Responses to the Preparation of the 2021 M7.4 Madoi Earthquake in the Lithosphere–Atmosphere–Ionosphere System
Abstract
:1. Introduction
2. Datasets and Processing
2.1. Ground–Based Geomagnetic Datasets
2.2. Earth Radiation Observation
2.3. Ionospheric Data from the CSES
3. Result Analysis
4. Conclusions
- Dobrovolksy’s radius has revealed abnormal changes in the lithosphere, atmosphere, and ionosphere.
- Despite the differences in spatial and temporal resolutions, some temporal similarities have been found between geomagnetic diurnal phase anomalies in the lithosphere and enhancements in atmospheric OLR.
- There are two regions of high value for both the ground–based geomagnetic high residual and the ionospheric disturbances observed with CSES. The northern one is near the epicenter of the Madoi earthquake, and the southern one is near the epicenter of the Yangbi earthquake, which occurred 4 h before the Madoi earthquake.
- In this study, we observed almost all of the physical phenomena that may occur during earthquake preparation, as predicted using the electrostatic channel model. The electrostatic channel model can explain the changes observed in the Madoi earthquake very well. So, we inferred that the electrostatic channel might be the possible mechanism for coupling between the lithosphere, atmosphere, and ionosphere during the Madoi earthquake.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fraser-Smith, A.C.; Bernardi, A.; Mcgill, P.R.; Ladd, M.E.; Helliwell, R.A.; Villard, O.G., Jr. Low-frequency magnetic field measurements near the epicenter of the Ms7.1 Loma Prieta earthquake. Geophys. Res. Lett. 1990, 17, 1465–1468. [Google Scholar] [CrossRef]
- Kopytenko, Y.A. Ultra Low Frequency Emission Associated with Spitak Earthquake and Following Aftershock Activity Using Geomagnetic Pulsation Data at Observatories Dusheti and Vardziya; IZMIRAN: Moscow, Russia, 1990. [Google Scholar]
- Molchanov, O.A.; Kopytenko, Y.A.; Voronov, P.M.; Kopytenko, E.A.; Matiashvili, T.G.; Fraser-Smith, A.C.; Bernardi, A. Results of ulf magnetic field measurements near the epicenters of the Spitak (ms=6.9) and Loma Prieta (ms=7.1) earthquakes: Comparative analysis. Geophys. Res. Lett. 1992, 19, 1495–1498. [Google Scholar] [CrossRef]
- Prattes, G.; Schwingenschuh, K.; Eichelberger, H.U.; Magnes, W.; Boudjada, M.; Stachel, M.; Vellante, M.; Villante, U.; Wesztergom, V.; Nenovski, P. Ultra Low Frequency (ULF) European multi station magnetic field analysis before and during the 2009 earthquak eat L’Aquila regarding regional geotechnical information. Nat. Hazards Earth Syst. Sci. 2011, 11, 1959–1968. [Google Scholar] [CrossRef]
- Rolland, L.M.; Lognonné, P.; Astafyeva, E.; Kherani, E.A.; Kobayashi, N.; Mann, M.; Munekane, H. The resonant response of the ionosphere imaged after the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Space 2011, 63, 853–857. [Google Scholar] [CrossRef]
- Liu, J.; Wan, W.X.; Huang, J.P.; Zhang, X.M.; Zhao, S.F.; Ouyang, X.Y.; Zeren, Z.M. Electron density perturbation before Chile M8.8 earthquake. Chin. J. Geophys. 2011, 54, 271–2725. (In Chinese) [Google Scholar]
