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Abstract: The factors influencing precipitation in western China are quite complex, which increases
the difficulty in determining accurate predictors. Hence, this paper models the monthly measured
precipitation data from 240 meteorological stations in mainland China and the precipitation data from
the European Centre for Medium-Range Weather Forecasts and the National Climate Centre and
employs 88 atmospheric circulation indices to develop a precipitation prediction scheme. Specifically,
a high-quality grid-point field is created by fusing and revising the precipitation data from multiple
sources. This field is combined with the Empirical Orthogonal Function decomposition and the causal
information flow. Next, the best predictors are screened through Empirical Orthogonal Function
decomposition and causal information flow, and a data-driven precipitation prediction model is
established using a Back Propagation Neural Network and a Random Forest algorithm to conduct
the 1-month, 3-month, and 6-month precipitation predictions. The results show that: The machine
learning-based precipitation prediction model has high accuracy and is generally able to predict
the precipitation trend in the western region better. The Random Forest algorithm significantly
outperforms the Back Propagation Neural Network algorithm in the prediction of the three starting
times, and the prediction ability of both models gradually decreases as the starting time increases.
Compared with the 2022 flood season prediction scores of the Institute of Atmospheric Sciences
of the Chinese Academy of Sciences, the model improves the prediction of 1-month and 3-month
precipitation in the western region and provides a new idea for the short-term climate prediction of
precipitation in western China.

Keywords: multi-source precipitation data; causal analysis; Random Forest; Back Propagation Neural
Network; Empirical Orthogonal Function decomposition

1. Introduction

The western region of China, the main part of which is located west of 110◦E, is far
from the sea and has unique natural geographic conditions, characterized by interlock-
ing plateaus and mountains, coexisting basins, deserts, and lakes, and nurturing glaciers,
permafrost, and lakes within its territory, and it is the source of the largest rivers in Asia
and Europe [1]. The western region has complex climate types with obvious regional char-
acteristics, within which the northwestern region suffers from perennial water shortages
and frequent drought and desertification disasters; the southwestern region has many
mountainous areas, which are prone to flash floods and mudslides during extensive rainfall
in the summer [2]. In recent years, with global warming and the enhancement of human
activities, the natural environment in the west has undergone significant changes, such as
the rise of the snow line in the plateau region, the retreat of glaciers, the decrease in the area
of permafrost, the reduction in groundwater resources, and the expansion of land deserti-
fication, which have triggered a series of ecological and environmental problems [3]. In
particular, water resource security and ecological environment security problems caused by

Atmosphere 2023, 14, 1396. https://doi.org/10.3390/atmos14091396 https://www.mdpi.com/journal/atmosphere

https://doi.org/10.3390/atmos14091396
https://doi.org/10.3390/atmos14091396
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://doi.org/10.3390/atmos14091396
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos14091396?type=check_update&version=2


Atmosphere 2023, 14, 1396 2 of 20

climate change in western China will constrain China’s economic and social development.
Therefore, it is of great practical significance to further improve the level of precipitation
prediction in western China.

At present, the forecasting of the precipitation seasonal trends is mainly based on
methods that combine statistics, dynamics, and power statistics. Statistical methods pre-
dict the precipitation trend in future seasons by analyzing historical contemporaneous
data and establishing mathematical models. Commonly used statistical methods include
regression and time series models. Tang et al. [4] relied on wavelet regression to build
a statistical model, tested it in China, and successfully obtained the general trend of sea-
sonal changes in precipitation. Mai et al. [5] explored the probabilistic forecasting method
of short-term heavy precipitation in Chengdu city based on the idea of the “ingredient
method” combined with regression analysis. With the development of numerical models,
the dynamical models have gradually become the main tool for climate prediction. Such
models simulate the atmospheric circulation system through the atmospheric circulation
model and then project the possible precipitation changes. In recent years, the ability of
such seasonal prediction models to predict atmospheric circulation, ENSO phenomena, and
Asian summer winds has been significantly improved. However, their ability to predict
precipitation in East Asia remains limited [6]. Therefore, many experts and scholars have
developed a combined dynamical and statistical prediction model based on a dynamical
model, which further improves the precipitation prediction accuracy by considering the
historical precipitation characteristics (e.g., SST anomalies and ENSO), the changes in
climatic indices (e.g., Southern Oscillation Index and North Atlantic Oscillation Index), and
the atmospheric-oceanic physical mechanisms of a particular region. These characteristics
are combined with real-time monitoring data and expert empirical judgment to output
precipitation prediction. For instance, Sun et al. [7] investigated a seasonal precipitation
prediction method based on wavelet analysis and Kringing interpolation. Bukhari et al. [8]
investigated a seasonal precipitation prediction method based on regression analysis and a
Dynamical-statistical model. Alireza et al. [9] provide a novel methodology for modeling
multivariate dependence structures of meteorological drought characteristics (severity,
duration, peak, and interarrival time) based on the combination of four-dimensional Vine
Copulas and Data Mining algorithms. Pan et al. [10] established a revised method for
ECMWF precipitation forecasting based on Kalman dynamic frequency. Chen et al. [11]
explored the effect of different convective-scale ensemble forecast memberships on precipi-
tation forecasts. All of these studies have improved precipitation prediction techniques to
some extent.

