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Abstract: Extreme rainfall is the main contributing factor to landslides. Therefore, it is of great
significance to monitor and forecast short-term rainfall in landslide-prone areas. However, the spatial
scale of landslide-prone areas is small, and traditional numerical forecast models have difficulty
in accurately forecasting rainfall on this scale. To solve the above problem, this study proposes a
short-term rainfall forecasting method for landslide-prone areas by combining the back-propagation
neural network (BP-NN) algorithm and global navigation satellite system (GNSS) observations to
achieve accurate short-term rainfall forecasting in landslide-prone areas. Firstly, a high-precision
atmospheric weighted-average temperature (Tm) model is established using radiosonde data to
obtain high-precision precipitable water vapor (PWV) estimates. Secondly, the BP-NN algorithm is
introduced, and the GNSS-derived PWV, temperature and pressure from a meteorological station,
and rainfall for the previous and next hour are used as input parameters to establish a BP-NN-based
rainfall forecast model. As an illustrative case, experiments are conducted in a landslide-prone
area in Yunnan Province using data from 15 GNSS stations and the corresponding meteorological
station. Statistical results show that the established regional Tm model has high accuracy, with an
average root mean square (RMS) and bias of 3 K and 0.15 K, respectively. In addition, the short-term
rainfall forecast model based on the BP algorithm achieves a true detection rate of up to 93.70% and
a false forecast rate of as low as 38.30%, which is significant for short-term rainfall forecasting in
landslide-prone areas.

Keywords: GNSS; BP-NN; rainfall; landslide-prone areas

1. Introduction

Landslides are a serious threat to human life, property, and the living environment.
According to statistics from the Centre for Research on the Epidemiology of Disasters
(CRED) released in 2014, in the 20th century, approximately 13,000 people worldwide
died every year as a result of landslides and flooding events, resulting in economic losses
exceeding 500 billion US dollars [1]. Rainfall is the main contributing factor to landslides,
and the months with a high frequency of landslides are the same as those with frequent
heavy rainfall events [2,3]. Therefore, an accurate warning of short-term heavy rainfall with
a lead time of several hours would help reduce the impact of landslides on human activities.

In the field of rainfall-based landslide warning research, Moya-Álvarez et al. [4]
completed a precipitation threshold equation test experiment by collecting precipitation
data from 96 landslide-prone areas in South Africa’s Campania region. They also proposed
a rainfall-based landslide-prone area warning model based on the precipitation threshold.
Ma et al. [5] developed a comprehensive landslide monitoring and warning system for the
Norwegian Meteorological Institute based on five key components: automatic hydrological
and meteorological stations, landslide and flood historical databases, hydrometeorological
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forecast models, landslide forecast models, and threshold or return period. Pal et al. [6] used
the Internet of Things technology to continuously monitor slopes around the Himalayas
and studied the relationship between slope angle, water content, and precipitation. They
also proposed a precipitation threshold suitable for the region and established a landslide
monitoring and warning system based on precipitation as the primary warning indicator.
However, although the preceding studies have constructed rainfall threshold conditions
applicable for providing warnings of possible landslides, they have not issued warnings
for short-term heavy rainfall events in landslide-prone areas. Therefore, there are still
limitations in forecasting landslide events caused by short-term heavy rainfall events.

In recent years, the global navigation satellite system (GNSS) has been extensively
employed for remote sensing of atmospheric water vapor and monitoring extreme weather
conditions [7]. Atmospheric water vapor can be reflected by precipitable water vapor
(PWV), a measure of the total water vapor in the air column of a unit cross-section from the
ground to the top of the atmosphere [8]. Compared with traditional water vapor retrieval
techniques, GNSS-derived PWV has advantages such as high accuracy, high temporal
and spatial resolution, low cost, and all-weather availability. GNSS-derived PWV, as a
key parameter of GNSS meteorology, has also been used to forecast rainfall events in
recent years. Benevides et al. [9] used the least squares principle to analyze the long-term
trend in PWV and found that most rainfall events occurred during the short period after
a short-term accumulation in PWV. Based on the above findings, a short-term rainfall
warning model was proposed suitable for Portugal’s Lisbon region, using the maximum
growth rate in PWV as the forecasting factor. The true detection rate (TDR) of the proposed
rainfall forecast model was approximately 75%, while the false forecast rate (FFR) was
60–70%. Zhao et al. [10] proposed a rainfall forecasting method combining two tropospheric
parameters, zenith tropospheric delay (ZTD) and PWV, to improve the accuracy of rainfall
warnings, which addressed the low accuracy and high FFR of existing methods. Their
experimental results showed that with their approach, the TDR could reach over 95%, and
the FFR was only about 30%. Li et al. [11] developed a novel cumulative-anomaly-based
model (NCAM) by incorporating 14 predictive factors including ZTD and PWV. Their
results showed that the NCAM model can accurately forecast 99.1% of heavy rainfall events
with a lead time of 2.87 h and with an FFR of only 22.4%.

