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Abstract: In a comparative study contrasting new and traditional clustering techniques, the ca-
pabilities of K-means, the hierarchal clustering algorithm (HCA), and GenieClust were examined.
Both K-means and HCA demonstrated strong consistency in cluster profiles and sizes, emphasizing
their effectiveness in differentiating particle types and confirming that the fundamental patterns
within the data were captured reliably. An added dimension to the study was the integration of an
autoencoder (AE). When coupled with K-means, the AE enhanced outlier detection, particularly in
identifying compositional loadings of each cluster. Conversely, whilst the AE’s application to all
methods revealed a potential for noise reduction by removing infrequent, larger particles, in the case
of HCA, this information distortion during the encoding process may have affected the clustering
outcomes by reducing the number of observably distinct clusters. The findings from this study
indicate that GenieClust, when applied both with and without an AE, was effective in delineating a
notable number of distinct clusters. Furthermore, each cluster’s compositional loadings exhibited
greater internal variability, distinguishing up to 3× more particle types per cluster compared to
traditional means, and thus underscoring the algorithms’ ability to differentiate subtle data patterns.
The work here postulates that the application of GenieClust both with and without an AE may
provide important information through initial outlier detection and enriched speciation with an AE
applied, evidenced by a greater number of distinct clusters within the main body of the data.

Keywords: PBAP; bioaerosol; UVLIF; WIBS; machine learning (ML); cluster analysis; GenieClust;
K-means; HCA; real-time detection and analysis; fungal spores; bacteria; pollen; climate change

1. Introduction

Bioaerosols are airborne particles comprising living organisms or their components.
Varying in both size and composition, they can include a variety of microorganisms such as
fungal spores (2–50 µm) [1], bacteria (0.2–10 µm) [2], pollens (10–150 µm) [3], and viruses
(0.022–0.15 µm) [4]. Bioaerosols play a significant and multifaceted role in modern society
having both positive and negative impacts on human life and the environment. These can
range from smaller scale topics such as occupational health [5] and indoor air quality [6] to
larger scale themes such as allergies [7], agricultural productivity [8], and environmental
air quality [9]. Understanding the roles of bioaerosols in society has thus been recognised
as fundamental for safeguarding public health, food resources, and the environment in a
landscape that is continuously facing increasing pressures from population growth, urban
development, and climate change.

Historically, the study of bioaerosols has relied on traditional ‘offline’ methods involv-
ing a slew of laboratory-based approaches involving the culturing of bacteria for genome
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sequencing [10] or microarrays [11], and visually examining morphological features of pol-
lens or fungal spores using microscopy [12]. However, the late 20th century brought with it
technological developments that facilitated the use of ‘real-time’ ultra violet light-induced
fluorescence (UVLIF) instruments capable of recording a particle’s fluorescence, size, shape,
and asymmetry in situ [13].

Whilst achieving precise speciation remains a persistent challenge [8], which some re-
cent studies have sought to address [14], the introduction of UVLIF instruments nonetheless
represented a significant advancement in the field, and these continue to be developed to
this day. These instruments have enabled the collection of extensive datasets spanning vast
geographical distances and time periods [13,15–17]. The Wideband Integrated Bioaerosol
Sensor (WIBS) stands out as a prominent and widely recognised UVLIF instrument that
has been extensively utilized in various scientific investigations over the years with the
WIBS-NEO/5 representing their current flagship model for bioaerosol detection. For in-
stance, from an early 2010 field study, where the WIBS unit was employed to measure
Primary Biological Aerosol Particles (PBAP) in a tropical canopy environment [18], to one
of its most recent applications during an 18-month environmental campaign conducted in
Sweden [19]. Subsequent to the advancement in UVLIF, the datasets collected are often uti-
lized in conjunction with conventional clustering algorithms such as K-means or hierarchal
clustering to construct temporal profiles characterized by distinct clusters corresponding to
different particle types [16].