With the development of big data and artificial intelligence technology, Machine Learn-
ing (ML) shows great application potential in weather forecasting. Distinguishing itself
from traditional statistical methods, machine learning excels in dealing with nonlinear
problems and can be utilized to discover and extract new interrelated signals from the
Earth system. AI-based forecasting of weather elements is typical of data-driven model-
ing, which emphasizes learning rules from historical data and reasoning and forecasting
about new data. Commonly used ML algorithms in numerical weather prediction are the
Back Propagation Neural Network (BPNN) [12,13], Support Vector Machine (SVM) [14,15],
Random Forest (RF) [15,16], and Bayesian Network (BN) [17,18]. In recent years, with the
development of deep learning theory, deep learning methods represented by Convolu-
tional Neural Networks (CNN) [19,20] and Long Short Term Memory (LSTM) [13,21] have
been applied in the field of the climate. These machine learning algorithms provide new
ideas for the development of the field of weather forecasting, such as weather forecast
accuracy improvement, weather phenomenon identification, causality mining, and extreme
weather detection.

The most important aspect of machine learning modeling is the feature selection, which
involves selecting the forecast factors in the precipitation prediction. Using irrelevant
variables as the input variables in the model will not only increase the computational
effort of the prediction system, but also reduce the accuracy of the forecast [22]. The
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most commonly used method in previous studies relating to forecast factor selection was
correlation analysis, which selects the best factor by analyzing the correlation between
the output variables and the forecast factors. Although correlation analysis is widely
used, it does not provide an in-depth understanding of the causal mechanisms behind the
system dynamics, which is extremely important in meteorology and oceanography. Causal
analysis can uncover hidden relationships in the system, thus overcoming some of the key
drawbacks of correlation analysis [23]. For example, through causal inference, Marlene
et al. [24] found that sea ice concentration in the Barents-Kara Sea is an important driver of
the mid-latitude circulation affecting the Arctic Oscillation in winter. McGraw et al. [25]
examined the causal relationship between Arctic sea ice and atmospheric circulation using
Granger causal analysis. Li et al. [26] developed a new data-driven prediction technique
for sea ice density by screening the key environmental factors affecting the sea ice density
through causal analysis based on the Granger causality test. Liang et al. [27] demonstrated
that the South China Sea significantly influences the Pacific-North America remote sensing
model, using the causal inference of information flow. Docquier et al. [28] used causal
information flow to verify that air and sea surface temperatures and ocean heat transport
are the main drivers of the recent and future changes in the Arctic sea ice. These studies
demonstrate that causal analysis has a stronger ability to uncover hidden relationships
than correlation analysis and that it is a promising method for screening forecast factors. At
present, the study of applying causal analysis to the screening of precipitation predictors in
the western region of China has not been reported.

A lot of research has been conducted on improving precipitation prediction techniques;
however, the existing research on precipitation prediction in the western region is still
very limited, and most of the studies are focused on a certain region in the western region.
Although there is a lack of research on precipitation prediction in the whole western region,
we can still gain a lot of insights from the previous studies. Guo et al. [1] applied the
Empirical Orthogonal Function (EOF) and the Rotated Empirical Orthogonal Function
(REOF) to classify the western region of China into nine precipitation types in order to study
the spatial and temporal variability characteristics of precipitation in the western region.
This study shows that the EOF can decompose the meteorological element field, which
changes with time, into a spatial function part and a temporal function part, and condense
the change information of the original element field into the first few principal components
and their corresponding spatial functions, which provides powerful help in studying the
complex climate types in the western region. Luo et al. [29] found that the westerly trough is
an important influence on summer precipitation in southwestern China, and Zhu et al. [30]
found that the characteristics of the westerly rapids, the structure of the North Pacific
Sea Level Pressure, the characteristics of the North Atlantic Oscillation, and the strength
of the Mascarene High Pressure are the four contemporaneous key influences affecting
precipitation in northwestern China. Both of these studies revealed that the atmospheric
circulation index is an important factor influencing precipitation in the western region.

The spatial and temporal distribution of precipitation in western China is uneven
and the influencing factors are complex, and there is a big gap between the level of
numerical model forecasting and the operational needs. Therefore, it is necessary to
utilize the advantages of the EOF, causal analysis, and machine learning to further improve
the precipitation forecasting capability in western China. Combined with the previous
studies, this paper condenses the spatial and temporal variation information of the multi-
source precipitation field on the first few principal component variables through EOF
decomposition. In addition, in order to solve the problem of the precipitation influencing
factors in the western region being complicated and the best forecast factor being difficult
to select, the best forecast factor with a significant causal relationship with each principal
component variable is screened from the set of 88 atmospheric circulation indices based
on the causal information flow. Finally, considering that some years of the precipitation
observation in the western region are not suitable for deep learning methods, this paper
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uses RF and BPNN modeling, combined with the actual precipitation data, to establish a
precipitation prediction method suitable for the western region.

2. Information and Methodology

This section specifically describes the sources of data and spatial and temporal reso-
lution, the metrics (Root Mean Square Error and Anomaly Correlation Coefficients) used
to assess the effectiveness of precipitation forecasts, the causal analysis methods (causal
information flow) used to filter the best forecast factors, and the ML methods (BPNN and
RF) used for modeling precipitation forecasts.

2.1. Data Sources

The forecast factor information is derived from the monthly average of 88 atmospheric
circulation indices in the Climate System Monitoring Index Set provided by the National
Climate Centre (NCC), which mainly include atmospheric circulation indices such as the
sub-height, the East Asian trough, the polar vortex, the Eurasian circulation type, the
remote correlation, and the Pacific trade winds. The time scale is January 1951–February
2023, and in the case of missing measurements, the moving median of the same month in
each of the 15 years before and after the missing month is used to supplement it.