- Zhang, X.M.; Qian, J.D.; Ouyang, X.Y.; Shen, X.H.; Cai, J.A.; Zhao, S.F. Ionospheric electro magnetic disturbances observed on DEMETER satellite before an earthquake of M7.9 in Chile. Prog. Geophys. 2009, 24, 1196–1203. (In Chinese) [Google Scholar]
- Stangl, G.; Boudjada, M.Y.; Biagi, P.F.; Krauss, S.; Maier, A.; Schwingenschuh, K.; Al-Haddad, E.; Parrot, M.; Voller, W. Investigation of TEC and VLF space measurements associated to L’aquila (Italy) earthquakes. Nat. Hazards Earth Syst. Sci. 2011, 11, 1019–1024. [Google Scholar] [CrossRef]
- Li, M.; Lu, J.; Parrot, M.; Tan, H.; Chang, Y.; Zhang, X.; Wang, Y. Review of unprecedented ULF electromagnetic anomalous emissions possibly related to the Wenchuan Ms=8.0 earthquake, on 12 May 2008. Nat. Hazards Earth Syst. Sci. 2013, 13, 279–286. [Google Scholar] [CrossRef]
- Zeng, Z.C.; Zhang, B.; Fang, G.Y.; Wang, D.F.; Yin, H.J. The analysis of ionospheric vaiations before Wenchuan earthquake with DEMETER data. Chin. J. Geophys. 2009, 52, 11–19. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, X.; Shen, X.; Liu, J.; Ouyang, X.Y.; Qian, J.D.; Zhao, S.F. Analysis of ionospheric plasma perturbations before Wenchuan earthquake. Nat. Hazards Earth Syst. Sci. Discuss. 2009, 9, 1259–1266. [Google Scholar] [CrossRef]
- Qiang, Z.J.; Xu, X.D.; Dian, C.G. Thermal infrared anomaly precursor of impending earthquakes. Chin. Sci. 1991, 36, 319–323. [Google Scholar] [CrossRef]
- Aliano, C.; Corrado, R.; Filizzola, C.; Genzano, N.; Pergola, N.; Tramutoli, V. Robust TIR satellite techniques for monitoring earthquake active regions: Limits, mainachievements and perspectives. Ann. Geophys. 2008, 51, 303–318. [Google Scholar] [CrossRef]
- Tronin, A.A. Satellite thermal survey-a new tool for the study of seismoactive regions. Int. J. Remote Sens. 1996, 41, 1439–1455. [Google Scholar] [CrossRef]
- Tramutoli, V.; Bello, G.D.; Pergola, N.; Piscitelli, S. Robust satellite techniques for remote sensing of seismically active areas. Ann. Geofis. 2001, 44, 295–312. [Google Scholar] [CrossRef]
- Piroddi, L.; Ranieri, G.; Freund, F.; Trogu, A. Geology, tectonics and topography underlined by L’Aquila earthquake TIR precursors. Geophys. J. Int. 2014, 197, 1532–1536. [Google Scholar] [CrossRef]
- Saraf, A.K.; Choudhury, S. Satellite detects surface thermal anomalies associated with the Algerian earthquakes of May 2003. Int. J. Remote Sens. 2005, 26, 2705–2713. [Google Scholar] [CrossRef]
- Ouzounov, D.; Freund, F.T. Mid-infrared emission prior to strong earthquakes analyzed remote sensing data. Adv. Inspace Res. 2004, 33, 268–273. [Google Scholar] [CrossRef]
- Ouzounov, D.; Liu, D.F.; Kang, C.L.; Cervone, G.; Kafatos, M.; Taylor, P. The outgoing long-wave radiation variability prior to the major earthquake by analyzing IR satellite data. Tectonophysics 2007, 421, 211–220. [Google Scholar] [CrossRef]
- Blackett, M.; Wooster, M.J.; Malamud, B.D. Exploring land surface temperature earthquake precursors: A focus on the Gujarat (India) earthquake of 2001. Geophys. Res. Lett. 2011, 38, L15303. [Google Scholar] [CrossRef]
- Namgaladze, A.A.; Klimenko, M.V.; Klimenko, V.V.; Zakharenkova, I.E. Physical mechanism and mathematical modeling of earthquake ionospheric precursors registered in total electron content. Geomagn. Aeron. 2009, 49, 252–262. [Google Scholar] [CrossRef]