However, despite these advancements, traditional clustering methods are increasingly
proving to be restrictive in ‘online’ analysis. Specifically, in the case of the widely used
and straightforward algorithm, K-means, limitations arise from its assumption of spherical
clusters, its inability to handle outliers, and its failure to capture complex relationships
and nonlinear structures, among other factors [20,21]. Similarly, hierarchal cluster analysis
(HCA), whilst offering more intricate analyses, presents limitations in terms of its sensitivity
to noise and the high computational cost it entails [22,23].

The recent surge in atmospheric science research has unveiled a myriad of machine
learning (ML) approaches [24–26]. For instance, artificial neural networks (ANN) and
recurrent neural networks (RNN) have been applied with marked success in domains such
as wastewater treatment projections and haze prediction models [27,28]. Chen et al. (2023)
utilized the back propagation (BP) neural network to assess the impact of meteorological
conditions on haze, underscoring its high accuracy, minimal errors, and efficiency even
with limited learning data [26]. However, this method, as with others, necessitates training
data, which limits its real-time application in ambient studies where, most often, one does
not have good label data or predefined categories. This issue can be further exacerbated if,
such was the case with one recent study utilizing convolutional neural networks (CNN),
there is an insufficient amount of training information. Notwithstanding their merits, direct
use of supervised methods restricts their application in clustering bioaerosols and is wholly
reliant on robust, and often extensive, training libraries. Despite these advancements to
supervised approaches, there remains a lack of research dedicated to the development of
unsupervised algorithms for clustering of ambient bioaerosols. Consequently, the more
antiqued algorithms, including K-means and HCA, continue to dominate the field [29–31].

Amidst this backdrop, GenieClust has emerged as a potentially transformative, un-
supervised algorithm for bioaerosol studies. This relatively novel and underexplored
algorithm presents potential advantages due to its specialized focus on outlier detection
and improved computational performance [32]. Similarly, the use of autoencoders (AE),
an emerging deep learning model, holds promise as it can effectively encode substantial
quantities of data into a latent vector, enabling the extraction of meaningful features whilst
potentially reducing the computational costs involved and improving the performance of
simpler methods such as K-means [33].

In this study, we present observations of fluorescent particle concentrations and size ob-
tained during a field campaign for the Observation System for Clean Air (OSCA) initiative
in central Manchester, using a continuous multiwavelength UV-LIF aerosol spectrometer.
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Our analysis employed several conventional and emerging machine learning techniques to
differentiate between various clusters of observed particles, and user expert interpretation
to examine the differences and similarities between the techniques themselves. As far as we
can infer, this is the first study to combine traditional and emerging deep learning and clus-
tering methods for this application. To gain an insight into the type of particles witnessed
during the study, a supplementary single particle analysis was also carried out utilising
a well-established ‘ABC’ classification system [34]. Additionally, we used meteorological
data obtained from the same campaign to examine any relationships between the events
identified and the concurring environmental conditions. Furthermore, we explore how
using the particle-by-particle output from the instrument’s quadrant detector may influence
the clustering results, which until now, has only been used to yield a single asymmetry
value (see Section 2.2).

In this paper, we provide a case for new and emerging ML techniques as a suitable
replacement to conventional methods, potentially offering a greater degree of accuracy
and flexibility whilst also reducing the time-to-solution for unsupervised classification. We
caveat this statement by the need for expert interpretation of extracted clusters, including
inferring the optimum clusters available. Whilst methods for determining the optimum
number of clusters have been used in previous studies [35–37], our results show that there
is a danger of missing increasingly diverse information in higher numbers of clusters that
would otherwise be aggregated using automated methods.