This paper uses the climate model prediction data from the European Centre for Medium-
Range Weather Forecasts (ECMWF) and the National Climate Center (NCC), both of which
are from the MODES system, with a spatial range of 25◦ N–50◦ N, 70◦ E–140◦ E and a
spatial resolution of 1◦ × 1◦. The ECMWF model data are from February 1993 to September
2022, and the NCC model data are from February 1991 to December 2022. Both sets of
model data have a time step of 1 month. Meanwhile, we also employ the monthly total
precipitation data from 240 stations in the western region (see Figure 1) for January 1985 to
September 2021.
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Figure 1. Map of 240 meteorological stations in the western region, where the blue-boxed area
(25◦ N–50◦ N, 70◦ E–140◦ E) is the scope of the western region studied in this paper, and the red dots
represent weather stations.

As the three data and the atmospheric circulation index set have different start and
cutoff times, in order to ensure the same length of time for each data, only the data from



Atmosphere 2023, 14, 1396 5 of 20

February 1993–September 2022 are selected in this paper to carry out the precipitation
prediction experiments in western China.

2.2. Assessment Methodology

The Root Mean Square Error (RMSE) and Anomalous Correlation Coefficient (ACC)
are used for the precipitation evaluation metrics in the western region. RMSE is a commonly
used statistical indicator for assessing the difference between forecast models or estimates
and observations. It measures the size of the average deviation of the model predictions
from the observations and is sensitive to outliers. The RMSE formula is as follows:

RMSE =

[
1
n

N

∑
i=1

(ŷi − yi)
2

] 1
2

(1)

where ŷi is the predicted temperature, yi is the true temperature (the output variable of the
test set), yi is the mean value of the real temperature, and n represents the total number
of samples.

ACC is a statistical measure of the similarity between two anomaly fields, which is
commonly used to assess the ability of numerical weather prediction models and climate
model simulations to quantify whether a model or forecast can capture and reproduce the
observed anomalies. The ACC has a subjective range of −1 to 1, where 1 indicates a perfect
match between the model and the observations, 0 means no correlation, and −1 means
a perfect negative correlation. Higher ACC values indicate better agreement between
the model and observations regarding anomaly pattern and magnitude. The formula for
calculating ACC is as follows:

Acc =
∑n

i=1 (yi − y)(oi − o)√
∑n

i=1(yi − y)2∑n
i=1(oi − o)2

(2)

where n is the total sample size, yi and oi denote the predicted and observed values, and y
and o denote the mean of the predicted and observed values.

2.3. Basic Theory of Information Flow

Information flow is a physical quantity independently proposed by Professor Xiangsan,
which analyzes the transfer entropy and utilizes the Granger causality test to quantitatively
characterize the causal relationship between variables (or events) and measure the causality
through the time rate of information from one sequence of variables to the other. This
causality is unidirectional. The amount of information exchanged between the two variables
indicates the magnitude of the causal relationship and the direction [31]. Measuring the
causality between variables through information flow or information transfer enables
causal analysis to be formulated and quantified.

Consider a two-dimensional stochastic system where the original expression for the
information flow can be written as:

dX = F(X, t)dt + B(X, t)dW (3)

where F = (F1, F2)
T is the vector of drift coefficients (micro-vectorizable field), B =

(
bij
)

is the diffusion coefficient matrix, and W is the standard Wiener process vector. Let
gij = ∑k bikbjk. Then, the information flow from variable X2 to X1 is:

T2→1 = −E
(

1
ρ1

∂F1ρ1

∂x1

)
+

1
2

E
(

1
ρ1

∂2g11ρ1

∂x1
2

)
(4)

where ρ1 is the marginal density function of X1 and E is the mathematical expectation.
Formally, the information flow from variable X2 to X1 equals the difference between the
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marginal entropy change rate of X1 and the marginal entropy change rate of the system,
excluding X2.

On this basis, Xiangsan proved that the maximum likelihood estimation of the infor-
mation flow in Equation (3) is very tight and involves only common statistics, i.e., sample
covariance. Thus, for a sequence of variables X1 and X2, the information flow rate (in units
of transfer per unit of time) from X2 to X1 is:

T2→1 =
C11C12C2,d1 − C2

12C2,d1

C2
11C22 − C11C2

12
(5)

where Cij is the sample covariance between Xi and Xj, and Ci,dj is the covariance between

Xi and
.

X j.
.

X j is a differential approximation of dXj/dt in the Eulerian forward format
.

X j(n) =
[
Xj(n + k)− Xj(n)

]
/k∆t. Typically, k equals 1, but for highly chaotic and densely

sampled sequences k = 2 should be chosen to avoid a falsely large
.

X j. The information
flow in the opposite direction can be obtained by exchanging the positions of subscripts 1
and 2.