- Klimenko, M.V.; Klimenko, V.V.; Zakharenkova, I.E.; Pulinets, S.A. Variations of equatorial electrojet as possible seismo-ionospheric precursor at the occurrence of TEC anomalies before strong earthquake. Adv. Space Res. 2012, 49, 509–517. [Google Scholar] [CrossRef]
- Artru, J.; Lognonné, P.; Blanc, E. Normal modes modelling of post-seismic ionospheric oscillations. Geophys. Res. Lett. 2001, 28, 697–700. [Google Scholar] [CrossRef]
- Hayakawa, M.; Molchanov, O.A.; NASDA/UEC Team. Summary report of NASDA’s earthquake remote sensing frontier project. Phys. Chem. Earth 2004, 29, 617–625. [Google Scholar] [CrossRef]
- Hayakawa, M.; Schekotov, A.; Izutsu, J.; Nickolaenko, A.P. Seismogenic effects in ULF/ELF/VLF electro magnetic waves. Int. J. Electron. Appl. Res. 2019, 6, 1–86. [Google Scholar]
- Sorokin, V.M.; Chmyrev, V.M.; Yaschenko, A.K. Electrodynamic model of the lower atmosphere and the ionosphere coupling. J. Atmos. Sol. Terr. Phys. 2001, 63, 1681–1691. [Google Scholar] [CrossRef]
- Rapoport, Y.; Grimalsky, V.; Hayakawa, M.; Ivchenko, V.; Juarez-R, D.; Koshevaya, S.; Gotynyan, O. Change of ionospheric plasma parameters under the influence of electric field which has lithospheric origin and due to radon emanation. Phys. Chem. Earth 2004, 29, 579–587. [Google Scholar] [CrossRef]
- Shalimov, S.; Gokhberg, M. Lithosphere-ionosphere coupling mechanism and its application to the earthquake in Iran on June 20, 1990. A review of ionospheric measurements and basic assumptions. Phys. Earth Planet. Inter. 1998, 105, 211–218. [Google Scholar] [CrossRef]
- Singh, B.; Kushwah, V.; Singh, O.P.; Lakshmi, D.R.; Reddy, B.M. Ionospheric perturbations caused by some major earthquakes in India. Phys. Chem. 2004, 29, 537–550. [Google Scholar] [CrossRef]
- Molchanov, O.A.; Hayakawa, M.; Rafalsky, V.A. Penetration characteristics of electromagnetic emissions from an underground seismic source into the atmosphere, ionosphere, and magnetosphere. J. Geophys. Res. 1995, 100, 1691–1712. [Google Scholar] [CrossRef]
- Grimalsky, V.V.; Kremenetsky, I.A.; Rapoport, Y.G. Excitation of electromagnetic waves in the lithosphere and their penetration into ionosphere and magetsphere. J. Atmos. Electr. 1999, 19, 101–117. [Google Scholar]
- Ghosh, S.; Chowdhury, S.; Kundu, S.; Sasmal, S.; Politis, D.Z.; Potirakis, S.M.; Hayakawa, M.; Chakraborty, S.; Chakrabarti, S.K. Unusual Surface Latent Heat Flux Variations and Their Critical Dynamics Revealed before Strong Earthquakes. Entropy 2022, 24, 23. [Google Scholar] [CrossRef]
- Freund, F.T. Stress-activated positive hole charge carriers in rocks and the generation of pre-earthquake signals. Electromagn. Phenom. Assoc. Earthq. 2009, 3, 41–96. [Google Scholar]
- Parrot, M.; Benoist, D.; Berthelier, J.J.; Błęcki, J.; Chapuis, Y.; Colin, F.; Elie, F.; Fergeau, P.; Lagoutte, D.; Lefeuvre, F. The magnetic field experiment IMSC and its data processing onboard DEMETER: Scientific objectives, description and first results. Planet. Space Sci. 2006, 54, 441–455. [Google Scholar] [CrossRef]
- Kuo, C.L.; Huba, J.D.; Joyce, G.; Lee, L.C. Ionosphere plasma bubbles and density variations induced by pre-earthquake rock currents and associated surface charges. J. Geophys. Res. 2011, 116, A10317. [Google Scholar] [CrossRef]