2. Materials and Method

Figure 1 provides a summary of the steps involved in this study, from acquiring
data to generating cluster solutions. The corresponding section additionally outlines each
step below for reference. The following section outlines the preprocessing and cleaning
strategies, in addition to data normalisation, and clustering techniques.
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2.1. Sampling

Bioaerosol measurements spanning the duration of the experiment (6 June to 14
July 2021) were acquired at the Manchester Air Quality Supersite situated at the Firs
Environmental Research Station (53◦27′ N, 2◦13′ W) in Manchester, United Kingdom (http:
//www.cas.manchester.ac.uk/restools/firs/, accessed on 17 May 2023). The sampling site
itself is positioned approximately 4 km from the city centre. Manchester, a thriving urban
region, is located in the northwest of England and is the second most densely populated
area within the United Kingdom. Nevertheless, the city encompasses numerous verdant
areas. Size and fluorescence measurements were obtained using the latest Wideband
Integrated Bioaerosol Sensor (WIBS, 0.5–30 µm particle range, model: 5/NEO, Droplet
Measurement Technologies LLC., 0.3 L min−1 sample flow and 2.1 L min−1 sheath flow).

http://www.cas.manchester.ac.uk/restools/firs/
http://www.cas.manchester.ac.uk/restools/firs/
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The device employs a 635 nm laser to gauge optical particle dimensions and asymmetry.
Upon activation by the sizing laser signal, two xenon flashlamps emit light that is filtered at
280 nm and 370 nm to simulate fluorescence. Subsequently, fluorescence is captured across
three bands using two broad-range detection channels (310–400 nm and 420–650 nm). A
summary of the instrument’s wavelengths and bands can be found in Table 1.

Table 1. The excitation wavelengths and detection wavebands for each of the three fluorescent (FL)
channels of the WIBS-NEO/5.

FL1 280 FL2 280 FL2 370

Excitation Detection Excitation Detection Excitation Detection

WIBS-
NEO/5 280 nm 310–400 nm 280 nm 420–650 nm 370 nm 420–650 nm

Temperature, rainfall, and humidity were measured at the supersite meteorological
station using a solid-state probe in an aspirated radiation shield (recorded using a Palas
FIDAS 200), laser disdrometer, and aspirated capacitance probe, respectively [38].

2.2. Preprocessing

Original data files from the WIBS-NEO are distributed in Hierarchical Data Format 5
(HDF5) format. The recorded data within each file comprises fluorescence intensity (refer to
Table 1), particle size, asymmetry factor (AF), and monitoring data. The AF is determined
through four measurements obtained using a quadrant detector and inserted into a derived
Mie-theory calculation to yield the AF value. To facilitate analysis, the WIBS-NEO employs
Unix time as the timestamp for its data, which is later converted to date/time format. Prior
to the commencement of data collection, a Forced Trigger (FT) action is performed, wherein
the instrument carries out preliminary data collection within an empty chamber without
any throughflow. This step establishes baselines that serve as the fluorescent threshold for
subsequent analysis [35].

Previous studies have iterated on preprocessing steps that remove particles with a flu-
orescence intensity outside of a set number of standard deviations from the mean [16,35,39].
This has been used previously to remove the impacts of interferants, weakly fluorescing
particles, and thus, potentially increase the sensitivity of clustering methods. Thus, this
approach is adopted here with the threshold being set using an averaged FT and three
times the standard deviation (3 σ).

Prior to any clustering or deep learning application, each variable was normalised
using a combination of z-score, log transforms, and power transforms to generate normal
distributions around a mean of 0 as standard practice for distance-based methods [35].

2.3. Analytical Techniques
2.3.1. Cluster Analysis

Machine learning offers a route for converting an instrument response into distinct
groups or, more specifically, bioaerosol particles measured. The ideal outcome would
be labelling each observed particle into higher level categories including pollen, fungal
spores, bacteria, and interferents such as dust or heavy metals [34,40]. Supervised learning
algorithms are trained to data obtained from controlled studies in which particle types
are known a priori. For example, this could include resuspension of multiple pollen
types within an environment chamber. There are multiple supervised learning algorithms
available, from boosted forest methods such as XGBoost [41] through to more complex
deep learning approaches [42]. Unfortunately, previous work highlighted difficulties in
sample generation, particularly with regards to fungal spores and bacteria [43], leading
to potential inaccuracies in predicted labels. Whilst these issues remain, and given the
complexity of the source–receptor relationships in ambient bioaerosols, we instead evaluate
the utility of unsupervised methods in this study.
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Unsupervised learning algorithms enable us to convert the measured instrument
response into distinct groups, or ‘clusters’. Cluster analysis has been used in many previous
UVLIF studies to varying levels of success [23,35,37,44,45]. As with supervised approaches,
there are a range of algorithms available. Previous work using the WIBS within controlled
setting has, despite issues around sample generation, led to the adoption of HCA for use in
ambient studies. Hierarchal cluster analysis is a distance-based method in which a pair
of observations are combined according to the lowest ‘distance’ between this pair, based
on a matrix of distances between all observations. HCA then sequentially adds additional
observations based on the lowest distance and starts to form groups, or clusters. If an
ambient dataset holds 10,000 observations, HCA begins with each observation as a separate
cluster and sequentially merges towards one cluster. Whilst there are metrics to better
understand the optimum number of clusters, the labelling of each cluster to a specific
bioaerosol type requires expert interpretation using information related to metrics such as
diurnal cycles, particle data [46], compositional loadings [34], and response to humidity
and rainfall [23].