To compare the causality strength, Xiangsan normalized the information flow for-
mula [32]: 

Z2→1 ≡ |T2→1|+
∣∣∣ dH∗1

dt

∣∣∣+ ∣∣∣∣ dHnoise
1
dt

∣∣∣∣
dH∗1

dt = E
(

∂F1
∂x1

)
dHnoise

1
dt = − 1

2 E
(

g11
∂2logρ1

∂x1
2

)
− 1

2 E
(

1
ρ1

∂2g11ρ1
∂x1

2

) (6)

where H∗1 denotes the phase space expansion along the X1 direction, and Hnoise
1 denotes

the random effect. Normalizing Z provides the normalized information flow equation:

τ2→1 =
T2→1

Z2→1
(7)

The normalized information flow τ2→1 computed through Equation (7) can be either
zero or non-zero. If τ2→1 = 0, X2 does not cause X1, i.e., there is no causal relationship
between the two. If τ2→1 6= 0, a causal relationship between the two exists. At this point,
we have two cases according to the sign: τ2→1 > 0, indicating that X2 causes X1 to tend to
uncertainty, i.e., X2 is the cause of X1, and τ2→1 < 0, indicating that X2 causes X1 to tend
to stability, i.e., X2 can not be the cause of X1. In particular, at a significance level of 0.1,
τ2→1 > 1% determines that the causal relationship is significant.

2.4. Machine Learning Methods

In order to reduce the impact of the randomness of machine learning algorithms
in the modeling process, this paper uses two different machine learning algorithms for
modeling, namely Back Propagation Neural Network and Random Forests. These methods
belong to machine learning classification and regression methods, with some differences in
identifying and fitting the data.

(1) Back Propagation Neural Network

In 1986, Rumelhart and McCelland introduced multilayer networks in Parallel Dis-
tributed Processing and first proposed the Error Back Propagation (BP) algorithm. BP
is the most widely used algorithm for learning neural networks, typically employed for
multilayer feedforward neural grids and other types of neural grids, such as training
recurrent neural grids. The BP neural network usually refers to a multilayer feedforward
neural network trained with the BP algorithm, which contains one input layer, one or more
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hidden layers, and one output layer. Each layer can contain multiple neurons and has good
adaptive, error-resistant, and associative memory functions. The BP model is expressed as:

Pk = g2

[
m

∑
j=1

wkjg1

(
n

∑
i=1

wjixi + wj0

)
+ wk0

]
(8)

where xi is the input value of node i, Pk is the output value of node k, g1 is the implicit layer
activation function, and g2 is the output layer activation function. m and n are the number
of neurons in the input layer and output layer, respectively, wj0 is the deviation of the jth
neuron in the hidden layer, and wk0 is the deviation of the kth neuron in the output layer.
wkj is the weight of the output node k with implicit node j, and wji is the weight of input
node i with implied node j.

(2) Random Forest

Random Forest uses Decision Tree (DT) as the base learning machine, which is a
classifier that uses multiple decision trees for integration and trains and predicts the
samples. Thus, the predicted value of the RF is obtained by averaging the prediction of all
decision trees. Additionally, RF efficiently handles input samples with high-dimensional
feature space and complex data structures with strong robustness.

3. Experiments on Precipitation Prediction Based on Causal Analysis and Machine
Learning Methods

Based on the specific methodology presented in the previous section, this section
begins with a data fusion revision of the multi-source precipitation data to obtain a high-
quality grid point field. Subsequently, the best predictors are screened by combining
EOF decomposition and causal information flow, and the precipitation prediction model is
established using the BPNN and RF algorithms to carry out the experiments of precipitation
prediction for 1 month, 3 months, and 6 months, respectively.

3.1. Technical Process for Modeling Precipitation Forecasts

This section elaborates on the data-driven prediction model based on causal informa-
tion flow and machine learning algorithms. Figure 2 illustrates the model’s architecture,
which is divided into four aspects: lattice field revisions, factor selection, model building,
and model prediction and effect testing.

(1) Grid point field revision: This part takes the mean value of the EC and NCC grid
point field to form a new grid point field, which is used to interpolate the grid point
data into station data. After interpolation, the precipitation data of 240 stations are
used as inputs, the measured data of 240 stations are used as outputs, and the RF
algorithm is used to train the revised model. Based on the above model, the whole
grid-point field is input to revise the original fusion grid-point field.

(2) Factor selection: The revised grid point field is stored in a 26× 41× 344 standard
format, where the first two dimensions are spatial, representing the latitude and
longitude of the data, and the third dimension is temporal. Then, the revised grid
point field is decomposed by the EOF into time series and spatial series, and the
corresponding modes are selected according to the variance contribution of each
mode. Each selected precipitation mode is subjected to information flow-based causal
analysis using the set of atmospheric circulation indices to obtain a set of highly
correlated factors for the time coefficients of the first N modes of precipitation.

(3) Model building: This part sets the initial parameters according to the characteristics
of THE BPNN and RF and combines the screened key factors with the decomposed
time series for modeling.

(4) Model prediction and effect test: The time coefficients of the model prediction and the
spatial coefficients decomposed by the EOF are reduced to the prediction grid field.
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The prediction time limits are 1, 3, and 6 months, and the RMSE and ACC indicators
evaluate the precipitation prediction ability of each station.
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Figure 2. Flow chart for precipitation prediction.

3.2. Precipitation Prediction Experiments

This subsection shows, in detail, two of the most important processes in precipitation
prediction experiments, i.e., determining the optimal forecast factor and the setting of the
machine learning model parameters.

3.2.1. Selection of the Forecasting Factors

The revised gridded field was subjected to EOF decomposition to obtain each modal-
ity’s time series and spatial series. Several modes that have the greatest impact on precip-
itation in the Western theatre are filtered out based on the variance contribution of each
mode. Table 1 reports the variance contribution rates of the first eight precipitation modes,
revealing that the first four EOF modes have a larger variance contribution rate, with a
cumulative variance contribution rate of 74%. Therefore, this paper conducts precipitation
prediction using the time series of the first four modes. Figure 3 depicts the distribution of
the time series with space.