- Ouzounov, D.; Pulinets, S.; Hattori, K.; Taylor, P. Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies; AGU Geophysical Monograph 234; Wiley: Hoboken, NJ, USA, 2018; 365p. [Google Scholar]
- Shen, X.H.; Zhang, X.M.; Yuan, S.G.; Wang, L.W.; Gao, J.B.; Huang, J.P.; Zhu, X.H.; Piergiorgio, P.; Dai, J.P. The state-of-the-art of the China Seismo-Electromagnetic Satellite mission. Sci. China Technol. Sci. 2018, 61, 634–642. [Google Scholar] [CrossRef]
- Li, M.; Shen, X.H.; Parrot, M.; Zhang, X.M.; Zhang, Y.; Yu, C.; Yan, R.; Liu, D.P.; Lu, H.X.; Guo, F. Primary joint statistical seismic influence on iIonospheric parameters recorded by the CSES and DEMETER satellites. J. Geophys. Res. Space Phys. 2020, 125, e2020JA028116. [Google Scholar] [CrossRef]
- Chen, G.H.; Li, Z.W.; Xu, X.W.; Sun, H.Y.; Ha, G.H.; Guo, P.; Su, P.; Yuan, Z.D.; Li, T. Co-seismic surface deformation and late Quaternary accumulated displacement along the seismogenic fault of the 2021 Madoi M7.4 earthquake and their implications for regional tectonics. Chin. J. Geophys. 2022, 65, 2984–3005. [Google Scholar]
- Jing, F.; Zhang, L.; Singh, R. Pronounced changes in thermal signals associated with the Madoi (China) M7.3 earthquake from passive microwave and infrared satellite data. Remote Sens. 2022, 14, 2539. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, T.B.; Lu, Q.; Long, F.; Liang, M.J.; Wu, W.W.; Gong, Y.; Wei, J.X.; Wu, J. variation of thermal infrared brightness temperature anomalies in the Madoi earthquake and associated earthquakes in the Qinghai-Tibetan plateau (China). Front. Earth Sci. 2022, 10, 823540. [Google Scholar] [CrossRef]
- Du, X.; Zhang, X. Ionospheric Disturbances Possibly Associated with Yangbi Ms6.4 and Maduo Ms7.4 Earthquakes in China from China Seismo Electromagnetic Satellite. Atmosphere 2022, 13, 438. [Google Scholar] [CrossRef]
- Huang, J.P.; Wang, Q.; Yan, R.; Lin, J.; Zhao, S.F.; Chu, W.; Shen, X.H.; Zeren, Z.M.; Yang, Y.Y.; Cui, J.; et al. Pre-seismic multi-parameters variations before Yangbi and Madoi earthquakes on May 21, 2021. Nat. Hazards Res. 2023, 3, 27–34. [Google Scholar] [CrossRef]
- Li, M.; Wang, H.; Liu, J.; Shen, X. Two Large Earthquakes Registered by the CSES Satellite during Its Earthquake Prediction Practice in China. Atmosphere 2022, 13, 751. [Google Scholar] [CrossRef]
- Bedford, J.R.; Moreno, M.; Deng, Z.G.; Oncken, O.; Schurr, B.; John, T.; Báez, J.C.; Bevis, M. Months-long thousand-kilometre-scale wobbling before great subduction earthquakes. Nature 2020, 580, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Yeh, T.K.; Wen, S.; Meng, G.J.; Han, P.; Tang, C.C.; Liu, J.Y.; Wang, C.H. Unique Pre-Earthquake Deformation Patterns in the Spatial Domains from GPS in Taiwan. Remote Sens. 2020, 12, 366–385. [Google Scholar] [CrossRef]
- Dobrovolsky, I.P.; Zubkov, S.I.; Miachkin, V.I. Estimation of the size of earthquake preparation zones. Pure Appl. Geophys. 1979, 117, 1025–1044. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, X.X.; Zhang, X.M.; Jin, X.B.; Wu, H.; Ti, S.; Li, R.K.; Li, L.; Wang, S.H. Imminent estimation of earthquake hazard by regional network monitoring the near surface vertical atmospheric electrostatic field. Chin. J. Geophys. 2021, 64, 1145–1154. (In Chinese) [Google Scholar]