In this study, we used a number of clustering algorithms based on two overarching
challenges when applied to bioaerosol datasets:

Data quantity: Distance-based learning algorithms can become infeasible when the
data quantity is large (see Section 2.4.3). It is not uncommon for ambient datasets to contain
millions of observations. Generating pairwise distances for large datasets can reach limits
of available memory. Whilst methods have been developed to circumvent this, and used in
our study and detailed shortly, the time-to-solution can still remain prohibitive, with orders
of weeks required to arrive at a clustering solution for any given preprocessing strategy.

Optimum cluster selection: Whilst metrics exist to determine the optimum number
of clusters from a clustering algorithm, there are pros and cons of each method. These
not only relate to the characteristics of the data, and thus preprocessing, but also data
quantity. Indeed, metrics can also present a prohibitive time-to-solution, which places
further dependencies on the time taken by the underlying clustering approach.

Given the above, in this study, we evaluate several emerging methods and strategies
designed to not only lead to an improved time-to-solution, but potentially increased insights
into the particles sampled. In the following section we detail the various approaches taken,
which are summarised in Table 2.

Table 2. A summary of the analytical approaches taken within this study. Level 1 denotes whether
quadrant information from the WIBS instrument was used; Level 2 outlines the data standardization
method used; Level 3 describes the cluster method undertaken.

Level 1. Data Selection

- No Quad x x x x x x

- Quad x x

Level 2. Data Standardisation

- Robust Scaler/Log
transform

x x x x

- Deep Autoencoder x x x x

Level 3. Cluster Technique

- HCA x x

- K-means x x

- GenieClust x x x x
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The methods are built around a number of data and algorithmic procedures. At the
first level, we distinguish between outcomes using the quad channel’s signal intensity or
just the AF, which, as described in Section 2.2, is a metric to understand the asymmetry
of the detected particle. At the second level, we can use the standardised data generated
from transformations described in Section 2.4.1. We refer to this as ‘raw’ in the context
of retaining the total number of metrics used. At this same level, we can also choose to
compress the original number of metrics, thus dimensions of our data, before passing
through any of the clustering algorithms. Dimension reduction techniques vary from linear
to nonlinear [47]. In this study, we chose a nonlinear approach by fitting and deploying
deep learning autoencoders to our dataset. Whilst the WIBS does not generate many
dimensions, AEs have been shown to improve the performance of clustering methods,
including K-means, in a number of applications [48–50]. Following this, at the third level,
we employ a range of clustering approaches and evaluate each through a side-by-side
comparison of cluster properties.

2.3.2. Optimal Cluster Selection

Clusters have herein been determined via expert manual interpretation. This is ad-
vantageous when compared to the application of metrics such as the silhouette score for
several reasons. First and foremost, it allows for the integration of domain knowledge and
expertise, which may not be considered through the use of metrics exclusively. Further-
more, where most clustering metrics assume a certain structure to the data, which as this
study will show can pose complications, human interpretation does not. However, many
more advantages are evident, such as providing contextual relevance to the results as well
as applying human judgement and intuition, which, by the very nature of unsupervised
clustering, can be beneficial.