The back-propagation neural network (BP-NN) is a type of multilayer feedforward
artificial neural network with memory association, which has the advantages of the ability
to solve complex internal mechanism problems, independent learning and adaptation, and
parallel processing. In addition, neural networks can extract input–output relationships
without clear physical conditions and use error gradient descent algorithms to minimize
mean squared errors between outputs. Therefore, neural networks are suitable for meteoro-
logical forecasting applications [12,13]. Hashim et al. [14] found that BP-NN is suitable for
rainfall forecasts using various meteorological parameters, such as temperature, pressure,
and humidity. Srivastava et al. [15] used artificial neural network algorithms to forecast
daily precipitation in northern India and achieved good forecast results (Srivastava et al.
2017). Guan et al. [16] applied the BP-NN algorithm to the generation of high-precision
rainfall forecasts at 26 stations in the Chaohe region from 1958 to 2012 and achieved good
rainfall forecast results. Benevides et al. [17] used GNSS-derived PWV data and various
meteorological parameters to establish a nonlinear autoregressive exogenous neural net-
work model (NARX) for detecting heavy rainfall events. Li et al. [18] established a BP-NN
rainfall forecast model by taking seven meteorological variables as input data for detecting
heavy precipitation. Although previous research on rainfall warnings using the BP-NN
algorithm and GNSS data has achieved good results in urban areas, the applicability of
existing studies to landslide-prone areas has not previously been analyzed. To further
validate the potential flexibility of this method for rainfall forecasting, this study proposes a
novel rainfall forecast method by combining the BP-NN algorithm and GNSS observations
for landslide-prone areas. The proposed method can forecast rainfall events in the next
2–6 h, and 15 GNSS stations and corresponding meteorological data from a landslide-prone
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area in Yunnan Province are selected to validate the performance of the proposed method.
Experimental results show that the proposed method has a good potential for rainfall
forecasting in landslide-prone areas.

2. Study Area and Data Description
2.1. Study Area

A landslide-prone slope located in a specific autonomous county in Yunnan Province
is selected as the study area. The county is characterized by high mountain canyons, contin-
uous mountain ranges, rugged terrain, and winding rivers. The terrain gradually ascends
from south to north, with altitudes of 1620–4880 m. The area belongs to a subtropical
monsoon climate with even rainfall distribution, with an annual average temperature is
16.9 ◦C, and with an annual average rainfall of up to 1096.5 mm. The overall geomorphic
form of the selected slope is fan-shaped. A total of 15 GNSS stations have been installed
in the landslide-prone area since May 2020. The geographical distribution of the GNSS
stations used in the experiment is shown in Figure 1.

Atmosphere 2023, 14, x FOR PEER REVIEW 3 of 16 
 

 

applicability of existing studies to landslide-prone areas has not previously been ana-
lyzed. To further validate the potential flexibility of this method for rainfall forecasting, 
this study proposes a novel rainfall forecast method by combining the BP-NN algorithm 
and GNSS observations for landslide-prone areas. The proposed method can forecast rain-
fall events in the next 2–6 h, and 15 GNSS stations and corresponding meteorological data 
from a landslide-prone area in Yunnan Province are selected to validate the performance 
of the proposed method. Experimental results show that the proposed method has a good 
potential for rainfall forecasting in landslide-prone areas. 

2. Study Area and Data Description 
2.1. Study Area 

A landslide-prone slope located in a specific autonomous county in Yunnan Province 
is selected as the study area. The county is characterized by high mountain canyons, con-
tinuous mountain ranges, rugged terrain, and winding rivers. The terrain gradually as-
cends from south to north, with altitudes of 1620–4880 m. The area belongs to a subtropical 
monsoon climate with even rainfall distribution, with an annual average temperature is 
16.9 °C, and with an annual average rainfall of up to 1096.5 mm. The overall geomorphic 
form of the selected slope is fan-shaped. A total of 15 GNSS stations have been installed 
in the landslide-prone area since May 2020. The geographical distribution of the GNSS 
stations used in the experiment is shown in Figure 1. 

