Persistent Meteorological Drought in the Yangtze River Basin during Summer–Autumn 2022: Relay Effects of Different Atmospheric Internal Variabilities
Abstract
:1. Introduction
2. Data and Methods
3. The Summer–Autumn Persistent Precipitation Deficit
4. The Physical Causes of the Persistent Drought
4.1. Seasonal Change of Circulation Regime Associated with Drought
4.2. The Causes of Jul–Aug Drought
4.3. The Causes of Sep–Oct Drought
4.4. Real-Time CFSv2 Predictions
5. Summary and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qiao, R.; Li, H.; Han, H. Spatio-temporal coupling coordination analysis between urbanization and water resource carrying capacity of the provinces in the Yellow River Basin, China. Water 2021, 13, 376. [Google Scholar] [CrossRef]
- Ding, Y.H. Summer monsoon rainfalls in China. J. Meteor. Soc. Jpn. 1992, 70, 373–396. [Google Scholar] [CrossRef]
- Xie, S.-P.; Kosaka, Y.Y.; Du, K.; Hu, J.; Chowdary, S.; Huang, G. Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci. 2016, 33, 411–432. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, R.; Wang, B.; D’Arrigo, R. On the association between spring Arctic sea ice concentration and Chinese summer rainfall. Geophys. Res. Lett. 2009, 36, 666–678. [Google Scholar] [CrossRef]
- Zhang, C.; Jia, X.; Wen, Z. Increased impact of the Tibetan Plateau spring snow cover to the Mei-yu rainfall over the Yangtze River valley after the 1990s. J. Clim. 2021, 34, 5985–5997. [Google Scholar]
- Gao, C.; Li, G.; Xu, B.; Li, X. Effect of spring soil moisture over the Indo-China Peninsula on the following summer extreme precipitation events over the Yangtze River basin. Clim. Dyn. 2020, 54, 3845–3861. [Google Scholar] [CrossRef]
- Qi, L.; Ji, Y.; Zhang, W. Indispensable Role of the Madden-Julian Oscillation in the 2019 Extreme Autumn Drought Over Eastern China. J. Geophys. Res. Atmos. 2021, 126, e2020JD034123. [Google Scholar] [CrossRef]
- Li, X.; Lu, R.; Wang, X. Effect of Large-Scale Circulation Anomalies on Summer Rainfall over the Yangtze River Basin: Tropical versus Extratropical. J. Clim. 2023, 36, 4571–4587. [Google Scholar] [CrossRef]
- Li, X.; Lu, R. Extratropical factors affecting the variability in summer precipitation over the Yangtze River basin, China. J. Clim. 2017, 30, 8357–8374. [Google Scholar] [CrossRef]
- Wang, S.; Zuo, H.; Yin, Y.; Wang, J.; Ma, X. Asymmetric impact of East Asian jet’s variation on midsummer rainfall in North China and Yangtze River Valley. Clim. Dyn. 2019, 53, 6199–6213. [Google Scholar] [CrossRef]
- Sampe, T.; Xie, S.-P. Large-scale dynamics of the meiyu-baiu rainband: Environmental forcing by the westerly jet. J. Clim. 2010, 23, 113–134. [Google Scholar] [CrossRef]
- Ma, S.; Zhu, C.; Liu, J. Combined impacts of warm central equatorial Pacific sea surface temperatures and anthropogenic warming on the 2019 severe drought in East China. Adv. Atmos. Sci. 2020, 37, 1149–1163. [Google Scholar] [CrossRef]
- Hua, W.; Dai, A.; Qin, M.; Hu, Y.; Cui, Y. How Unexpected Was the 2022 Summertime Heat Extremes in the Middle Reaches of the Yangtze River? Geophys. Res. Lett. 2023, 50, e2023GL104269. [Google Scholar] [CrossRef]
- Tang, S.; Qiao, S.; Wang, B.; Liu, F.; Feng, T.; Yang, J.; Dong, W. Linkages of unprecedented 2022 Yangtze River Valley heatwaves to Pakistan flood and triple-dip La Niña. npj Clim. Atmos. Sci. 2023, 6, 44. [Google Scholar] [CrossRef]
- Li, Z.; Xiao, Z. The role of Tibetan plateau–Indian Ocean thermal contrast in the significant increasing precipitation over the southern Tibetan plateau in may after the mid-1990s. J. Clim. 2022, 35, 7661–7675. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, H.; Yang, S. Different mechanisms for the extremely hot central-eastern China in July–August 2022 from a Eurasian large-scale circulation perspective. Environ. Res. Lett. 2023, 18, 024023. [Google Scholar] [CrossRef]
- Jin, D.; Guan, Z.; Tang, W. The extreme drought event during winter-spring of 2011 in East China: Combined influences of teleconnection in mid-high latitudes and thermal forcing in Maritime Continent region. J. Clim. 2013, 26, 8210–8222. [Google Scholar] [CrossRef]
- Wang, H.; He, S. The north China/northeastern Asia severe summer drought in 2014. J. Clim. 2015, 28, 6667–6681. [Google Scholar] [CrossRef]
- Li, X.; Li, D.; Li, X.; Chen, L. Prolonged seasonal drought events over northern China and their possible causes. Int. J. Climatol. 2018, 38, 4802–4817. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, P.; Zhou, T.; Xiao, C. ENSO transition from La Niña to El Niño drives prolonged spring–summer drought over North China. J. Clim. 2018, 31, 3509–3523. [Google Scholar] [CrossRef]
