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Abstract: In 1960, R.E. Kalman published his famous paper describing a recursive solution, the
Kalman filter, to the discrete-data linear filtering problem. In the following decades, thanks to
the continuous progress of numerical computing, as well as the increasing demand for weather
prediction, target tracking, and many other problems, the Kalman filter has gradually become one
of the most important tools in science and engineering. With the continuous improvement of its
theory, the Kalman filter and its derivative algorithms have become one of the core algorithms in
optimal estimation. This paper attempts to systematically collect and sort out the basic principles of
the Kalman filter and some of its important derivative algorithms (mainly including the Extended
Kalman filter (EKF), the Unscented Kalman filter (UKF), the Ensemble Kalman filter (EnKF)), as well
as the scope of their application, and also to compare their advantages and limitations. In addition,
because there are a large number of applications based on the Kalman filter in data assimilation,
this paper also provides examples and classifies the applications of both the Kalman filter and its
derivative algorithms in the field of data assimilation.

Keywords: data assimilation; Kalman filter; Kalman gain; application

1. Introduction

Data assimilation refers to the methods that integrate new observational data in
the dynamic operation of a numerical model by considering the temporal and spatial
distribution of data plus the errors of the observation field and background field. Within
the dynamic framework of the model, it can automatically adjust the model by continuously
fusing the direct or indirect observation information from different sources and resolutions
in time and space so as to improve both the estimation accuracy of model states and the
prediction ability of the model. Since the 1990s, data assimilation has been successfully
applied to not only atmospheric science and marine science but also other disciplines (See
Table 1).

Data assimilation algorithms can be divided into two categories, sequential data
assimilation algorithms and variational data assimilation algorithms. As the earliest form
of sequential data assimilation algorithms, the Kalman filter is also the theoretical basis of
the algorithms. All later algorithms of sequential data assimilation were evolved from the
Kalman filter. On the other hand, although variational data assimilation algorithms are not
the focuses of this paper, Appendix A provides a brief description of them.
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Table 1. Typical applications of data assimilation in various disciplines.

Discipline Typical Applications

Atmospheric Science Weather Forecast [1]

Marine Science Sea surface temperature prediction [2]
Ocean current change prediction [3]

Terrestrial Science Soil moisture prediction [4]
Ecohydrology [5]

Agricultural Science Crop Yield Estimation [6]

Artificial Intelligence Autonomous Driving [7]
Machine Learning [8]

The Kalman filter (KF), developed by R.E. Kalman in 1960 [9], is an “optimal recur-
sive data processing algorithm”. It has become one of the standard methods of optimal
estimation. It uses a series of data observed over time to estimate unknown variables
more accurately.

The paper published by R.E. Kalman and R.S. Bucy in 1961 [10] first introduced the
Kalman filter in continuous time. This Kalman filter is used for state estimation and
prediction for both system models and observation models in continuous time. Under
continuous time, the evolution of state variables is described by differential equations, and
the observed data are also continuous. The goal of the continuous-time Kalman filter is
to estimate the optimal solution to the state variables by minimizing the error covariance
between the predicted states and observed data of the system. On the other hand, the
discrete-time Kalman filter is achieved by discretizing the continuous-time model, where
its optimal estimation is obtained by minimizing its estimation error covariance matrix. In
practical applications, many observations and measurements of realistic systems are often
provided at discrete time-grids, such as sensor sampling data and periodic signal processing.
The discrete-time Kalman filter provides an efficient method for the state estimation and
prediction in these cases, and the discrete-time Kalman filter is more commonly used in
numerical computations.

Therefore, all the Kalman filters and their corresponding algorithms presented in
this paper are discrete-time Kalman filters. However, the continuous-time Kalman filter
still has its unique applications in some specific situations. For example, in a control
system, if the system is modelled in continuous time, and its measurements are also
modeled as continuous time processes, then the continuous-time Kalman filter should be
more applicable.

For solving most of the optimal estimation problems, it is the best, the most efficient,
and even the most useful algorithm [11]. It has been widely used in many fields for many
years, including navigation and control [12,13] and target tracking [8,14,15]. Recently, it
has been applied to microeconomics, as well as computer image processing [16], such as
face recognition, image segmentation, and image edge detection.

From R.E. Kalman’s original Kalman filter (only applicable to linear conditions) to
the Extended Kalman filter (EKF, applicable to near-linear conditions), the Kalman filter’s
family was later joined by the Unscented Kalman filter (UKF) and then the Ensemble
Kalman filter (EnKF), both of which have a wider range of application and higher efficiency.
Kalman filter algorithms have been progressing continuously, and more algorithms have
been derived based on these four commonly used Kalman filter variants. The Kalman filter
is always developing in the direction of less limitation and higher efficiency.

2. Kalman Filter and Its Application

This section mainly introduces the theories of the Kalman filter (KF), Extended Kalman
filter (EKF), Unscented Kalman filter (UKF), and Ensemble Kalman filter (EnKF), as well as
their common applications in data assimilation.
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2.1. Kalman Filter

In practical applications, the operation process of a physical system can be regarded
as a state transition process. The Kalman filter introduces state space into the mathe-
matical modeling process of the physical system, and it assumes that the system state
can be represented by a vector x∈ RNx. For the convenience of description, there are a
few assumptions:
1© The state transition process of a physical system can be described as a discrete-time

stochastic process.
2© The system state is affected by input.
3© The system state and observation process are affected by noise.
4© The system state is not directly observable.

On the premise of the above assumptions, the state equations applicable to the Kalman
filter are first introduced as

xk = Mk[xk−1] + wk
yk = Hk[xk] + vk

(1)

The first equation of Equation (1) is the prediction equation, which simulates the
evolution of the system from time tk−1 to tk. k denotes the value of different physical
quantities at tk, xk ∈ RNx denotes the system state at tk, and Mk ∈ RNx × RNx denotes the
state transformation operator acting on a system state.