 
Figure 1. Geographical distributions of the GNSS and meteorological stations in the selected land-
slide-prone area in Yunnan Province. 

2.2. Data Description 
(1) GNSS data 

Four GNSS stations (G01, G02, GZ3, and T01) located in the selected landslide-prone 
area are used as examples for the experiment, which covered the whole of 2021, with a 
data sampling rate of 15 s. The geodetic heights of the four selected GNSS stations are 
2194.69 m, 2078.24 m, 2434.86 m, and 2172.61 m, respectively. The observation data are 
processed using the precise point positioning (PPP) technique. The PPP technique is a data 
processing method for pseudo-range and carrier phase observations received by one 
GNSS receiver that makes use of accurate error correction models and precise satellite 
ephemeris and clock offset information. The PPP software used in this paper used ex-
tended Kalman filtering for parameter estimation, while receiver coordinates, zenith trop-
ospheric delay (ZTD), and receiver clock error were estimated as unknown parameters. 
Table 1 gives the specific processing strategy for the PPP technique. 

  

Figure 1. Geographical distributions of the GNSS and meteorological stations in the selected landslide-
prone area in Yunnan Province.

2.2. Data Description

(1) GNSS data

Four GNSS stations (G01, G02, GZ3, and T01) located in the selected landslide-prone
area are used as examples for the experiment, which covered the whole of 2021, with a
data sampling rate of 15 s. The geodetic heights of the four selected GNSS stations are
2194.69 m, 2078.24 m, 2434.86 m, and 2172.61 m, respectively. The observation data are
processed using the precise point positioning (PPP) technique. The PPP technique is a data
processing method for pseudo-range and carrier phase observations received by one GNSS
receiver that makes use of accurate error correction models and precise satellite ephemeris
and clock offset information. The PPP software used in this paper used extended Kalman
filtering for parameter estimation, while receiver coordinates, zenith tropospheric delay
(ZTD), and receiver clock error were estimated as unknown parameters. Table 1 gives the
specific processing strategy for the PPP technique.

Table 1. Specific data processing strategies for the PPP technique.

Observations

Satellite system GPS
Data frequency L1 + L2

Sampling interval 30 s
Height cut-off angle 10◦
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Table 1. Cont.

Error model

Satellite orbit Precision track (5 min)
Satellite clock Precision clock (30 s)

Relativistic effect Model correction
Ionospheric delay Ionosphere free combination

Zenith hydrostatic delay Saastamoinen model
Zenith wet delay Parameter estimation

Tropospheric mapping function GMF

Tide correction Solid tides, sea tides, and polar tides
(IERS 2010 [19])

Satellite antenna phase center deviation igs14.atx (consider PCO, PCV) correction
Receiver antenna phase center deviation igs14.atx (consider PCO, PCV) correction

Antenna phase wrap Model correction

Parameters to be estimated

Station coordinates Static
Receiver clock White noise

Zenith wet delay Random walk
Ambiguity Floating point solution

(2) Radiosonde data

The Integrated Global Radiosonde Archive Version 1 (IGRA Ver. 1) was created by the
US National Climatic Data Center (NCDC) in the 1960s. IGRA Ver. 1 uses sensors installed
on radiosonde balloons to collect meteorological data, such as temperature, pressure,
humidity, and wind speed, at various heights from the ground up to 30 km. Thereafter,
these observations are transmitted to ground stations [20]. IGRA provides important
meteorological parameters, such as temperature, pressure, and water vapor, at altitudes of
up to about 30 km above ground level for over 1500 stations worldwide [21]. In August
2016, NCDC released the second generation IGRA (IGRA2), which is superior to IGRA Ver.
1 in terms of the number of stations, observation duration, and data sources. In this study,
12 radiosonde stations from IGRA2 located around the landslide-prone area are selected
to construct a regional atmospheric weighted-average temperature model (Tm) for the
calculation of high-precision PWV using GNSS observations.

(3) ECMWF data

The ERA5 data set, released by the European Centre for Medium-Range Weather
Forecasts (ECMWF) on 14 June 2018, is a fifth-generation re-analysis product of the ECMWF.
It contains hourly global atmospheric, land surface, and oceanic parameters from 1950 to the
present. This data set provides atmospheric parameters at 37 pressure levels, with a spatial
resolution of 0.25◦ × 0.25◦. Compared with the equivalent fourth-generation re-analysis
data (ERA-interim), ERA5 uses the latest Integrated Forecast System (IFS) Cy41r2 and has
a higher horizontal resolution of 31 km (compared with 80 km) and a higher temporal
resolution of 1 h (compared with 6 h). Therefore, ERA5 data (i.e., pressure, temperature, and
PWV) in the landslide-prone area from 2021 were employed for experimental validation.