The optimal number of clusters is determined by the criterion of reaching a point
where no new clusters are identified and overlapping clusters start to emerge. This ensures
that the clustering process has captured all meaningful variations in the data.

The distinct number of clusters here refers to the number of unique clusters within
the optimal cluster number. For example, an optimal number of clusters equalling eleven
and a distinct number of clusters equalling eight would mean there were three overlapping
clusters identified that were considered to be the same as another cluster(s). An equation to
represent this example is shown below:

COverlapping = COptimal − CDistinct

Differentiating between overlapping clusters and distinct clusters is critical for the
interpretation stage of the analysis. Relying on the provided example, a lack of such dif-
ferentiation could lead to the misrepresentation that the algorithm has pinpointed eleven
separate clusters. This could misrepresent both the algorithms’ capabilities and the actual
bioaerosol types and subcategories under investigation. The selection of a distinct number
of clusters is guided by several methodical criteria. Firstly, differences in the temporal
profiles are considered, including the number of particles and the occurrences of spikes
at specific times of the day. Secondly, variations in size and the interquartile range are
considered. This helps identify clusters that differ in physical dimensions. Moreover,
differences in compositional loading, which refers to the distribution of specific fluorescent
characteristics or attributes within a cluster, are considered. Lastly, clusters exhibiting simi-
larities in size, diurnal profile, and compositional loadings are categorised as representing
the same type of particle, as these shared characteristics indicate a common underlying
nature. By considering these multiple criteria, a more comprehensive understanding of the
clusters and their similarities/differences can be achieved. A summary of the optimal and
distinct number of clusters for each evaluated method is displayed in Table 3.
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Table 3. The optimal number of clusters and the number of clearly defined clusters, distinct, within
that optimal number for each of the examined clustering methods. Raw refers to the clustering
methods being applied directly to the single particle data; AE signifies the methods being applied to
the autoencoded data (the ‘latent space’, or ‘latent’).

K-Means HCA GenieClust

Raw AE Raw AE Raw AE

Optimal No. Clusters 6 6 8 6 8 11

Distinct Clusters 6 6 7 6 8 8

2.4. Methods Evaluated

Each clustering method requires a preprocessing stage, where the data are standard-
ised to remove the impacts of variable scales for each metric. Distance-based clustering
provides several strategies for combining sequential clusters. For the optimised variant of
HCA used in this study, we use the ‘single linkage’ strategy to benefit from the memory
efficient version given the number of observations in this study.

For both the transformed (or ‘raw’) and autoencoded GenieClust approaches, we
generate 2 to 20 clusters. To assess the accuracy of metrics on this new method, the Calinski–
Harabasz score is used to infer the optimum number of clusters [23], supplementary to the
manual interpretation.

In this study, the terms ‘transformed’ and ‘raw’, in addition to ‘autoencoded (AE)’ and
‘latent’, are used synonymously.

2.4.1. Preprocessing Strategies

Scaling data before any clustering algorithm is important. We use two general ap-
proaches. In the first, we transform each original data product captured by the instrument.
More specifically, for the fluorescent intensity, a log transform is applied before using the
RobustScaler transformation provided by the Scikit-learn package [51,52]. This approach
removes the median and scales the data according to the quantile range.

As a second option, we also use AEs to compress the original number of dimensions
prior to clustering. Whilst we do not have many dimensions, previous research has
demonstrated their ability to improve outcomes from clustering methods. AEs are a family
of methods emerging from deep learning neural networks. The basic premise is the neural
network takes an input, and compresses and then expands these data through a series of
layers, with the aim that the output is as close to the original input as possible (Figure A1).
The smallest layer, in our case positioned in the middle of this network, is a ‘latent’ or
‘encoded’ representation of our data. For example, in our case, we could have 1 dimensional
array of 9 entries that represent the 3 fluorescent channels, asymmetry factor, size, and four
quad channel intensities. The first layer of the AE would have a smaller number of nodes
and the latent layer perhaps 3 nodes. There are a number of hyperparameters to tune, from
the number of layers, drop-out strategy, and choice of activation function in each node. For
our work, we use the Keras Hypertune package in Python [51] to determine the optimum
architecture of the AE, using a mean squared loss between the input and output. Once
optimised, the latent space is then used as input into subsequent clustering methods. In the
following section, we discuss the clustering techniques.