We define x f
k as the predicted value of the system derived from the prediction equation

at tk, and xa
k as the analysis value of the system after combining the observations yk ∈ RNy at

tk. With regard to observations, there are three points to be emphasized: (i) The purpose of
measurement is to express the properties of an object in terms of physical quantity, and thus,
the result of the measurement must always be a real value expressed in a recognized unit
of measurement; (ii) the measurement is always performed using a measuring instrument;
and (iii) the measurement is always an experimental process [17]. On the other hand, f
(i.e., forecast) is specified to denote the predicted value, which is the result of the a priori
estimation of the unknown quantity, and a (i.e., analysis) denotes the analyzed value, which
is the result of the a posteriori estimation of the unknown quantity (usually used as the
optimal estimate for the next time integration). The prediction error and analysis error are
defined as

e f
k = x f

k − xk
ea

k = xa
k − xk

(2)

The covariance matrix of prediction error and analysis error are defined as

[P f
k ]ij = E[[e f

k ]i[e
f
k ]j]

[Pa
k]ij = E[[ea

k ]i[e
a
k ]j]

(3)

E[.] denotes the expectation function. wk is the model error (i.e., the error between
Mk and the transformation process). wk is assumed unbiased and uncorrelated at different
times, i.e., E[wk] = 0, E[wkwl

T ] = Qkδkl , Qk are the model error covariance matrix, and

δkl =
{

1 k = l
0 k 6= l

.

The second equation in Equation (1) is the observation equation, which describes the
relationship between the observed value yk and the true value xk of the system at time
tk. Hk is the observation operator acting on xk at tk. For the state transition operator Mk
and the observation operator Hk, bold indicates that the operator is a linear operator or a
tangent linear operator of a nonlinear operator, that is,

[H]ij =
∂Hi
∂xj

(4)

If H is linear, i.e., H[x] = Hx, then H′ = H, and the tangent linear identifies with the
original observation operator. Consequently, the tangent linear operator H′ = H depends
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on x if and only if H is nonlinear. In the KF model, the state transition operator Mk, as well
as the observation operator Hk, is specified to be linear operators, written as Mk and Hk.
vk is the observation error, which is also assumed to be unbiased and uncorrelated with
each other at different time, i.e., E[vk] = 0, E[vk, vl

T ] = Rkδkl . Rk is the observation error
covariance matrix. In addition, the model error and the observation error are assumed to
be uncorrelated with each other, i.e., E[vk, wl

T ] = 0.
In this theoretical derivation process, ideal assumptions about physical quantities are

made. But, in practical applications, the combination of the data from different sources
involves a weighted propagation of all input uncertainties to the uncertainties in outputs.
Hence, data evaluation is intertwined with uncertainty analysis, requiring the inferences
from incomplete information. Reference [17] provides detailed theoretical and practical
information about the treatment of missing data in data assimilation.

Two sets of important equations in the Kalman filter can then be derived: prediction
equations and update equations. Prediction equations are

x f
k+1 = Mk+1xa

k

P f
k+1 = Mk+1Pa

kMk+1
T + Qk+1

(5)

where x f
k+1 and xa

k are the system states defined above, Pa
k is the analysis error covariance

matrix, and P f
k+1 is the prediction error covariance matrix. The above two formulas

complete the prediction of the system state from tk to tk+1 and calculate the prediction error
covariance matrix for the next time integration.

On the other hand, the updated equations are defined as

K∗k = P f
k Hk

T(HkP f
k Hk

T + Rk)
−1

xa
k = x f

k + K∗k (yk −Hkx f
k )

Pa
k = (I−K∗k Hk)P

f
k

(6)

K∗ is called Kalman gain, and determining K∗ is the key to establish the Kalman filter.
Please refer to Appendix B for detailed derivations. The above formulas use the observation
y to update and adjust the prior estimate x f

k so as to obtain the analysis xa
k and the analysis

error covariance matrix Pa
k, which provides the basis for the prediction process at the next

time integration.
The KF algorithm is proposed with its unique advantages: 1© Compared with tradi-

tional statistical optimal interpolation algorithms, some of the states in the KF model are
dynamically updated with time; its iterative calculation makes the model always close to
the truth, while the optimal interpolation model is deterministic and detached from the
model state, resulting in its deviation from true state over time. 2© Compared with the
variational method that is another important algorithm in data assimilation, KF provides
the state mean and its error covariance, so the estimated results can be further understood
by studying the nature of the error covariance matrix, such as the size, stability, and other
information to determine whether the assimilation results are credible [17]. 3© The Kalman
filter does not need to create an accompanying model, making it easier to implement.

This standard Kalman filter is no longer in common use due to the emergence of
more and more efficient Kalman filter derivatives, but in the early days of the algorithm’s
proposal, The KF’s ideas were plausible and effective in solving the practical problems
of data assimilation. The KF was successfully used in the Apollo moon landing project
when it was first proposed. When a spacecraft flies to space, it keeps measuring its position
with various sensors, hoping that it is on an intended orbit. However, due to the effect of
sensor errors, the spacecraft may slowly deviate from its intended orbit despite continuous
measurement and adjustment. Using the KF, the errors can be filtered out, and the correct
position of the spacecraft can be estimated.
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In the field of atmospheric science, the KF is applicable to unknown variables predicted
as continuous variables, such as maximum and minimum temperature and humidity dew
point, but not to discontinuous variables, such as precipitation and thunderstorm [18].
Taking the prediction of the minimum and maximum temperature in a certain region as an
example, relevant prediction factors (such as 1000 hPa temperature, 850 hPa temperature,
specific humidity, etc.) are usually selected to predict the unknown quantities combined
with a relevant numerical atmospheric model and the KF. According to experiment results,
the KF algorithm has good forecasting performance and is more practical and easier to be
operationalized when compared with other methods. For example, it has good prediction
effects for continuous temperature rise and drop, but it has a certain lag for sharp warming
and cooling conditions [19]. Those performances are also in line with the characteristics of
the KF itself.

Please refer to reference [20] for more details on meteorological data assimilation;
it provides a review and some suggestions for further improvement in meteorological
data assimilation methods. Furthermore, references [17,21,22] are also useful in learning
meteorological data assimilation or data assimilation with special conditions.

Although the KF has its unique advantages over other algorithms, it requires storing
and analyzing various covariance matrices that evolve over time in actual usages. It means
that as the dimension of the state vector increases, its computational time will increase
greatly. In addition, according to the assumptions of Kalman gain, the KF is only applicable
to the premise that the system state equation is linear and with Gaussian distribution,
which is a particularly harsh prerequisite for the practical problems that need to be solved.
All these restrict the application of the KF in solving complicated practical problems.