3. Methodology
3.1. Retrieval of GNSS-Derived PWV

ZTD includes two components, namely, zenith wet delay (ZWD) and zenith hydro-
static delay (ZHD), which account for approximately 10% and 90% of ZTD, respectively.
The atmospheric water vapor content can be calculated from ZWD [10]. For the retrieval of
GNSS-derived PWV, the GNSS observation is first processed using PPP or relative position-
ing techniques to estimate high-precision ZTD values [22,23]. ZHD can be calculated using
the Saastamoinen model, which combines station position information, geodetic height
values, and pressure observations [24].

ZHD =
0.002277 · Ps

1− 0.00266 · cos(2φ)− 0.00028 · H (1)
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where Ps is the surface pressure (hPa), H is the elevation of the GNSS station, and φ is the
geographical latitude of the GNSS station. Therefore, ZWD can be further calculated as
follows: ZWD = ZTD − ZHD. Lastly, ZWD is converted into PWV in the zenith direction
through a conversion factor [25], which is expressed as follows:

PWV = ∏ ·ZWD (2)

where the conversion factor (Π) can be calculated using the Tm. The calculation expression
is as follows:

∏ =
106

ρwRw(k
′
2 + k3/Tm)

(3)

where ρw is the density of water (1.0 × 103 kg/m3), Rv is the gas constant of atmospheric
water vapor (461.495), k′2 and k3 are the refractive constants of the atmosphere, and Tm is
calculated based on empirical formulas. In this study, a regional Tm model is established.

3.2. Establishment of High-Precision Regional Tm Model

Yao et al. [26] showed that Tm is related to surface temperature (T) and also to
temperature, pressure, and water vapor pressure. In addition, annual and semi-annual
periods are used to reflect seasonal and geographical changes in Tm. However, previous
studies have only used partial correlation factors to establish the Tm model, such as
considering only temperature [27], surface temperature [28], elevation [29], or periodic
factors [30–33]. To rectify this, this study further proposes a high-precision regional Tm
model that considers changes in pressure, temperature, relative humidity, and periodic
terms. The specific expression of the Tm model is as follows:

Tm = A0 + A1 × T + A2 × P + A3 × RH + β1 cos
(

doy
365.25

2π

)
+ β2 cos

(
doy

365.25
4π

)
(4)

where A0 is the initial value of Tm; T, P, and RH represent temperature, pressure, and
relative humidity, respectively; A1, A2, and A3 are coefficients of T, P, and RH, respectively;
β1 and β2 are the annual and semi-annual period coefficients, respectively, of Tm; and doy
is the day of the year. Radiosonde profiles are measured in land–atmosphere coupling
(LoCo) in the atmosphere, and can, therefore, be considered the best information to use as
a reference in the evaluation of the Tm model [34]. In this study, data from 12 radiosonde
stations in the southwestern region from 2010 to 2020 are selected and the model coefficients
are estimated using the least squares method.

3.3. Short-Term Rainfall Forecasting Model for a Landslide-Prone Area
3.3.1. General Steps for the Short-Term Rainfall Forecasting Model

To overcome the disadvantage of traditional short-term rainfall forecast models based
on the least squares algorithm, a rainfall forecasting model using the BP-NN algorithm is
proposed in this study. The proposed model can simultaneously consider the multidimen-
sional nonlinear relationships between multiple meteorological parameters and rainfall
events and compensates for the deficiency of traditional models that cannot accurately
forecast rainfall based on a single forecasting factor. The BP-NN algorithm can establish a
short-term rainfall forecast model without relying on a clear physical relationship between
input and output parameters. Four schemes are designed at 4 of 15 GNSS stations. The spe-
cific experimental scheme is presented in Table 2. Each scheme contains two experimental
elements: a simulation and a forecasting experiment. As shown by scheme 1 in Table 2, the
BP-NN algorithm is used to construct nonlinear relationships between data of the previous
hour of P, T, PWV, and rainfall, and data of the next hour of rainfall at the season scale for
three GNSS stations (i.e., G01, G02, and GZ3). The correct simulation and false forecast
times are obtained by comparing the actual rainfall with the simulated rainfall output
using the BP-NN algorithm. Moreover, the TDR and FFR of the simulation experiment are
calculated. Data on P, T, PWV, and rainfall of the previous hour corresponding to the fourth
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station (T01) are used as input for the BP-NN rainfall warning model. Thereby, data on the
forecasted rainfall of the next hour for the fourth station are obtained. By comparing with
the measured rainfall data, the correct and false rainfall warning times are obtained, and
the TDR and FFR of the forecasting experiment are further calculated. Figure 2 shows the
general steps of constructing a short-term rainfall forecast model for the landslide-prone
area based on the BP-NN algorithm using GNSS observations.