2.4.2. K-Means

K-means is a widely used method for cluster analysis and is available in a number
of platforms. Performance metrics highlight how much quicker K-means is than other
clustering methods, offering an ability to work with very large datasets [53]. However, K-
means is also limited in its ability to work with data with complex characteristics. This can
be seen even for relatively simple 2D datasets that can be separated by visual inspection [52].
K-means does not produce an optimum number of clusters and requires the use of cluster
validation indices.
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2.4.3. HCA

Hierarchal cluster analysis is a widely used clustering method that allows for the
identification of clusters within a dataset based on the similarity or dissimilarity of its
objects. This is achieved by progressively merging or dividing clusters in a hierarchal
structure until a desired level of granularity is achieved [54]. However, HCA has certain
limitations. One major limitation is its sensitivity to noise. HCA is often influenced by
outliers or noisy data points, which can result in the formation of suboptimal or incorrect
clusters. Another limitation is the high computational cost associated with HCA, especially
when dealing with large datasets such as the one in this study. The hierarchal nature
of the algorithm requires pairwise distance calculations between all objects, making it
computationally intensive and time-consuming.

2.4.4. GenieClust

‘GenieClust’ is a relatively new clustering algorithm that, to the best of our knowl-
edge, remains largely unused in atmospheric studies. According to the documentation,
GenieClust performs hierarchical clustering of datasets with millions of points ‘within
minutes’, provided the data can fit within the memory [55]. Comparisons with the ‘fastclus-
ter’ package, also used in this study, suggest time-to-solution improvements. GenieClust
presents both an ‘accurate’ and an ‘approximate’ method that relate to strategies used for
combining clusters, with the former method offering more performance enhancement. We
use the exact method in this study to offer a fair comparison between all clustering methods
used.

2.4.5. ABC

The WIBS-NEO utilizes 2 excitation wavelengths and 3 detection wavebands, summa-
rized in Table 1. These are broadly categorized as fluorescence channels 1 (or A), 2 (or B),
and 3 (or C). Different types of particles have been shown to generally exhibit dissimilar
fluorescent characteristics that when using the ‘ABC’ method in conjunction with other
metrics, can infer the type or group of particles being observed. As aforementioned, the
3 channels represent fluorescence in a single category, A, B, or C. Fluorescence in two chan-
nels is therefore designated as either AB, AC, or BC, whilst fluorescence in all 3 channels is
labelled as ABC.

3. Results
3.1. K-Means and HCA

K-means, despite its simplicity, demonstrated exceptional performance compared to
HCA in this study. Whilst HCA identified seven clusters (Figure 2), K-means revealed
six distinct clusters in the transformed dataset (Figure 3). A comparative analysis of
the temporal profiles of the transformed clusters generated by both K-means and HCA
showed excellent agreement, with all six clusters matching in terms of profiles and sizes
as identified by K-means. Interestingly, HCA identified a seventh, unique cluster with
low concentrations averaging between 0.001 and 0.002 cm3 and an average size of 0.3 µm
(cluster 0; Figure 2). These characteristics suggest the possibility of it being an outlier
within the dataset. This finding aligns with the existing literature, as K-means is known to
struggle in accurately identifying outliers. The presence of this outlier cluster reinforces the
notion that K-means may have limitations in effectively handling data points that deviate
significantly from the majority of the dataset.
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Figure 2. Temporal profiles exhibiting the average recorded particle concentrations (cm3) for each hour
of the day for both HCA approaches. The left column corresponds to HCA (raw), whilst the right
column denotes HCA (latent). The average size of each cluster is presented in microns on each profile.
The number of clusters for each method correspond to the optimal number of clusters identified by
that method. Overlapping clusters are grouped with red parentheses. Unique clusters, which represent
clusters that were only identified by the respective method, are grouped into blue boxes.
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Figure 3. Temporal profiles exhibiting the average recorded particle concentrations (cm3) for each
hour of the day for both K-means approaches. The left column corresponds to K-means (latent),
whilst the right column denotes K-means (raw). The average size of each cluster is presented in
microns on each profile. The number of clusters for each method correspond to the optimal number of
clusters identified by that method. Unique clusters, which represent clusters that were only identified
by the respective method, are grouped into blue boxes.