2.2. Extended Kalman Filter

The limitations of the Kalman filter implies that the study of nonlinear filters is very
important. Senne [23] extended the KF to an extended Kalman filter (EKF) to apply the KF
to nonlinear systems. The Extended Kalman filter is one of the most classical algorithms
in the field of the nonlinear filter. The basic idea of the EKF is to focus on the first order
term of the Taylor expansion of the system’s nonlinear equation and then transform the
nonlinear equation into a linear one. The EKF is very common in the nonlinear filter and
easy to implement.

The EKF is very similar to the KF in that it is divided into two steps, prediction and
analysis, with the core operation being the linearization of the nonlinear equations. The
prediction step consists of two time-update equations, both of which have the same physical
quantities as the KF definition:

x f
k+1 = Mk+1[xa

k ]

P f
k+1 = Mk+1Pa

kMk+1
T + Qk+1

(7)

Analysis steps mainly include three state-update equations:

K∗k = P f
k Hk

T(HkP f
k Hk

T + Rk)
−1

xa
k = x f

k + K∗k (yk − Hk[x
f
k ])

Pa
k = (I−K∗k Hk)P

f
k

(8)

It should be noted that Equation (8) is written with yk − Hk[x
f
k ] instead of yk −Hkx f

k .
Please refer to reference [11] for detailed derivations.

Compared with the KF, the EKF is the most common method for solving nonlinear
assimilation problems, as it resolves to some extent the linearity requirement of the system
equation and observation equation. The EKF can play a better role in solving the data
assimilation problem that some system models are nearly linear and continuous. It is often
used in vehicle tracking, spacecraft orbit estimation and control, and greenhouse climate
control [24]. Because nonlinear data assimilation problems have better algorithms than



Atmosphere 2023, 14, 1319 6 of 20

the EKF in many cases, the applications of data assimilation introduced for the EnKF and
UKF in later sections can also be solved by using the EKF. Those applications will not be
repeated here, and the application idea of the EKF in storm surge forecasting in the North
Sea [25] is briefly introduced in the following.

The abnormal rise and fall of seawater due to violent atmospheric disturbances, such
as strong winds and sudden changes in air pressure, which cause the tide level in the
affected area to rise significantly above normal level, is called a storm surge. Storm surges
are catastrophic natural phenomena, and their prediction is important for the lives and the
economic security of people in coastal cities.

Storm surge models are usually based on shallow water flow models incorporating
the momentum conservation and mass conservation equations, which mainly portray the
very complex water patterns caused by irregular coastlines. The very deep ocean depth in
the North Sea region leads to a strong linearity of the shallow water model in this region.
Because the shallow water model has a time-invariant observation equation, this makes the
weak nonlinear shallow-water flow model a good fit for the prerequisites for the EKF. Using
the EKF algorithm, the potential inaccuracy of a deterministic system can be taken into
account by correcting the shallow-water model for the introduction of observations, so that
the information provided by the system dynamics can be combined with measurements
that contain measurement errors to achieve a better prediction of a storm surge.

The Kalman filter theory is flourishing in meteorological data assimilation. In simple
low-dimensional data assimilation problems, the KF and EKF play an important role and
their algorithms are well established. For complex high-dimensional strongly non-linear
problems, the EnKF will play a major role [1].

Although the EKF is often used for nonlinear assimilation problems, it has some
significant limitations [26]:

1© Since Taylor expansion is a linearization process, the EKF estimations can only be
relatively close to the truth if the system state and the observed equations are locally linear
and continuous. 2© The performance of the EKF is dependent on both the system error and
the observation error. If both error covariance matrices are not estimated accurately enough,
the EKF’s errors will accumulate rapidly and lead to divergence. 3© The calculations
on the Jacobian matrix are tedious and error-prone and may even make it difficult to
draw conclusions due to excessive computations. 4© Since the higher-order terms of the
Taylor expansion of nonlinear function are ignored, the linearization process of the system
equation may cause large errors, leading to rapid divergences of the model. 5© The EKF
requires derivatives, so the specific form of nonlinear function must be clearly understood
and cannot be encapsulated, making it difficult to apply modularly.

Another example of a modified version of the EKF was applied to a real-time traffic
state estimation [27] Advanced traveler information systems (ATIS) and dynamic traffic
management (DTM) require some estimate of the current traffic state as an input. Usually,
the traffic state cannot be directly measured but needs to be estimated from incomplete,
noisy, and local traffic data. One of the most widely applied estimation methods is the
Lighthill–Whitham–Richards (LWR) model with an extended Kalman filter (EKF) [27]. Due
to the above problems of the EKF, a modified version of a localized EKF (L-EKF) was
proposed for the LWR application. The modified EKF is named as L-EKF to indicate the
local nature of the corrections. In the L-EKF, many local EKFs are sequentially called for
each cell containing measurements, instead of constructing one large EKF for the entire
network. The basic process is depicted in Figure 1.

The study in [27] found that the L-EKF clearly integrates the basic EKF with many
advantages, and the predictions of the traffic state are similar to the EKF, which improves
the computational speed under the premise of guaranteeing the feasibility and the accuracy
of the results. This is a kind of improved approach to make the EKF applicable to large-scale
calculations. Other issues in the EKF, EnKF, and UKF will be discussed next, and their
solutions will be provided.
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2.3. Ensemble Kalman Filter

The Ensemble Kalman filter (EnKF) algorithm is a combination of ensemble forecasting
and Kalman filter methods from the mid-1990s [28,29]. It calculates the forecast error
covariance matrix of states by the Monte Carlo method, solving the problem of difficultly
estimating the forecast error covariance matrix in practical applications by using the idea
of ensemble. It can be used for the data assimilation of non-linear systems, effectively
reducing the computational effort of data assimilation [19].