Table 2. Design of the simulation and forecasting experiment scheme.

Scheme Simulation Experiment Forecasting Experiment

1 G01, G02, GZ3 T01
2 G01, G02, T01 GZ3
3 G01, T01, GZ3 G02
4 T01, G02, GZ3 G01

Input Pressure, Temperature, PWV, and rainfall data from the previous hour
Output Rainfall data for the next hour
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3.3.2. Determination of Key Parameters for the BP-NN Algorithm

By considering the drawbacks of the traditional BP-NN algorithm, such as slow con-
vergence, susceptibility to local minima, and training paralysis, the Levenberg–Marquardt
(L-M) training algorithm was introduced to improve the weight correction method of
BP-NN [35]:

∆W = (JT J + µI)
−1

JTe (5)

where ∆W is the corrected weight of the L-M algorithm, J is the Jacobian matrix of the
derivative of the network error to the weight, e is the error vector, and µ is a scalar—when µ
is 0, the L-M equation uses the Newton method, and when µ is larger, the L-M equation uses
the gradient method. The improved L-M method has two advantages compared with the
traditional BP-NN algorithm. Firstly, the L-M method has an extremely fast convergence
speed. Secondly, this method combines the advantages of the gradient descent and Newton
methods, and its performance is considerably more stable than the traditional algorithm.
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The number of hidden layer nodes and the learning rate are two key parameters
that determine the forecast accuracy of the BP-NN algorithm. Choosing an appropriate
method to determine these parameters is a key step in building the BP-NN model. If the
number of hidden layer nodes is too small, then the overall convergence speed of the
neural network will slow down and it is easy to fall into local minima. Similarly, having
too few hidden layer nodes limits the ability of the BP-NN to establish complex decision
boundaries, resulting in difficulty in training the BP-NN or in recognizing new samples,
and a reduced fault tolerance. However, if the number of hidden layer nodes is too high,
this will lead to a long learning time and reduced generalization ability of the BP-NN
model. In this study, the optimal number of hidden layer nodes is determined based on
the Kolmogorov theorem. The equivalent relationship between the numbers of input and
hidden layer neurons is as follows [35]:

Nhid = 2× Nin + 1 (6)

where Nhid, Nin are the numbers of nodes in the hidden and input layers, respectively.
The number of hidden layer nodes selected according to the Kolmogorov theorem can
accurately express any mapping and make the hidden layer capacity and training time
coordinate with each other.

The selection of the learning rate has always been an issue with the BP-NN algorithm.
If the learning rate chosen is too small, then, while it can ensure the convergence of the
neural network, it requires numerous iterations, resulting in slow convergence. Conversely,
f the learning rate chosen is too large, then it may lead to over-correction, resulting in the
neural network struggling to converge [36]. Therefore, the learning rate is determined
based on the following empirical formula proposed by Kung and Hwang [37]:

η = 2/(Nhid + 1) (7)

where η and Nhid are the learning rate and number of hidden layer nodes, respectively.

3.4. Evaluation Index

To allow comparison with previous studies [11,17], the TDR and FFR are selected
as evaluation indexes for the proposed rainfall forecast model. The specific calculation
formulas for the TDR and FFR are as follows:

TDR = Ntrue
Nacutal

FFR =
N f alse
Nactual

(8)

where Ntrue refers to the correct number of model rainfall forecasts, Nacutal refers to the
number of actual occurrences of rainfall, and N f alse refers to the false number of model
rainfall forecasts.

RMS =

√
1
n

n

∑
i=1

(
Xi − X′i

)2 (9)

bias =
1
n

n

∑
i=1

(Xi − X′i) (10)

where X′
i

refers to the reference value, X is the modeled value, and n is the total number
of samples.