The application of autoencoded data to the two methods resulted in notably distinct
outcomes upon comparison. Specifically, when using K-means, the results appeared to
align closely with the transformed approach, revealing the presence of six distinct clusters.
Among these clusters, five exhibited similarities to the transformed clusters in terms of
their size, concentrations, and diurnal profiles (see Figure 3). It is worth highlighting the
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sixth cluster (cluster 5 (light green); Figure 3), which exhibited discrepancies between the
two approaches. In the transformed cluster analysis, this cluster consisted of particles with
an average size of approximately 3.5 µm. Notably, these particles displayed heightened
activity levels from 8:00 am to 17:00 pm, with low concentrations ranging from 0.0025 to
0.0125 cm3. Conversely, in the autoencoded cluster analysis, a different diurnal profile
emerged, with activity peaking from 4:00 am to 7:00 am, and again from 19:00 pm to
20:00 pm. Furthermore, the average size of the particles in this cluster was approximately
0.3 µm, with concentrations ranging from 0.01 to 0.05 cm3.

Intriguingly, these results exhibit similarities with a cluster, designated cluster 2, that
emerged from the latent HCA (Figure 2). This cluster exhibits comparable characteristics in
terms of composition (refer to Figure A2) and size (0.3 µm). However, distinctions in the
average concentration and diurnal profile introduce some uncertainty to our understanding.
Moreover, we observe a noteworthy aspect in the compositional loadings themselves. As
illustrated in Figure A2, both of the ‘raw’ approaches primarily reveal clusters comprising
a single particle type. This observation leads us to consider two possibilities: either
the clusters indeed consist of only one particle type, or (and), more likely, the methods
employed might have limitations in identifying clusters with more intricate compositions.
Supporting the latter possibility, the latent outputs were analysed for both techniques, and
they successfully differentiated three clusters, each containing multiple particle types.

Unlike K-means, the application of HCA on the autoencoded dataset appears to
have exhibited no benefit in performance. Similar to the comparison conducted with K-
means, HCA demonstrated good agreement with the transformed analysis, identifying five
clusters that aligned well with previously identified clusters. However, a notable disparity
emerged when comparing the autoencoded analysis to the transformed analysis. Firstly, the
aforementioned outlier cluster, which showcased distinct characteristics in the transformed
analysis, was not detected by HCA when applied to the autoencoded dataset, signifying
the elimination or obscurement of distinguishing features during the autoencoding process.
Secondly, the cluster with an average size of 3.5 microns and a peak activity throughout the
day, which was evident in the transformed analysis for both algorithms, was also absent in
the autoencoded analysis, further implying a loss or distortion of information. As a result,
the AE HCA was left with six distinct clusters, which were identically matched to the six
produced by AE K-means.