The main idea of the EnKF is to use an ensemble of state vectors to represent the
distribution of system states and to replace the model/system error covariance matrix P f

with the sample covariance matrix from the ensemble. The goal is to perform an EKF-like
analysis for each member in the ensemble, and the EnKF also consists of two steps of
analytical prediction as shown in the following.

x f
i = M[xa

i (k−1)] + wi
k i = 1, 2, . . . . . . , N

x f = x f = 1
N

N
∑

i=1
x f

i

P f HT = 1
N−1

N
∑

i=1
(x f

i − x f )(Hx f
i −Hx f

i )
T

HP f HT = 1
N−1

N
∑

i=1
(Hx f

i −Hx f
i )(Hx f

i −Hx f
i )

T

(9)

where i is the index of a different member in the ensemble, wi
k is the same as previously

defined wk, E[wi
k] = 0, E[wi

kwi
l
T
] = Qkδkl [30], xa

i and x f
i are the analysis state and fore-

cast/model state of the i-th member in the ensemble, and M[.] is the state transition operator
(i.e., model). The ensemble mean x f is used to approximately replace x f , and xa is used to
approximately replace xa. On the other hand, the prediction steps become

yi = y + ui,
N
∑

i=1
ui = 0

Ru = 1
N−1

N
∑

i=1
uiui

T

K∗u = P f HT(HP f HT + Ru)−1

xa
i = x f

i + K∗u(yi −H(x f
i ))

xa = 1
N

N
∑

i=1
xa

i

(10)
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where K∗u is the Kalman gain and H is the observation operator. To prevent the system
from diverging quickly, a perturbation to H(x f

i ) is often used. Since the observation y and

H(x f
i ) appear simultaneously in the formula, they can be called the perturbation of y. This

EnKF of the “y” disturbance is also called stochastic EnKF. ui is called the observational
perturbation and follows a Gaussian distribution with zero mean and covariance Ru.

The EnKF overcomes some of the problems that exist in the previous generation of
the Kalman filter (i.e., KF and EKF). Its actual computations do not require an explicit
forecast error covariance matrix P f (P f = 1

N−1 ∑ N
i=1(x f

i − x f )(x f
i − x f )T) and an analysis

error covariance matrix Pa (Pa = (I−K∗uH)P f (I−K∗uH)T + K∗uRK∗u
T = (I−K∗uH)P f ), but

only P f HT and HP f HT to complete the prediction, reducing the computational burden
when compared with the KF and EKF.

In addition, the introduction of an ensemble can improve computation speed because
the EnKF’s ensemble members are independent to each other during prediction and analysis
except for error statistics, which means that the small-scale calculation of multiple sets can
be carried out at the same time. This is the key factor to improve the computation speed.
Parallel computing is the most effective method to solve large-scale scientific computations.
However, the parallelization of a numerical model is largely restricted by the data exchange
among processes. The larger the amount of data that needs to be exchanged among
processes, the lower the parallel efficiency. This implies that the iterative algorithm in
the KF and EKF is greatly affected by data exchange, and their speeds will slower than
the EnKF.

The problem of the near-linearity requirement in the EKF can also be effectively
addressed using the ensemble way. The EnKF hides the prediction of error statistics in the
prediction of a group of model variables with disturbance. Tangent linear approximations
do not exist in the development of error statistics and model variables, along with that of
nonlinear model [29].

The EnKF is widely used in the data assimilation applications of atmosphere, ocean,
and land due to its advantages, such as fast computational speed and excellent outcome. It
has become an important branch of the sequential data assimilation algorithm. For example,
Houtekamer et al. explored the possibility of the EnKF assimilation of unconventional
data using a T21 global atmospheric quasi-geostrophic spectral model with simulated
observational data and concluded that it is a relatively perfect model [31]. In terms of ocean
data assimilation, Evensen used a two-layer quasi-geostrophic ocean model to simulate
ocean currents by assimilating satellite altimeter data with the EnKF [29]. In addition, the
following are two examples of EnKF applications in the field of climate science.

The first example is to simulate ozone (O3) concentrations using the EnKF [18]. Based
on the Long-Term Ozone Simulation model (LOTOS), it is possible to improve the Atmo-
spheric Transport Chemistry Models’ (ATCM) simulations of tropospheric ozone using the
EnKF via the following flow chart in Figure 2.

Based on the comparison of assimilation results with observations, the use of the
EnKF in combination with ATCMs can effectively optimize the predictions regarding ozone
concentrations with the LOTOS. In several different country regions with different errors, it
can still manage to optimize the predictions close to the observations.

The second example is to study soil moisture using the EnKF [4]. Based on the simple
biosphere model (SiB2), soil moisture was estimated in the surface, root zone, and deep
layers of the soil using the EnKF. Compared with the simple SiB2 simulation, the data
assimilation with the EnKF has significantly improved the estimation accuracy of soil
moisture in the surface, root zone, and deep layer. In particular, when there is precipitation
or the difference between simulations and observations is large, the assimilation effect is
more significant.

However, the EnKF is not perfect. For example, the uncertainty operation of perturbing
observations in the EnKF has both advantages and disadvantages. One of the most practical
problems in the EnKF is the feasibility problem, meaning that the matrix used in the
calculations might not be full rank.
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In the previous KF-type algorithms, it is always assumed that the error covariance
matrix is a positive definite invertible matrix, which makes the calculation of the matrix
inverse in the Kalman gain K∗ feasible. In the EnKF, due to the perturbation of the obser-
vations y, Ru is no longer guaranteed to remain a positive definite invertible matrix, and
(HP f HT +Ru) matrix is meaningless to inverse if it is not a full rank matrix. (HP f HT +Ru)
inverse can be approximated with the eigenvalue decomposition if the difference in dimen-
sionality between the ensemble members and the observations is not too great. However,
when the difference is great, it will be impossible to find a reasonable gain matrix. In
addition to this, the inclusion of perturbations and the selection of the ensemble are likely
to lead to filter divergence.

2.4. Unscented Kalman Filter

To solve the problem under strong nonlinear conditions, in 1995, Julier and Uhlmann [32]
proposed the Unscented Kalman filter (UKF) algorithm, which was further improved by
Wan and Merwe [33] later.

The UKT is an improvement on the original Kalman filter based on unscented trans-
form (UT), which investigates the problem of determining the posterior distribution of
a nonlinearly transformed Gaussian random variable by capturing a defined number of
sampling points. Once the corresponding statistical properties have been obtained by UT,
the Unscented Kalman filter is obtained by combining it with the standard Kalman filter
framework [34].