Table 1. Variance contribution of the first eight EOF modal precipitation time series.

Model 1 2 3 4 5 6 7 8

Expvar 56.7 10.6 4.1 2.6 1.1 0.9 0.6 0.5
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and longitude range of the study area is 25◦ N–50◦ N, 70◦ E–140◦ E, i.e., the blue-boxed area of
Figure 1), (a–d) are the first to fourth EOF modal precipitation time series, respectively.

The 88 atmospheric circulation indices are subjected to information flow-based causal
analysis with each of the first four EOF modal time coefficients. Table 2 reports the stan-
dardized information flow between the precipitation’s first EOF modal time coefficients
and the general circulation indices, where columns 1 and 4 represent the ordinal num-
bers of the 88 atmospheric circulation indices (see Table A1 for the specific names of the
indices), columns 2–3 represent the standardized information flow corresponding to the
atmospheric circulation indices with the ordinal numbers from 1 to 44, and columns 5–6
represent the standardized information flow corresponding to the atmospheric circulation
indices with the ordinal numbers from 45 to 88, with the bolded ordinal numbers in the
table representing the best forecasting factors that are finally screened out. We can see
standardized information flow is asymmetric and directional, so the direction of causal-
ity can be identified. The causal analysis shows that 66 atmospheric circulation indices
have significant causal relationships with the monthly precipitation in the western region,
and the standardized information flow of the 9th, 20th, 50th, 54th, 71th, and 78th indices
indicate that six circulation indices are unidirectional causes of precipitation variations,
resulting in 72 of the best forecast factors screened. Similarly, the best forecast factors for
the second to fourth EOF modes of precipitation are 69, 41, and 42 items, respectively.
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Table 2. Standardized information flow between precipitation in the first EOF mode and forecast
factors, where highlighted in the table are the best forecast factors screened, and the arrows represent
the direction.

Index Rain→ →Rain Index Rain→ →Rain

1 0.499 0.316 45 0.069 0.000
2 0.539 0.378 46 0.049 0.348
3 0.534 0.382 47 0.144 0.155
4 0.013 0.010 48 0.141 0.326
5 0.063 0.002 49 0.061 0.189
6 0.094 0.242 50 0.009 0.360
7 0.279 0.339 51 0.551 0.419
8 0.411 0.378 52 0.366 0.389
9 0.005 0.017 53 0.220 0.360

10 0.448 0.368 54 0.003 0.317
11 0.013 0.142 55 0.552 0.412
12 0.318 0.303 56 0.001 0.011
13 0.547 0.361 57 0.088 0.020
14 0.418 0.352 58 0.537 0.405
15 0.015 0.014 59 0.045 0.234
16 0.068 0.024 60 0.044 0.019
17 0.047 0.205 61 0.034 0.186
18 0.112 0.312 62 0.041 0.030
19 0.135 0.331 63 0.001 0.003
20 0.001 0.012 64 0.515 0.428
21 0.158 0.329 65 0.313 0.100
22 0.016 0.104 66 0.099 0.323
23 0.370 0.523 67 0.045 0.134
24 0.057 0.332 68 0.005 0.007
25 0.317 0.137 69 0.004 0.008
26 0.254 0.253 70 0.002 0.005
27 0.403 0.520 71 0.008 0.014
28 0.309 0.002 72 0.020 0.006
29 0.315 0.204 73 0.010 0.013
30 0.186 0.048 74 0.020 0.027
31 0.352 0.527 75 0.012 0.014
32 0.296 0.255 76 0.000 0.000
33 0.396 0.518 77 0.007 0.012
34 0.286 0.063 78 0.001 0.025
35 0.132 0.190 79 0.001 0.002
36 0.187 0.202 80 0.055 0.039
37 0.067 0.017 81 0.000 0.000
38 0.336 0.528 82 0.257 0.206
39 0.075 0.000 83 0.039 0.086
40 0.189 0.154 84 0.053 0.058
41 0.130 0.014 85 0.029 0.006
42 0.176 0.306 86 0.141 0.115
43 0.200 0.096 87 0.132 0.128
44 0.338 0.459 88 0.002 0.000

3.2.2. Machine Learning Model Parameter Settings

The parameter ranges of the two algorithms of the BPNN and RF are listed in Table 3.
In order to avoid overfitting, the parameter settings are as simple as possible to reduce
the model complexity, and all of the data are normalized. The number of nodes in the
input layer of the BPNN is the number of forecast factors corresponding to the four EOF
modes 72, 69, 41, and 42, respectively, and the number of nodes in the output layer is 1. The
number of hidden layer nodes is determined by the empirical formula k =

√
m + n + a,

where k is the number of hidden layer nodes, m and n are the number of nodes in the
input layer and the output layer, respectively, and a is an integer between 1~10. Different
parameter combinations within the parameter range are modeled separately using the
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training set for modeling. The number of decision trees in a random forest is uniformly
500, and the minimum number of leaves is 5.

Table 3. Model parameter settings.