4. Result and Discussion
4.1. Validation of the GNSS-Derived ZTD

The pressure, temperature, and PWV data provided by ERA5 are used to calculate
ZTD at the four selected GNSS stations, which is used to evaluate the accuracy of the GNSS-
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derived ZTD. Figure 3 shows the distribution of the ZTD probability density calculated by
GNSS and ERA5 at the four stations (G01, G02, GZ3, and T01) across the whole of 2021. It
can be observed that the GNSS-derived and ERA5-provided ZTD have good consistency.
The correlation coefficients between the GNSS-derived and ERA5-provided ZTD at the four
stations are all as high as 0.97. The statistical results show that the average RMS and bias of
ZTD at the 15 GNSS stations in the experimental area for the whole of 2021 are 16.8 mm
and −7.1 mm, respectively. This result indicates that the derivation of ZTD from GNSS
observations has good performance.
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4.2. Validation of the Regional High-Precision Tm Model

Four models are compared to evaluate the accuracy of the proposed regional Tm
model. Model 1 considers only the periodic term. Model 2 considers the periodic term
and T. Model 3 considers the periodic term, T, and P. The Tm model developed in this
study is called RTm. The Tm data calculated from four models are obtained from 2020
to 2021 and compared with the Tm values obtained from five radiosonde stations as the
real values. Figure 4 shows the statistical results for each model at the five radiosonde
stations. It can be found that the Tm model (RTm) considering multiple meteorological
and periodic factors has higher accuracy than the other Tm models. This result confirms
the correlation between Tm and multiple meteorological factors. Moreover, this result
verifies the good performance of the regional model established under the conditions of
multiple meteorological factors. The Tm model, including temperature (Model 2), also has
significantly better performance than the Tm model considering only annual and semi-
annual periods (Model 1). This outcome indicates that the model is significantly affected by
temperature. The accuracy of the Tm model only slightly improved after also considering
pressure and relative humidity, indicating that the impact of these meteorological factors
on this model is limited. Lastly, the regional Tm model proposed in this study has better
performance than previous Tm models.
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Nine representative Tm models are selected to further validate the accuracy of the
proposed RTm model: GTm-I [28], GTm-H [29], GTrop [38], GPT2w [32], IGPT2w [39],
GPT3 [33], CTm [40], NNTm [41], and Bevis [25]. Figure 5 shows the comparison results
of different models in calculating Tm and the Tm derived from the data from the five
radiosonde stations from 2020 to 2021. As can be seen, the RTm model has the highest
accuracy and good stability in the study area. Table 3 presents the specific statistical results
of the 10 models, which reveal, while that the RMS of the CTm and RTm models are both
below 3 K, the RTm model is still superior to the CTm model.
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Table 3. Comparison of the accuracy of 10 Tm models at 12 RS stations from 2020 to 2021.

Model Bevis GPT2w GPT3w GTm-I GTm-H

RMS 5.84 3.29 5.21 4.46 3.43
Bias 4.30 0.83 −3.00 −2.21 −0.96

Model GTrop IGPT2w NNTm CTm RTm

RMS 3.27 3.42 3.18 2.90 2.86
Bias 0.59 1.01 2.43 0.55 0.14

4.3. Validation of the GNSS-Derived PWV

The ERA5-provided PWV is selected to evaluate the performance of the GNSS-derived
PWV. Figure 6 shows the comparison of the long time series of PWV at the four selected
GNSS stations between GNSS and ERA5 over the whole of 2021. It can be observed that the
GNSS-derived and ERA5-provided PWV follow the same trend and have a high degree of



Atmosphere 2023, 14, 1309 10 of 15

agreement, with a correlation coefficient exceeding 0.97. The statistical results show that the
average RMS/bias/MAE of the four stations are 3.99/−1.08/2.84 mm, respectively, with the
G02 station having the largest deviation with RMS/Bias/MAE of 4.33/−2.05/3.24 mm, and
the GZ3 station having the smallest deviation with RMS/Bias/MAE of 2.64/−0.71/2.12 mm.
These results show that the GNSS-derived PWV using the PPP technique has good accuracy.
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4.4. Validation of the Rainfall Forecast Model Using the BP-NN Algorithm