The unscented transformation refers to the deterministic sampling of the probability
distribution of random variables according to a certain rule, and the distribution of weights
(mean weight and variance weight) to the sampling points. The sampling points are
commonly referred to as sigma points. Each sigma point can be transformed using a
known nonlinear function to obtain a new sigma point, weighting and summing the
new nonlinearly transformed sigma points, calculating the weighted mean and weighted
variance, respectively, and using the weighted mean and weighted variance to approximate
the nonlinearly transformed probability distribution of the random variable.

Compared with the KF and EKF, the UKF intersperses the steps of sigma sampling
between the two steps of analysis and prediction. First, sigma sampling is performed on
the posterior probability distribution at the previous time. The selected sigma points are
defined as follows:
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xa
k−1

(i) =


µa

k−1 i = 0

µa
k−1 +

(√
(n + λ)Pa

k−1)
(i−1) i = 1, ...., n
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k−1 −

(√
(n + λ)Pa

k−1)
(i−n−1) i = n + 1, ....., 2n

(11)

W(i)
m =

{
λ
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1
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i = 1, ...., 2n (12)

W(i)
c =

{
λ

n+λ + 1− α2 + β i = 0
1

2(n+λ)
i = 1, ...., 2n (13)

where µa
k−1 is the system mean satisfied by the optimal estimate of the system state at the

moment tk−1, Pa
k−1 is the system variance, W(i)

m is the weight of each sigma point when

calculating the mean, and W(i)
c is the weight of each sigma point when calculating the

variance, where parameter λ is satisfied by: λ = α2(n + κ)− n, parameters α and κ are
scaling parameters that determine how far away from the mean the sigma points are
distributed. Parameter β is used to describe the distribution of the state variables.

The non-linear prediction was then performed to obtain the weighted mean µ
f
k and

covariance matrix P f
k , with the main equation:

x′ fk
(i)

= M[xa
k−1(i)] i = 0, 1, ....., 2n

µ
f
k =

2n
∑

i=0
W(i)

m x′ fk
(i)

P f
k =

2n
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i=0
W(i)

c [x′ fk
(i)
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f
k ][x

′ f
k
(i)
− µ

f
k ]

T + Qk

(14)

where x′ fk
(i)

is the sigma point after the nonlinear transformation, followed by sigma
sampling of the prior estimate at the current moment:

x f
k
(i)

=


µ

f
k i = 0

µ
f
k + (

√
(n + λ)P f

k )
(i−1) i = 1, ...., n

µ
f
k − (

√
(n + λ)P f

k )
(i−n−1) i = n + 1, ....., 2n

(15)

It should be noted that, for efficiency, it is possible to directly use the sigma points of

the tk−1 moment after the state transformation to obtain x′ fk−1

(i)
as the sigma points of the

tk moment a priori estimate x f
k
(i)

, but this will reduce the accuracy to a certain extent.
Finally, the analysis steps are as follows:
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(16)



Atmosphere 2023, 14, 1319 11 of 20

where µ
f
yk and P f

yk describe the probability distribution of y, which are the mean and
variance of y, respectively, and Pxyk is the covariance matrix of analysis value and observa-
tion value.

Compared with the EKF, the UKF avoids the calculation of the Jacobian matrix and
Hessian matrix, reducing the complex calculation with high dimensions. Moreover, the
UKF does not ignore the high-order terms of the Taylor expansion of the nonlinear equation,
like the EKF, but retains the equation using unscented transformation, which makes the
prediction accuracy of the UKF higher than that of the EKF. In addition, the UKF does
not need to be linearized, which reduces the requirements of the system state equation
and observation equation. Especially when the system equation is highly nonlinear, the
performance of the UKF is significantly better than that of the EKF.

In addition, in order to improve the accuracy of results, the parameters in the UKF can
be continuously adjusted by fitting known prediction results and true states in advance to
achieve optimal estimations. This is impossible for other Kalman filters.

The UKF, as a main method to solve nonlinear data assimilation problems, has been
widely used in many fields, such as flight target tracking [35], visual tracking [36], real-time
camera tracking, highway navigation systems, and vehicle and public transport systems. It
has been further introduced into the field of machine learning, including nonlinear system
identification, neural network training, and dual estimation [37].

As an example, in Figure 2, the UKF has been applied into a greenhouse climate
control system [38].

As a complex control system, a greenhouse climate control system creates difficulties in
regulating the greenhouse environment because of highly coupled nonlinear dynamics and
strong disturbances from surrounding environments, such as global radiation, wind speed
and direction, and external air temperature and humidity. In addition, the climate control
inside a greenhouse largely depends on the accuracy of sensors outside the greenhouse. The
unconventional noise and incomplete measurement caused by weather or other accidents
can also affect the quality of climate control.

The dynamic change in a greenhouse is determined by the difference of energy and
mass content in between its internal and external air. A greenhouse’s climate state can
be expressed by two variables: the internal air temperature and the absolute humidity.
A simplified greenhouse climate model for control purposes describes the dynamic of
the state variable with the energy balance and water vapor balance equations [39]. The
former is affected by energy supply and energy loss, and the latter is mainly affected by the
transpiration rate of plants.

The ability of the UKF to accurately estimate non-linearities makes it attractive for the
implementation of greenhouse climate control systems, where the UKF is used to estimate
the states of a greenhouse climate control system with missing measurements and to filter
out noise. Please refer to Figure 3 for the process.

Through simulation experiments, results show that the UKF algorithm without con-
sidering missing measurements has a higher order of accuracy than that with measure-
ment losses.

Another example of estimating the state of charge (SOC) of a lithium-ion battery can
illustrate the unique advantages of the UKF [40]. The capacity of the lithium-ion battery
and internal parameters obviously vary with temperature, so accurately estimating the state
of the cell charge at various temperatures is the key technology of the battery management
system in electric vehicles. Based on the Thevenin model, using the Unscented Kalman
filter (UKF), the SOC of the Li-ion battery at various temperatures and discharge currents
was estimated. Its specific estimation steps are shown in Figure 4.