ML Algorithms Parameterization

BPNN

Number of input layer nodes: 72, 69, 41 and 42
Number of implicit layer nodes:
First mode: {9, 10, 11, . . ., 18}
Second mode: {9, 10, 11, . . ., 18}
Third mode: {7, 8, 9, . . ., 16}
Fourth mode: {7, 8, 9, . . ., 16}
Number of output layer nodes: 1

RF Number of decision trees: 500
Minimum leaves number: 5

Figure 4 demonstrates the RMSE for four EOF modes with a starting time of 3 months
and the BPNN taking different numbers of hidden layer nodes. It can be seen that the
optimal number of hidden layer nodes for the first to fourth EOF modes are 12, 14, 16, and
12, respectively, corresponding to RMSEs of 0.025, 0.019, 0.032, and 0.040.
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4. Analysis of Precipitation Prediction Results

Based on the revised precipitation grid field, this paper adopts the BPNN and RF
algorithms to establish the precipitation prediction model and conduct the 1 m, 3 m,
and 6 m precipitation forecasts. The predicted grid point fields output from the model
are interpolated to each station, compared, and analyzed with the measured values at
the station. Then, the model’s precipitation forecasting effect at each weather station is
evaluated using the ACC and RMSE indicators.

Tables 4 and 5 present the ACC and RMSE metrics distribution for the two machine
learning algorithms at the three starting times, respectively. For the BPNN algorithm, the
number of stations with an ACC greater than 0.4 at each starting time is 168, 152, and 145,
respectively, and the stations with a negative correlation between the forecast and measured
precipitation gradually appear as the starting time increases. The number of stations with
an RMSE index of less than 10 at each starting time is 90, 84, and 81, respectively, and the
number of stations with an RMSE index of more than 30 is 44, 54, and 102, respectively.
Combining the two indexes, the predicted precipitation level of the model decreases with
the increase in the starting time. For the RF algorithm, the number of stations with an
ACC greater than 0.4 at each reporting time is 176, 159, and 153, respectively, and there
are no stations with no correlation or even a negative correlation between the forecast
and measured precipitation. The number of stations with an RMSE of less than 10 at
each starting time is 104, 94, and 102, and the number of stations with an RMSE of more
than 30 is 12, 3, and 40, respectively. The same conclusion can be obtained by combining the
two indexes, revealing that the RF algorithm is better than the BPNN algorithm considering
the forecasting effect.

Table 4. Distribution of ACC metrics for different ML algorithms with different starting times.

ACC
BPNN RF

1 Month 3 Month 6 Month 1 Month 3 Month 6 Month

Acc < 0 0 22 18 0 0 0
0< Acc ≤ 0.2 47 37 57 42 56 56

0.2< Acc ≤ 0.4 25 29 20 22 25 31
0.4< Acc ≤ 0.6 22 35 18 25 33 42
0.6< Acc ≤ 0.8 72 97 126 63 69 86
0.8< Acc < 1 74 20 1 88 57 25

Table 5. Distribution of RMSE metrics for different ML algorithms with different starting times.

RMSE
BPNN RF

1 Month 3 Month 6 Month 1 Month 3 Month 6 Month

0 < RMSE ≤ 1 10 9 17 11 23 10
1 < RMSE ≤ 10 80 75 64 93 71 92

10 < RMSE ≤ 20 56 48 24 68 54 56
20 < RMSE ≤ 30 50 54 33 56 89 42
30 < RMSE ≤ 40 34 36 65 10 3 30

40 < RMSE 10 18 37 2 0 10

Figure 5 depicts the correspondence between the RMSE and ACC indicators for
240 stations using the RF algorithm and a starting time of 3 m. The ACC indicator is the
same as the RMSE indicator for all stations. By combining all of the stations, it can be
obtained that the ACC indicator and RMSE indicator have a good correspondence, and the
station with a smaller ACC indicator corresponds to a larger value of the RMSE indicator,
i.e., the model’s precipitation prediction level at this station is poorer.
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Figure 6 illustrates the average RMSE and ACC metrics for the two ML algorithms at
three starting times as the overall precipitation prediction level of the model at 240 stations.
It can be obtained that the precipitation prediction level of the model gradually decreases
with the increase in the starting time, and for the BPNN algorithm, the average ACC metrics
of the model at the three starting times are 0.59, 0.47, and 0.46, respectively, corresponding
to the average RMSE metrics of 16.96, 18.89, and 22.31. For the RF algorithm, the average
ACC metrics of the model at the three starting times are 0.61, 0.53, and 0.49, and the
corresponding average RMSE metrics are 13.76, 13.97, and 16.06, respectively. There is an
obvious correspondence between the RMSE metrics and the ACC metrics. Thus, comparing
the two metrics affords a better evaluation of the model’s precipitation prediction level and,
at the same time, corroborates with the conclusions obtained in Figure 5. The RF algorithm
is significantly better than the BPNN algorithm at different starting times, with the ACC
metrics improved by 4.7%, 13.2%, and 5.4%, and the RMSE metrics reduced by 18.9%, 26%,
and 28%, respectively.
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Figure 6. Mean RMSE and ACC metrics values for 240 stations with starting report times of 1, 3, and
6 months using BPNN and RF algorithms.

In order to demonstrate the forecasting effect of the model more intuitively, four
stations are randomly selected in the Northwest, Southwest, and Plateau zones to demon-
strate the effect of the precipitation prediction. Figures 7 and 8 compare the predicted
and measured precipitation using the BPNN algorithm and the RF algorithm at the 10th
(Northwest), 76th (Southwest), 153th (Northwest), and 215th (Plateau) stations under dif-
ferent starting times. It can be seen that the deviation of the predicted precipitation from
the measured precipitation gradually increases with the increase in the starting time and
that the RF algorithm is better than the BPNN algorithm in predicting precipitation. The
conclusions obtained above are better reflected in the two graphs.

