DBLS algorithm overcomes the issue of data saturation
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during continuous data updates by employing a fixed-width input and removing an
equal amount of old data as new data are added. Therefore, in the context of nonlinear
dynamic modeling and when system characteristics change, the weight values of the DBLS
can be quickly adjusted to rapidly adapt to the system characteristics, leading to better
prediction accuracy.

6. Discussion

This study investigated a predictive model for wind speed in wind farms. Wind
speed in wind farms is a complex nonlinear system with multiple coupled parameters.
Therefore, establishing a wind speed prediction model using intelligent algorithms has
become an important research direction. The challenge of wind speed prediction models
lies in whether they can maintain prediction accuracy and generalization stability under
dynamically changing operational conditions.

Taking advantage of the online Broad Learning System, the DBLS algorithm is pro-
posed from the perspective of dynamically updating weights. This algorithm addresses
the stability issue of prediction accuracy and the generalization characteristics of wind
speed prediction models under continuously changing operational conditions. Applying
the DBLS algorithm to 10 wind farm datasets, the RMSE errors range from 0.762 m/s to
0.776 m/s, and the MAPE errors range from 0.138 to 0.149. Experimental results indicate
high prediction accuracy and strong generalization ability.

A comparative analysis experiment was conducted by comparing the DBLS algorithm
with the RF, SVR, ELM, and BLS algorithms. From the experimental results, it can be
observed that the DBLS algorithm exhibits more prominent performance. In future research,
the DBLS algorithm will be introduced into time series prediction applications under similar
operational conditions to expand its application scope. Additionally, further research will
delve into optimizing the optimal network structure of the DBLS algorithm to enhance its
performance. Wind speeds in wind farms typically constitute complex nonlinear systems
with multiple interdependent elements. Wind speeds within wind farms often manifest
as nonstationary and nonuniform wind fields. References [40–42] thoroughly discuss and
analyze nonstationary and nonuniform wind fields, providing directions and insights for
our subsequent research. In the upcoming phases of our study, we will delve deeper into
these aspects.

7. Conclusions

The working mechanism of an online BLS was analyzed, and based on that, the DBLS
algorithm was proposed. The theoretical derivation process and convergence proof of
the DBLS algorithm were provided. The DBLS algorithm effectively solves the issue of
data saturation that occurs while continuously updating samples in nonlinear system
modeling. The initial weight values of the algorithm are obtained through batch sample
training. Subsequently, the algorithm uses fixed-width input, which means that when
new samples are inputted, an equal amount of old sample data are removed. Therefore,
the algorithm can better approximate time-varying nonlinear systems. Additionally, a
dataset of 10 wind farms in Gansu Province, China, was established. Finally, a comparative
experiment was conducted on the constructed dataset, comparing the performance of
the DBLS with the BLS, RF, SVR, and ELM algorithms. The experimental results showed
that the approximation performance of the DBLS algorithm was superior to that of other
algorithms, further validating the reliability of the corresponding theoretical analysis.

The DBLS performs well in wind speed prediction for wind farms. Additionally, it
is noted that the number of nodes in the DBLS network is currently determined through
multiple experimental trials to achieve relative optimization. Therefore, how to obtain the
optimal network structure for DBLS will be a focal point of future research. Currently, our
research team is exploring the application of the DBLS in other temporal domains, and
more relevant research outcomes will be provided in the future.
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Abbreviations and Symbols

DBLS Deterministic Broad Learning System
BLS Broad Learning System
RF Random Forest
SVR Support Vector Regression
ELM Extreme Learning Machines
RMSE Root Mean Square Error
MAPE Mean Absolute Percentage Error
ARMA Auto Regression Moving Average
ARIMA Auto Regressive Integrated Moving Average
SARIMA Seasonal Auto Regressive Integrated Moving Average
STL Seasonal Trend Loss
GARCH Generalized Auto Regressive Conditional Heteroskedasticity
ANNs Artificial Neural Networks
LSTM Long Short-Term Memory
CNNs Convolutional Neural Networks
SVR Support Vector Regression
SLFNs Single-Layer Feedforward Neural Networks
RVFLNN Random Vector Functional Link Neural Network
Zi the ith feature window
φi the linear mapping function
Wei the weights of the φi function
βei the biases of the φi function
ξ j the mapping function of the enhancement node
Whj the weights of the ξ j function
βhj the biases of the ξ j function
Wm the output function weight
X the input sample
A(k,k+n−1) the intermediate layer of the BLS

AT
xk+n

the middle layer addition variable corresponding to the added
input sample xk+n

B(k,k+n−1) B(k,k+n−1) = AT
(k,k+n−1)A(k,k+n−1)

B−1
(k,k+n) the inverse of B(k,k+n)

B−1
(k+1,k+n) the inverse of B(k+1,k+n)

W̃(k+1,k+n+1) the difference equation
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