Results show that the UKF algorithm adapts to the estimation of the battery’s SOC
under different discharge currents. It has a strong correction effect on the initial error,
and the convergence speed slows down as the temperature decreases in the estimation
process. However, the estimation of the steady-state accuracy is almost unaffected by the
temperature, and the steady-state accuracy is very high. Therefore, the UKF algorithm is
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suitable for estimating the SOC of lithium-ion battery packs under different temperatures
and discharge currents.
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3. Other Kalman Filters
3.1. Adaptive Kalman Filter

In the KF, there is a premise that the model error and observation error are assumed
to be fixed values given in advance, which is inappropriate when some filters are in a
changing environment. The Adaptive Kalman filter (AKF) [41] can effectively solve this
problem. The main change in the AKF relative to the KF is that the AKF updates the
original fixed mean and covariance matrices, and observational errors are updated. The
AKF’s analysis and prediction steps are consistent with the KF, and the update steps for
qk, rk, Qk, Rk [41] are

qk = (1− dk−1)qk−1 + dk−1(xa
k − Hkxa

k−1)

Qk = (1− dk−1)Qk−1 + dk−1(K∗k ŷŷTK∗k
T)

rk = (1− dk−1)rk−1 + dk−1(y− Hkx f
k )

Rk = (1− dk−1)Rk−1 + dk−1(ŷŷT + HkP f
k Hk

T)

(17)
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dk is usually taken as 1
k or 1−b

1−bk+1 , where b (0 < b < 1) is the forgetting factor; as time
moves forward, 1 − dk gradually converges to 1 or b in two different modes, so dk is
often between 0.95 and 0.99. More information about the parameter dk can be found in
reference [42]. If dk = 0, then the AKF is transformed into the KF, and the AKF will tend to
be a standard KF.

The AKF uses the observational data to constantly determine whether the system
dynamics have been changed by the filter itself. It estimates and corrects model parameters
and noise’s statistical characteristics so as to improve the filter design and reduce the
actual error of the filter. This filter method combines system identification and filter
estimation together.

It is clear that the AKF’s idea is applicable to not only the KF but also other Kalman
filter algorithms. The addition of an adaptive filter greatly improves the problem that the
default scene in the Kalman filter algorithms is static.

3.2. Derivative Algorithms of EnKF

In order to solve the problems in the EnKF, many more practical computational
methods have emerged to optimize the existing EnKF.

The Ensemble Square Root filter (EnSRF) [43] uses the traditional Kalman gain for
updating the ensemble mean but uses a “reduced” Kalman gain to update deviations from
the ensemble mean. There is no additional computational cost incurred by EnSRF relative
to the EnKF when observations have independent errors and are processed one at a time.
It is demonstrated that the elimination of the sampling error associated with perturbed
observations makes the EnSRF more accurate than the EnKF for a same ensemble size.

In Section 2.3, in order to ensure the feasibility of the EnKF and to solve the problem
of filter dispersion, observations are perturbed. The filter dispersion can also be avoided by
other schemes. For example, changing the Kalman gain K∗ in the EnKF into [43]

∼
K = P f HT [(

√
HP f HT + R)−1]T × [

√
HP f HT + R +

√
R]−1. (18)

Since the computation with respect to
∼
K involves the square root of the observa-

tion error covariance matrix
√

R, this EnKF is referred to as the ensemble square root
Kalman algorithm.

The Ensemble Transform Kalman filter (ETKF) [44] differs from other ensemble
Kalman filters in that it uses ensemble transformation and a normalization to rapidly
obtain the prediction error covariance matrix associated with a particular deployment of ob-
servational resources. This rapidity enables it to quickly assess the ability of a large number
of future feasible sequences of observational networks to reduce forecast error variance.

The Ensemble Adjustment Kalman filter (EAKF) [45] can perform viable data assimila-
tion and prediction in models where the model state dimension is large compared with the
ensemble size. It has an ability to assimilate observations with complex nonlinear relations
to state variables and has extremely favorable computational scaling for large-scale models.

To facilitate the introduction of the ETKF and EATF, another idea for understanding
the EnKF is introduced as the following.

Since it is difficult to compute Pa in high-dimensional cases, Pa can be updated by
computing the transformation matrix and applying it to an ensemble of perturbation
matrices in the square root form [46]. As a further explanation, let

Xa = Xa
+ X′a, (19)

where Xa
= (xa, ..., xa) ∈ RNx×N is a matrix in which each column is a set-analysis mean,

and the set Xa can be obtained by adding different perturbations to a fixed xa, respectively.
Then, Pa can be written as

Pa =
X′a
(
X′a)T

N − 1
. (20)
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From the equation Pa = (I−K∗H)P f in the KF algorithm, it can lead to

X′a(X′a)T = (I−K∗H)P f

= (I− P f HT(HP f HT + R)−1H)X′ f (X′ f )T

= X′ f (I− STF−1S)(X′ f )T
(21)

where S = HX′ f is called the ensemble perturbation matrix in the observation space. F is
defined as

F = SST + (N − 1)S, (22)

and it is called the new interest rate covariance.
To determine the perturbation X′a, (I− STF−1S) needs to be computed, such that

(I− STF−1S) = TTT , (23)

where T is called the transformation matrix. Then, X′a(X′a)T = X′ f TTT(X′ f )T , resulting
in X′a = X′ f T. Different EnKFs can use different methods to solve the transformation
matrix. For example, the eigenvalue decomposition of (TTT)−1 yields (TTT)−1 = UΣUT ,
which is called the Ensemble Transformed Kalman filter (ETKF) and can be calculated
as T = UΣ−

1
2 UT . For more related detailed information, please refer to reference [46],

which provides a large number of derivative algorithms of the EnKF organized through
the above ideas.

All these filters solve the problem of the EnKF divergence to some extent. In addition,
they can also be combined with the variational method. For example, Whitaker et al. tried
to combine the EnKF and 3DVAR [43], and the results showed that with the increase in the
sample number, the greater covariance weight of the EnKF would achieve better results.
Hansen et al. proposed an assimilation method combining the EnKF and 4DVAR [47], and
the results showed that their method is better than the single EnKF or 4DVAR method.
Pleases refer to Appendix A for a brief description of 3DVAR and 4DVAR.

3.3. Derivative Algorithms of UKF

After introducing unscented transform into the KF, the UKF has become the main-
stream algorithm replacing the EKF to solve nonlinear problems, and other methods can
often combine with it to solve practical problems. For example, the UKF is combined with
a particle filter [48] to improve the efficiency of the particle filter algorithm. There is also a
Square Root Kalman filter (SR-UKF) [49] corresponding to the ensemble Kalman, where
square root forms have the added benefit of numerical stability and guaranteed positive
semi-definiteness of covariances.