The input parameters of the rainfall forecast model based on the BP-NN algorithm are
PWV, T, P, and rainfall data. The corresponding number of input nodes is 4. According to
the theory introduced in Section 3.3, the number of hidden layer nodes and learning rate
for establishing the rainfall forecast model are determined to be 9 and 0.2, respectively, and
there is a single output node. Therefore, the basic structure of the rainfall forecast model
constructed by the BP-NN algorithm in this experiment is 4-9-1. The activation functions
for the output and hidden layer nodes of the BP-NN are ReLU and Sigmoid, respectively.
The weights and thresholds of the BP-NN model initialization are randomly generated
based on the Nguyen–Widrow algorithm. Moreover, the L-M optimization weight method
is used to optimize the BP-NN model. Considering that the experiment aims to forecast
whether rainfall will occur in the next hour, rainfall intensity and duration are not forecast.
Therefore, the observed and simulated/forecasted rainfall events are binarized.
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(1) Determination of the rainfall threshold

The simulated output of the rainfall forecast model can be negative and fluctuate
around 0 mm. Hence, an accurate threshold is required to determine the simulated rainfall
threshold. The rainfall threshold in this study is determined based on the highest TDR
and lowest FFR of the rainfall forecast model using the BP-NN algorithm. The method for
determining the rainfall threshold is to set an initial variable N, and set simulated rainfall
values less than or equal to N mm to 0 mm, and simulated rainfall values greater than
N mm to 1 mm. Thus, the range of the variable N is 0–1 mm. Figure 7 shows the results
of the simulated and forecast TDR and FFR for the spring rainfall in 2021 under different
rainfall threshold settings for scheme 1, where Figure 7a,b show the simulated rainfall
forecast results and external rainfall forecast results, respectively. It can be seen that as the
rainfall threshold N increases, the TDR decreases and the FFR increases. In addition, the
trend in the forecast experiment is similar to that in the simulated experiment. The TDR
and FFR also decrease as the threshold increases. Therefore, the rainfall threshold for the
simulated and forecast rainfall events is 0 mm according to the selection principle of the
rainfall threshold with the highest TDR and lowest FFR. Furthermore, the corresponding
accuracies of the proposed rainfall forecasting model are the highest, at 97.53%/2.48% and
96.30%/42.22%, respectively.
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(2) Simulated result of the rainfall forecast model

The simulated result of the remaining schemes is obtained using the preceding method
for determining rainfall threshold values. Figure 8 shows the TDR and FFR of different
schemes for different seasons over the whole of 2021. It can be seen that the TDR of all
schemes is the same for different seasons (i.e., over 95%). In addition, the FFR is below 50%.
The FFR in the winter is also higher than that in other seasons across all the schemes. Such
a result indicates that the accuracy of the BP-NN algorithms in winter rainfall forecasting
is lower than that in other seasons. In addition, it should be noted that the FFR values of
schemes 3 and 4 are significantly lower than those of schemes 1 and 2. This result indicates
that schemes 3 and 4 have higher accuracy than schemes 1 and 2. The simulated rainfall
results for the four schemes based on the BP-NN model show that the TDR is similar among
different schemes, while the FFR differs significantly among the schemes. Statistical results
show that the average TDR and FFR for the four schemes are 94.6% and 42.1%, respectively.
This outcome indicates that the simulated accuracy of the model constructed based on the
BP-NN algorithm is consistent with the expected experimental results and can be further
applied to forecast experiments.
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(3) Forecast result of the rainfall forecast model

To further validate the accuracy of the proposed short-term rainfall forecast model
based on the BP-NN algorithm, Figure 9 presents the TDR and FFR of the four experimental
schemes for rainfall forecast in different seasons. The results show that the lowest TDR of
rainfall warning occurred in the summer of scheme 2, with a value of only 89.47%, and
the highest TDR occurred in the spring and winter of scheme 2, both of which are 100%.
However, the FFR for each scheme and season exhibited a highly random phenomenon,
with the highest value occurring in the spring of scheme 2 and the lowest value occurring
in the summer of scheme 3 (48.14% and 26.93%, respectively). These results indicate that
the short-term rainfall forecast model based on the BP-NN algorithm has good adaptability
among different seasons and schemes and can achieve good rainfall forecast accuracy. The
statistical results show that the average TDR and FFR of the constructed rainfall forecast
model are 93.70% and 38.30%, respectively. This result further verifies the performance and
applicability of the proposed rainfall forecast model in landslide-prone areas.