- Adler, R.F.; Huffman, G.J.; Chang, A.; Ferraro, R.; Xie, P.P.; Janowiak, J.; Nelkin, E. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeorol. 2003, 4, 1147–1167. [Google Scholar] [CrossRef]
- Ishii, M.; Shouji, A.; Sugimoto, S.; Matsumoto, T. Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe Collection. Int. J. Clim. 2005, 25, 865–879. [Google Scholar] [CrossRef]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.K.; Hnilo, J.J.; Fiorino, M.; Potter, G.L. NCEP-DOE AMIPII Reanalysis (R-2). Bull. Am. Meteor. Soc. 2002, 83, 1631–1643. [Google Scholar] [CrossRef]
- Ying, M.; Zhang, W.; Yu, H.; Lu, X.; Feng, J.; Fan, Y.; Zhu, Y.; Chen, D. An overview of the China Meteorological Administration tropical cyclone database. J. Atmos. Ocean. Technol. 2014, 31, 287–301. [Google Scholar] [CrossRef]
- Bunge, L.; Clarke, A.J. A verified estimation of the El Niño index Niño-3.4 since 1877. J. Clim. 2009, 22, 3979–3992. [Google Scholar] [CrossRef]
- Takaya, K.; Nakamura, H. A formulation of a phase-independent wave-activity flux for stationary migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci. 2001, 58, 608–627. [Google Scholar] [CrossRef]
- Xuan, S.; Zhang, Q.; Sun, S. Anomalous midsummer rainfall in Yangtze River-Huaihe River valleys and its association with the East Asia westerly jet. Adv. Atmos. Sci. 2011, 28, 387–397. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y. Effects of different configurations of the East Asian subtropical and polar front jets on precipitation during the mei-yu season. J. Clim. 2014, 27, 6660–6672. [Google Scholar] [CrossRef]
- Zhang, W.; Jin, F.F.; Turner, A. Increasing autumn drought over southern China associated with ENSO regime shift. Geophys. Res. Lett. 2014, 41, 4020–4026. [Google Scholar] [CrossRef]
- Hu, P.; Chen, W.; Chen, S.; Liu, Y.; Huang, R.; Dong, S. Relationship between the South China Sea summer monsoon withdrawal and September–October rainfall over southern China. Clim. Dyn. 2020, 54, 713–726. [Google Scholar] [CrossRef]
- Li, C.; Scaife, A.A.; Lu, R.; Arribas, A.; Brookshaw, A.; Comer, R.E.; Wu, P. Skillful seasonal prediction of Yangtze river valley summer rainfall. Environ. Res. Lett. 2016, 11, 094002. [Google Scholar] [CrossRef]
- Shen, B.; Yang, Y.; Chen, Q. Precipitation prediction during flood season in the Yangtze River Basinbased on interannual increment and EOF iteration method. Torrential Rain Disasters 2022, 41, 651–661. (In Chinese) [Google Scholar]
- Zhang, Y.; You, Q.; Mao, G.; Chen, C.; Li, X.; Yu, J. Flash drought characteristics by different severities in humid subtropical basins: A case study in the Gan River Basin, China. J. Clim. 2021, 34, 7337–7357. [Google Scholar] [CrossRef]
- Williams, A.P.; Seager, R.; Abatzoglou, J.T.; Cook, B.I.; Smerdon, J.E.; Cook, E.R. Contribution of anthropogenic warming to California drought during 2012–2014. Geophys. Res. Lett. 2015, 42, 6819–6828. [Google Scholar] [CrossRef]
- Hoell, A.; Perlwitz, J.; Dewes, C.; Wolter, K.; Rangwala, I.; Quan, X.W.; Eischeid, J. Anthropogenic contributions to the intensity of the 2017 United States northern great plains drought. Bull. Amer. Meteor. Soc. 2019, 100, S19–S24. [Google Scholar] [CrossRef]
- Chen, L.; Li, Y.; Ge, Z.A.; Lu, B.; Wang, L.; Wei, X.; Luo, J.J. Causes of the Extreme Drought in Late Summer–Autumn 2019 in Eastern China and Its Future Risk. J. Clim. 2023, 36, 1085–1104. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Li, X.; Ma, H.; Li, X.; Wang, J.; Lai, A. Persistent Meteorological Drought in the Yangtze River Basin during Summer–Autumn 2022: Relay Effects of Different Atmospheric Internal Variabilities. Atmosphere 2023, 14, 1402. https://doi.org/10.3390/atmos14091402
Wang R, Li X, Ma H, Li X, Wang J, Lai A. Persistent Meteorological Drought in the Yangtze River Basin during Summer–Autumn 2022: Relay Effects of Different Atmospheric Internal Variabilities. Atmosphere. 2023; 14(9):1402. https://doi.org/10.3390/atmos14091402
Chicago/Turabian StyleWang, Ruili, Xiao Li, Hedi Ma, Xing Li, Junchao Wang, and Anwei Lai. 2023. "Persistent Meteorological Drought in the Yangtze River Basin during Summer–Autumn 2022: Relay Effects of Different Atmospheric Internal Variabilities" Atmosphere 14, no. 9: 1402. https://doi.org/10.3390/atmos14091402
APA StyleWang, R., Li, X., Ma, H., Li, X., Wang, J., & Lai, A. (2023). Persistent Meteorological Drought in the Yangtze River Basin during Summer–Autumn 2022: Relay Effects of Different Atmospheric Internal Variabilities. Atmosphere, 14(9), 1402. https://doi.org/10.3390/atmos14091402