4. Conclusions

Aiming at sequential assimilation algorithms in data assimilation, this paper intro-
duces the basic principles and derivation formulas of the Kalman filter (KF), Extended
Kalman filter (EKF), Ensemble Kalman filter (EnKF), and Unscented Kalman filter (UKF).
This paper is primarily based on the following two aspects of interpretation: 1© The system
process model and observation model are established, mainly by establishing the system’s
state equations and observation equations, as well as determining the statistical charac-
teristics of the model error and the observation error using statistical measurements for
the estimation of the noise-related parameters and establishing the system process of the
mathematical model; 2© the filter computational model and the mathematical model are
established as the basis for the determination of the time update equations of the filter and
the state update equation; the main coefficients in the filter coefficients are determined,
including state transition matrices and the related factor matrix. Furthermore, it not only
analyses and summaries their respective advantages and disadvantages, but also discusses
their applications in the field of data assimilation.
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The development of the Kalman filter algorithm has been moving towards a wider
range of applications, higher accuracy, and faster speed over the decades. It has matured
into application models in a number of fields, such as climate science, target tracking, and
artificial intelligence. It has become an integral and important part of data assimilation.

Although the KF has been introduced for so many years, it has many limitations,
such as being only applicable to linear conditions and slow speed. The EKF enables the
application of the Kalman filter to nonlinear conditions through the linearization of the
Taylor expansion, while the EnKF and UKF also combine the Kalman filter with the Monte
Carlo algorithm and unscented transform, respectively, resulting in a more applicable
and faster Kalman filter. For a detailed summary of those algorithms, please refer to
Appendix C.

In addition to these four types of the Kalman filter, many derivative algorithms of the
Kalman filter have been developed. There is still great potential for the Kalman filter and
its derivatives to be developed. Various filter methods that more or less existed at present
have weaknesses, such as the complex structure of algorithms and the lack of real-time
reliability. It is hoped that with the rapid development of numerical computing technology,
more scholars will devote themselves to the research on the Kalman filter algorithms in
order to improve the accuracy and computational efficiency of the algorithms when solving
practical problems.
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Appendix A. The Variational Data Assimilation Algorithms

The variational algorithm constructs a cost function to describe the difference between
the analysis state and the truth of the state quantity and uses the variational idea to trans-
form the data assimilation problem into an extreme value solving problem by minimizing
the “distance” between the prediction of the state and the observation under the condition
of satisfying some dynamic constraints [50] so that the estimated state with the smallest
“distance” is the optimal state. The variational approach together with the use of remote
sensing data is generally considered to be the key factor for the continuous improvement
of the quality of numerical weather prediction in the 1990s, and variational assimilation
algorithms have, therefore, become one of the mainstream assimilation methods in the
late 20th century. Common variational algorithms include three-dimensional variational
(3DVAR) and four-dimensional variational algorithms (4DVAR).

The 3DVAR algorithm adjusts the trajectory of model predictions using all observations
within the assimilation window, constructs a cost function to represent the error between
the analysis state and the true state, and solves for the optimal solution with a very small
cost function. The cost function is difficult to compute directly, and usually requires the
help of a gradient function and an adjoint model [50]. The 3DVAR algorithm includes
physical processes in the cost function and uses the model forecast as the background field
of the state, so the 3DVAR assimilation results are physically consistent and dynamically
coherent. During the assimilation process, 3DVAR does not need to filter observations and
can use all valid observations. At the same time, 3DVAR can also assimilate observations
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that are not directly or linearly related to the state quantities because 3DVAR can use
complex observational operators. However, in practice, due to the limitations of nonlinear
changes of states and high dimensionality of state quantities, it is difficult to carry out direct
computation, and it requires the use of concomitant modes and tangent linear equations.
In addition, it is difficult to write concomitant modes for complicated model operators and
observation operators, and the computational cost is also high. For more details on 3DVAR,
please check reference [50].

The 4DVAR algorithm considers the change in state over time on the basis of 3DVAR,
and the optimal estimation of the state at time t is the result of the comprehensive con-
sideration of the change in state over time. It also requires the use of gradient function
and concomitant patterns, and it is more computationally intensive, because it takes into
account the change in time. It compensates to some extent for the shortcomings of 3DVAR
in terms of the time variation of state quantities and the initialization; please refer to
references [17,51] for a further understanding of 4DVAR.

Appendix B. The Derivation of Kalman Gain

In the process of describing a physical model, a simple but nontrivial estimation of the
analysis state xa is derived as

xa = Lx f + Ky (A1)

where L is the matrix with dimension Nx× Nx, K is the matrix with dimension Nx× Nx,
and xa and x f are the analysis state and forecast state of the model, respectively. Then, ac-
cording to assumptions, xa is a linear combination of x f and y. Combined with observation
equation y = Hx + w, where w is the model error and assumed to be unbiased, and the
covariance matrix of w is R; then, analysis error ea can be written as

xa − x = L(x f − x + x) + K(Hx + w)− x
ea = Le f + Kw + (L + KH− I)x

(A2)

According to the previous assumptions, w and eb are unbiased, E[ea] = (L + KH− I)x.
In order to reach an optimal estimation and reduce the analysis error as much as possible,
it is required that

L = I−KH (A3)

making E[ea] = 0.
Therefore, the linear unbiased estimation of xa becomes

xa = (I−KH)x f + Ky
xa = x f + K(y−Hx f )

(A4)

where K is a linear mapping from RNy to RNx. Let vector ŷ = y−Hx f be the innovation,
which is the information brought by the observations compared with the forecast state.

With the linear estimation of Equation (21), the estimation problem is now transformed
into finding a “satisfactory gain” K.

Assuming that the optimal gain matrix K is known, the analysis error covariance
matrix Pa is further investigated. From Equation (21) and y = Hx + w, it will lead to

w = e f + K(w−He f ) (A5)

Then, Pa can be calculated as

Pa = E[(ea)(ea)T ] = E
[(

e f + K(w−He f )
)(

e f + K(w−He f )
)T
]

= E[(Le f + Kw)(Le f + Kw)T ] = E[Le f (e f )TL] + E[Kw(w)TKT ]
= LP f LT + KRKT

(A6)
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where P f is the forecast error covariance matrix. Knowing that eb and w are linear indepen-
dent, and L and K are linear, the following can be obtained from L = I−KH.