- Ryu, K.; Lee, E.; Chae, J.S.; Parrot, M.; Pulinets, S. Seismo-ionospheric coupling appearing as equatorial electron density enhancements observed via DEMETER electron density measurements. J. Geophys. Res. Space Phys. 2014, 119, 8524–8542. [Google Scholar] [CrossRef]
- Chapman, S. The solar and lunar diurnal variations of terrestrial magnetism. Philos. Trans. R. Soc. Lond. 1919, 218, 1–118. [Google Scholar]
- Wang, Y.L.; Wu, Y.Y.; Lu, J.; Yu, S.R.; Li, M.X. Spatial distribution characteristics of geomagnetic Z component phase variation in Chinese mainland. Chin. J. Geophys. 2009, 52, 1033–1040. (In Chinese) [Google Scholar] [CrossRef]
- Obara, T.; Miyoshi, Y.; Morioka, A. Large enhancement of the outer belt electrons during magnetic storms. Earth Planet Space 2001, 53, 1163–1170. [Google Scholar] [CrossRef]
- Freud, F. Time-resolved study of charge generation and propagation in igneous rocks. J. Geophys. Res. 2000, 105, 11001–11019. [Google Scholar] [CrossRef]
- Freund, F.; Ouillon, G.; Scoville, J.; Sornette, D. Earthquake precursors in the light of peroxy defects theory: Critical review of systematic observations. Eur. Phys. J. Spec. Top. 2021, 230, 7–46. [Google Scholar] [CrossRef]
- Ouzounov, D.; Pulinets, S.; Parrot, M.; Hattori, K.; Taylor, P. Surveying the natural hazards by joint satellite and ground based analysis of Earth’s electromagnetic environment. In Proceedings of the EMSEV-DEMETER Joint Workshop, International Union of Geodesy and Geophysics, Sinaia, Romania, 7–12 September 2008. [Google Scholar]
- Takeuchi, A.; Lau, B.; Freund, F. Current and surface potential induced by stress-activated positive holes in igneous rocks. Phys. Chem. Earth 2006, 31, 240–247. [Google Scholar] [CrossRef]
- Yue, Y.; Koivula, H.; Bilker-Koivula, M.; Chen, Y.; Chen, F.; Chen, G. TEC Anomalies Detection for Qinghai and Yunnan Earthquakes on 21 May 2021. Remote Sens. 2022, 14, 4152. [Google Scholar] [CrossRef]
- Dong, L.; Zhang, X.; Du, X. Analysis of Ionospheric Perturbations Possibly Related to Yangbi Ms6.4 and Maduo Ms7.4 Earthquakes on 21 May 2021 in China Using GPS TEC and GIM TEC Data. Atmosphere 2022, 13, 1725. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Ma, W.; Zhao, B.; Yue, C.; Zhu, P.; Yu, C.; Yao, L. Responses to the Preparation of the 2021 M7.4 Madoi Earthquake in the Lithosphere–Atmosphere–Ionosphere System. Atmosphere 2023, 14, 1315. https://doi.org/10.3390/atmos14081315
Wang Y, Ma W, Zhao B, Yue C, Zhu P, Yu C, Yao L. Responses to the Preparation of the 2021 M7.4 Madoi Earthquake in the Lithosphere–Atmosphere–Ionosphere System. Atmosphere. 2023; 14(8):1315. https://doi.org/10.3390/atmos14081315
Chicago/Turabian StyleWang, Yali, Weiyu Ma, Binbin Zhao, Chong Yue, Peiyu Zhu, Chen Yu, and Li Yao. 2023. "Responses to the Preparation of the 2021 M7.4 Madoi Earthquake in the Lithosphere–Atmosphere–Ionosphere System" Atmosphere 14, no. 8: 1315. https://doi.org/10.3390/atmos14081315
APA StyleWang, Y., Ma, W., Zhao, B., Yue, C., Zhu, P., Yu, C., & Yao, L. (2023). Responses to the Preparation of the 2021 M7.4 Madoi Earthquake in the Lithosphere–Atmosphere–Ionosphere System. Atmosphere, 14(8), 1315. https://doi.org/10.3390/atmos14081315