In summary, the model’s precipitation prediction level gradually decreases with the
increase in the starting time. For the BPNN algorithm, the average ACC metrics of the
model at the three starting times are 0.59, 0.47, and 0.46, respectively, and the corresponding
average RMSE metrics are 16.96, 18.89, and 22.31. For the RF algorithm, the average ACC
metrics of the model at the three starting times are 0.61, 0.53, and 0.49, respectively, and the
corresponding average RMSE metrics are 13.76, 13.97, and 16.06. During the starting time
of this paper, the RF algorithm significantly outperforms the BPNN algorithm in terms
of prediction, with the ACC metrics improving by 4.7%, 13.2%, and 5.4%, and the RMSE
metrics decrease by 18.9%, 26%, and 28%, respectively. There is an obvious correspondence
between the RMSE and the ACC indicator, which is contrastive, allowing a better evaluation
of the model’s precipitation prediction level. Indeed, the stations with a poorer predicted
precipitation level have smaller ACC values, corresponding to larger RMSE values.

In March 2022, the Climate Prediction Group of the Institute of Atmospheric Physics of
the Chinese Academy of Sciences provided the China Meteorological Administration with
predictions of precipitation forms during the flood season (June-August) in China. The
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testing reality shows that the Institute’s forecast opinion captures the national precipitation
form well, with a predicted ACC score of 0.53 [33]. Although the study presented in
this paper only focuses on the western region, the machine learning-based precipitation
prediction model in this paper has high accuracy and is generally able to predict the
precipitation trend in the western region better when compared with the benchmark of
0.53, and the model has, to a certain extent, improved the prediction of precipitation at 1
and 3 months, and there is still room to improve the prediction of precipitation at 6 months.
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Figure 7. For the 10th, 76th, 153th, and 153th stations, the BPNN algorithm is used, and the predicted
with measured precipitation are compared under the 1, 3, and 6 months starting time, respectively.
(a–d) represent the predicted precipitation versus actual precipitation under the 1, 3, and 6 months
starting time for the 10th, 76th, 153th, and 215th stations, respectively. The purple lines represent
measured precipitation, the red lines represent 1-month forecasted precipitation, the blue lines repre-
sent 3-month forecasted precipitation, and the black lines represent 6-month forecasted precipitation.
Horizontal coordinates 0~80 indicate 80 months between July 2011 and September 2021.
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Figure 8. For the 10th, 76th, 153th, and 153th stations, the RF algorithm is used, and the predicted with
measured precipitation are compared under the 1, 3, and 6 months starting time, respectively. (a–d)
represent the predicted precipitation versus actual precipitation under the 1, 3, and 6 months starting
time for the 10th, 76th, 153th, and 215th stations, respectively. The purple lines represent measured
precipitation, the red lines represent 1-month forecasted precipitation, the blue lines represent 3-month
forecasted precipitation, and the black lines represent 6-month forecasted precipitation. Horizontal
coordinates 0~80 indicate 80 months between July 2011 and September 2021.

5. Conclusions

This paper overcomes the problems of complex precipitation influencing factors
and the difficulty in determining the predictors by using the measured month-based
precipitation data from 240 meteorological stations in the western region of China, the
European Centre for Medium-Range Weather Forecast, and the National Climate Centre
model precipitation data, and a set of 88 atmospheric circulation indices. The best predictors
are screened by combining the EOF decomposition and the causal information flow to
develop the western region precipitation prediction model based on the Back Propagation
Neural Network and Random Forest algorithm. The investigated precipitation prediction
involves a starting time of 1, 3, and 6 months. From our work, the following conclusions
are obtained:
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(1) The RF algorithm is significantly better than the BPNN algorithm in terms of predic-
tion, and the predictive ability of both models gradually decreases with the increase
in the starting time. The highest average ACC metrics for the model at the three start
times are 0.61, 0.53, and 0.49, respectively, corresponding to average RMSE metrics
of 13.76, 13.97, and 16.06, respectively. Taking the ACC score (0.53) of the 2022 flood
season prediction by the Institute of Atmospheric Sciences of the Chinese Academy of
Sciences as a criterion, the precipitation prediction model based on machine learning
has high accuracy and is generally able to predict the precipitation trend in western
region of China better, and the model has, to a certain extent, improved the prediction
ability of 1-month and 3-month precipitation, which can provide a new idea for the
short-term climate prediction of precipitation in western China.

(2) Shortcomings: First, although the precipitation prediction model based on machine
learning built in this paper can better predict the precipitation in the western region,
there is still a gap in the precipitation prediction effect at individual stations. Second,
this paper only considers the atmospheric circulation index when screening the best
forecasting factors, and does not consider the effect of the sea temperature index
and other related indices (e.g., the sunspot index, the number of cold air counts, the
Southern Oscillation index, etc.) on precipitation in the western region.

(3) Improvement direction: First, take the sea temperature index into consideration when
considering the forecasting factors. Second, try more machine learning algorithms and
explore the effect of different machine learning algorithms on precipitation prediction
in the western region. Finally, when evaluating the effect of precipitation prediction,
more evaluation indexes should be introduced to establish a more sound evaluation
system for precipitation prediction.
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Appendix A

Table A1. Names of Atmospheric Circulation Indices.