Pa = (I−KH)P f (I−KH)T + KRKT (A7)

In order to reduce an analysis error, the trace of the analysis error covariance matrix
Tr(Pa) needs to be further discussed. When the optimal gain K = K∗ is considered, the
change of Tr(Pa) with respect to δK is

δ(Tr(Pa)) = Tr((−δKH)P f LT + LP f (−δKH)T + δKRKT + KRδKT)

= Tr((−LP f
THT − LP f HT + KRT + KR)(δK)T)

= 2Tr((−LP f HT + KR)(δK)T)

(A8)

The symmetry of Tr(A) = Tr
(

AT), P f and R are used in the above derivations. In the
optimal state (i.e., when K = K∗), there should be δ(Tr(Pa)) = 0, thus

−LP f HT + KR= −(I−K∗H)P f HT + K∗R = 0

K∗= P f HT(R + HP f HT)−1
(A9)

At this step, the optimal estimation K∗ of gain K under the linear assumption can be
obtained. From Equation (A3), the result of the estimation analysis on X and Pa can be
achieved, which is called BLUE (best linear unbiased estimator) analysis.

Appendix C

Table A1. Application of the four types of Kalman filters in data assimilation.

Kalman Filter Applicable Model Application

Kalman filter
(KF) Linear

Navigation, Guidance and Control [11]
(It is no longer often used as the preferred method for data assimilation due to

its limitations.)

Extended Kalman
filter (EKF)

Locally linear with strong
continuity

Natural Geographical Sciences:
Weather Forecast [1]

Soil moisture prediction [4]
Artificial Intelligence and Computer Science:

Target Tracking [35]
Navigation System

Machine Learning [37]
Agricultural Science:

Crop yield estimation [6]
Transportation Science:

Freeway Navigation
Public Transportation System [52]

(Note: These three types of nonlinear filters have high repetition rate in
applications. According to a specific problem, a more appropriate filter is

selected for the experiment. Here only proves a summary)

Ensemble Kalman
filter (EnKF) Nonlinear

Unscented Kalman
filter (UKF) Nonlinear
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Table A2. Basic formulas, algorithms, and characteristics of four types of Kalman filter.

Kalman Filter Applicable Model Application

Kalman filter
(KF)

x f
k+1 = Mk+1xa

k

P f
k+1 = Mk+1Pa

kMk+1
T + Qk+1

K∗k = P f
k Hk

T
(

HkP f
k Hk

T + Rk)
−1

xa
k = x f

k + K∗k
(

yk −Hkx f
k

)
Pa

k =
(
I−K∗k Hk

)
P f

k

The system model is adjusted by the observations to
reach an optimal state at the current time. Then, the
model is reinitialized by using the state estimation at

the current time and continues time integrations.
Compared with other algorithms, KF can adjust the
model according to the observations, and it can have
a general understanding of predictions through its

updated covariance matrix.
However, it is only applicable to linear conditions,
and its computational effort is difficult to estimate.

Extended Kalman
filter (EKF)

x f
k+1 = Mk+1[xa

k ]

P f
k+1 = Mk+1Pa

kMk+1
T + Qk+1

K∗k = P f
k Hk

T(HkP f
k Hk

T + Rk)
−1

xa
k = x f

k + K∗k (yk − Hk[x
f
k ])

Pa
k = (I−K∗k Hk)P

f
k

This type of Kalman filter linearizes nonlinear
equations by taking the first-order terms through

Taylor expansion.
It has good prediction results for data assimilation
problems with locally linear and strong continuity.

Neglecting the second-order and higher-order
expansion terms leads to a decrease in the prediction

accuracy of the system. It is
computationally intensive.

Ensemble Kalman
filter (EnKF)

x f
i = M[xa

i (k−1)] i = 1, 2, ......, N

x f = x f = 1
N

N
∑

i=1
x f

i

P f HT = 1
N−1

N
∑

i=1

(
x f

i − x f
)
(Hx f

i −Hx f
i )

T

HP f HT = 1
N−1

N
∑

i=1

(
Hx f

i −Hx f
i

)
(Hx f

i −Hx f
i )

T

Ru = 1
N−1

N
∑

i=1
uiui

T

K∗u = P f HT(HP f HT + Ru)−1

xa
i = x f

i + K∗u(yi − H(x f
i ))

xa = 1
N

N
∑

i=1
xa

i

The combination of an ensemble prediction and the
Kalman filter can be used to calculate the forecast

error covariance by Monte Carlo methods. It can be
used in the case of strong nonlinearity of a system,
reducing the amount of calculation, making it easy

for parallel calculation, and improving the
calculation speed.

The addition of disturbance will accelerate the filter
divergence and affect the feasibility of filter

calculation, which will lead to the case that the
matrix is full-rank. It is also difficult to obtain its

inverse matrix.

Unscented Kalman
filter (UKF)

x′ fk
(i)

= M[xa
k−1(i)] i = 0, 1, ....., 2n

µ
f
k =

2n
∑

i=0
W(i)

m x′ fk
(i)

P f
k =

2n
∑

i=0
W(i)

c [x′ fk
(i)
− µ

f
k ][x

′ f
k
(i)
− µ

f
k ]

T + Qk

y(i)k = Hk[x
f
k
(i)
] i = 0, 1, ....., 2n

µ
f
yk =

2n
∑

i=0
W(i)

m y(i)k

P f
yk =

2n
∑

i=0
W(i)

c [y(i)k − µ
f
yk ][y

(i)
k − µ

f
yk ]

T + R

Pxyk =
2n
∑

i=0
W(i)

c [x f
k−1

(i)
− µ

f
k ][y

(i)
k − µ

f
yk ]

T

K∗k = Pxyk P f
yk

−1

µa
k = µ

f
k + K∗k

(
yk − µ

f
yk

)
Pa

k = P f
k −K∗k P f

yk K∗k
T

The combination of unscented transformation and
the Kalman filter avoids linearization by taking

sigma points and calculating the weighted mean and
variance. Its calculation is easy to implement and

with high accuracy, which is better than EKF.
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