Atmosphere 2023, 14, x FOR PEER REVIEW 13 of 16 
 

 

 
Figure 8. TDR and FFR for rainfall forecasting under different seasons for the four schemes, where 
(a) and (b) are the TDR and FFR of proposed rainfall forecasting model, respectively 

(3) Forecast result of the rainfall forecast model 
To further validate the accuracy of the proposed short-term rainfall forecast model 

based on the BP-NN algorithm, Figure 9 presents the TDR and FFR of the four experi-
mental schemes for rainfall forecast in different seasons. The results show that the lowest 
TDR of rainfall warning occurred in the summer of scheme 2, with a value of only 89.47%, 
and the highest TDR occurred in the spring and winter of scheme 2, both of which are 
100%. However, the FFR for each scheme and season exhibited a highly random phenom-
enon, with the highest value occurring in the spring of scheme 2 and the lowest value 
occurring in the summer of scheme 3 (48.14% and 26.93%, respectively). These results in-
dicate that the short-term rainfall forecast model based on the BP-NN algorithm has good 
adaptability among different seasons and schemes and can achieve good rainfall forecast 
accuracy. The statistical results show that the average TDR and FFR of the constructed 
rainfall forecast model are 93.70% and 38.30%, respectively. This result further verifies the 
performance and applicability of the proposed rainfall forecast model in landslide-prone 
areas. 

 
Figure 9. TDR and FFR accuracy of rainfall forecasting for the four schemes in the forecasting ex-
periments on a seasonal scale ((a): 80–90%: orange triangle; 90–100%: blue diamond; (b): 20–30%: 
green circle; 30–40%: orange triangle; 40–50%: blue diamond). 

4.5. Discussion 
It can be concluded from Figure 4 and Table 3 that the proposed RTm model has 

better performance than other typical empirical Tm models. This indicates that Tm is af-
fected by multiple meteorological factors, and also has regional characteristics, therefore, 
those two aspects should both be considered when establishing a high-precision Tm 

Figure 9. TDR and FFR accuracy of rainfall forecasting for the four schemes in the forecasting
experiments on a seasonal scale ((a): 80–90%: orange triangle; 90–100%: blue diamond; (b): 20–30%:
green circle; 30–40%: orange triangle; 40–50%: blue diamond).

4.5. Discussion

It can be concluded from Figure 4 and Table 3 that the proposed RTm model has better
performance than other typical empirical Tm models. This indicates that Tm is affected by
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multiple meteorological factors, and also has regional characteristics, therefore, those two
aspects should both be considered when establishing a high-precision Tm model. At the
same time, it should be noted that this method is only suitable for regional Tm modeling
with high precision, as a global Tm model cannot be well-described by local parameters.

Compared to GNSS-derived PWV, ERA5-provided PWV is an underestimate when
PWV levels are high (Figure 6). This is because the ERA5-provided PWV is a numerical
assimilation result and cannot accurately capture small-scale extreme weather changes.
In addition, it can be found that the PWV difference is largest from June to August for
those stations, this is because June to August corresponds to the Summer, and levels of
atmospheric water are larger in Summer than in other seasons. Therefore, the difference in
PWV between GNSS and ERA5 is slightly larger during this period.

Although the TDR of the proposed rainfall forecasting model can reach up to 93%
while the FFR is lower than 40%, it should be noted that the TDR and FFR are slightly
different for different schemes. This is because the input data for training the different
rainfall forecasting models are different, and the established models are not exactly the
same due to the training data being different. Therefore, working out how to obtain high-
quality and extensive training data for the BP-NN algorithm is very important to establish
a stable rainfall forecasting model. In addition, it also can be seen that the proposed model
has poorer performance in winter due to the occurrence of less rainfall in this season.

5. Conclusions

To overcome the limitations of traditional numerical forecasting in forecasting rainfall
on the small spatial scale of landslide-prone areas, this study proposes a short-term rainfall
forecast model that combines the BP-NN algorithm and GNSS observations. To obtain
high-precision GNSS-derived PWV, the Tm model of the study area is first established
using data from 12 radiosonde stations. Thereafter, the rainfall forecast model based on
the BP-NN algorithm is trained using parameters such as PWV, temperature, and pressure
obtained from GNSS and meteorological stations. The trained model is then used to forecast
rainfall in the next hour. The proposed method is validated using data from four selected
GNSS stations and the corresponding meteorological parameters in a landslide-prone area
located in Yunnan Province, China. Experimental results show that the established regional
Tm model has high accuracy, with the average RMS and bias of 3 K and 0.15 K, respectively.
Moreover, the evaluation of the short-term rainfall forecast model based on the BP-NN
algorithm shows that the TDR of the simulation and measurement for the four studied
schemes are over 95%, while the FFR is under 40%. Such results show that the proposed
rainfall forecast model has high rainfall forecast accuracy and provides a new method for
short-term rainfall forecast in landslide-prone areas.
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