Serial Number Atmospheric Circulation Index Name

1 Northern Hemisphere Subtropical High Area Index
2 North African Subtropical High Area Index
3 North African-North Atlantic-North American Subtropical High Area Index
4 Indian Subtropical High Area Index
5 Western Pacific Subtropical High Area Index
6 Eastern Pacific Subtropical High Area Index
7 North American Subtropical High Area Index
8 Atlantic Subtropical High Area Index
9 South China Sea Subtropical High Area Index

10 North American-Atlantic Subtropical High Area Index
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Table A1. Cont.

Serial Number Atmospheric Circulation Index Name

11 Pacific Subtropical High Area Index
12 Northern Hemisphere Subtropical High Intensity Index
13 North African Subtropical High Intensity Index
14 North African-North Atlantic-North American Subtropical High Intensity Index
15 Indian Subtropical High Intensity Index
16 Western Pacific Subtropical High Intensity Index
17 Eastern Pacific Subtropical High Intensity Index
18 North American Subtropical High Intensity Index
19 North Atlantic Subtropical High Intensity Index
20 South China Sea Subtropical High Intensity Index
21 North American-North Atlantic Subtropical High Intensity Index
22 Pacific Subtropical High Intensity Index
23 Northern Hemisphere Subtropical High Ridge Position Index
24 North African Subtropical High Ridge Position Index
25 North African-North Atlantic-North American Subtropical High Ridge Position Index
26 Indian Subtropical High Ridge Position Index
27 Western Pacific Subtropical High Ridge Position Index
28 Eastern Pacific Subtropical High Ridge Position Index
29 North American Subtropical High Ridge Position Index
30 Atlantic Sub Tropical High Ridge Position Index
31 South China Sea Subtropical High Ridge Position Index
32 North American-North Atlantic Subtropical High Ridge Position Index
33 Pacific Subtropical High Ridge Position Index
34 Northern Hemisphere Subtropical High Northern Boundary Position Index
35 North African Subtropical High Northern Boundary Position Index
36 North African-North Atlantic-North American Subtropical High Northern Boundary Position Index
37 Indian Subtropical High Northern Boundary Position Index
38 Western Pacific Subtropical High Northern Boundary Position Index
39 Eastern Pacific Subtropical High Northern Boundary Position Index
40 North American Subtropical High Northern Boundary Position Index
41 Atlantic Subtropical High Northern Boundary Position Index
42 South China Sea Subtropical High Northern Boundary Position Index
43 North American-Atlantic Subtropical High Northern Boundary Position Index
44 Pacific Subtropical High Northern Boundary Position Index
45 Western Pacific Sub Tropical High Western Ridge Point Index
46 Asia Polar Vortex Area Index
47 Pacific Polar Vortex Area Index
48 North American Polar Vortex Area Index
49 Atlantic-European Polar Vortex Area Index
50 Northern Hemisphere Polar Vortex Area Index
51 Asia Polar Vortex Intensity Index
52 Pacific Polar Vortex Intensity Index
53 North American Polar Vortex Intensity Index
54 Atlantic-European Polar Vortex Intensity Index
55 Northern Hemisphere Polar Vortex Intensity Index
56 Northern Hemisphere Polar Vortex Central Longitude Index
57 Northern Hemisphere Polar Vortex Central Latitude Index
58 Northern Hemisphere Polar Vortex Central Intensity Index
59 Eurasian Zonal Circulation Index
60 Eurasian Meridional Circulation Index
61 Asian Zonal Circulation Index
62 Asian Meridional Circulation Index
63 East Asian Trough Position Index
64 East Asian Trough Intensity Index
65 Tibet Plateau Region-1 Index
66 Tibet Plateau Region-2 Index
67 India-Burma Trough Intensity Index
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Table A1. Cont.

Serial Number Atmospheric Circulation Index Name

68 Arctic Oscillation
69 Antarctic Oscillation
70 North Atlantic Oscillation
71 Pacific/ North American Pattern
72 East Atlantic Pattern
73 West Pacific Pattern
74 North Pacific Pattern
75 East Atlantic-West Russia Pattern
76 Tropical-Northern Hemisphere Pattern
77 Polar-Eurasia Pattern
78 Scandinavia Pattern
79 Pacific Transition Pattern
80 30 hPa zonal wind Index
81 50 hPa zonal wind Index
82 Mid-Eastern Pacific 200 mb Zonal Wind Index
83 West Pacific 850 mb Trade Wind Index
84 Central Pacific 850 mb Trade Wind Index
85 East Pacific 850 mb Trade Wind Index
86 Atlantic-European Circulation W Pattern Index
87 Atlantic-European Circulation C Pattern Index
88 Atlantic-European Circulation E Pattern Index

Table A2. Full names and acronyms of related terms in the paper.

Full Name Acronym

Anomalous Correlation Coefficient ACC
Atmospheric Circulation Indices ACIs

Back Propagation Neural Network BPNN
Bayesian Network BN

Convolutional Neural Network CNN
Decision Tree DT

European Centre for Medium-Range Weather Forecasts ECMWF
Empirical Orthogonal Function EOF

Long Short Term Memory LSTM
Machine Learning ML

National Climate Centre NCC
Rotated Empirical Orthogonal Function REOF

Root Mean Square Error RMSE
Support Vector Machine SVM
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