3.2. Genie Performance

The comparative analysis of GenieClust, K-means, and HCA on both datasets yielded
compelling evidence of GenieClust’s outlier detection capabilities, potentially surpassing those
of traditional methods. Notably, GenieClust demonstrated a considerably higher number
of optimal and distinct clusters compared to the conventional techniques (refer to Table 3).
This enhanced performance is indicative of GenieClust’s ability to discern finer patterns in
the data, leading to more accurate and refined clustering results. Furthermore, through an
ABC analysis of the clusters, we discovered a higher level of complexity in the compositional
loadings of each cluster when utilizing GenieClust (see Figure A3). Intriguingly, each cluster
identified by GenieClust exhibited at least three distinct particle types, demonstrating its
capability to discriminate between clusters with a higher degree of precision compared to
traditional methods. This aspect of GenieClust’s performance is potentially significant, as it
reveals how particle associations are multifaceted and how conventional methods may be
unable to capture their complexity to the same degree. The implications of these findings
are twofold. Firstly, comparing clusters identified by traditional and emerging methods
becomes a more challenging task due to the superior discriminative abilities of GenieClust.
For instance, we observed cluster 7 in both transformed analyses (Figures 2 and 4), where both
GenieClust and HCA identified similarities in size (3.8 µm), diurnal profile, and to a small
extent, composition. However, the distinct difference arises in the composition identification:
whilst HCA exclusively categorized it as type B, GenieClust identified approximately 70% of
the cluster as type B, along with smaller amounts of type A, C, and AB. This highlights the
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subtleties that GenieClust is capable of capturing, which might be overlooked by traditional
methods. Secondly, the greater ability of GenieClust to distinguish complex clusters indicates
that the clusters identified by this algorithm are inherently slightly different from those
identified by simpler, traditional algorithms. This implies that GenieClust offers a deeper and
more nuanced understanding of the underlying patterns within the data, which can lead to
more insightful interpretations and informed decision making in various scientific domains.
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Figure 4. GenieClust (Raw) temporal profiles exhibiting the average recorded particle concentrations
(cm3) for each hour of the day. The average size of each cluster is presented in microns on each profile.
Number of clusters correspond to the optimal number of clusters identified. Unique clusters, which
represent clusters that were only identified by the respective method, are grouped into blue boxes.

The utilization of the autoencoder in conjunction with GenieClust has returned some
unexpected differences to the transformed approach (Figure 5). Notably, the autoencoded
GenieClust approach provided the highest number of optimal clusters but yielded the same
number of distinct clusters to the transformed analysis (Table 3). Similar to the application
of K-means, the AE analysis successfully identified a greater number of distinct clusters
in the smaller size ranges (3 clusters), compared to the raw analysis. Additionally, the
AE did not identify the three clusters from the transformed analysis, which exhibited
larger sizes of 3 µm, 3.8 µm, and 5 µm. Just as described in the K-means breakdown
(see Section 3.1), the missed clusters maintained consistent activity throughout the day
and had small concentrations ranging from 0.002 to 0.0125 cm3. This observation further
solidifies the notion that the AE effectively filters out larger and less frequent particle
data. However, this outcome can be viewed as advantageous since the AE analysis did
resolve three additional distinct clusters within the lower size ranges (0.6 µm, 0.7 µm, and
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2.5 µm). Furthermore, in addition to these differences, the two methods demonstrated
good agreement on five other clusters.
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Figure 5. GenieClust (latent) temporal profiles exhibiting the average recorded particle concentrations
(cm3) for each hour of the day. The average size of each cluster is presented in microns on each profile.
Number of clusters correspond to the optimal number of clusters identified. Overlapping clusters are
grouped with red parentheses. Unique clusters, which represent clusters that were only identified by
the respective method, are grouped into blue boxes.

Calinski–Harabasz Score

In addition to the manual interpretation, a Calinski–Harabasz score (CH) was per-
formed comparing the two GenieClust approaches. Furthermore, to explore whether the
addition of quadrant detector measurements (information which up until now has only
been used to yield a single AF value) potentially improves clustering, the same algorithms
were performed including this information and compared.

The relationship between the Calinski–Harabasz score value and number of clusters is
illustrated in Figure 6. As can be observed from Figure 6A, the raw clustered data peak at
three clusters before sharply dropping by several orders of magnitude to a potential peak
between cluster 8 and 9. Conversely, the latent dataset appears to show prominent peaks at
clusters 3, 6, and 11 before plateauing with a maintained high score, relative to the raw value.
Figure 6B displays three peaks for both the raw and latent data at clusters 2, 5, and 8.5/9
and 3, 7.5, and 11, respectively. Upon assessing the CH-Score, there is an evident increase in
the quality of the clusters when encoding the data to a latent vector, as is demonstrated by
the consistently higher scores exhibited in Figure 6A,B. Observably, the raw and latent data
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share an inverse relationship to one another for reasons not entirely clear. However, it should
be noted that in almost all cases, the troughs displayed by the latent data retain a higher
overall CH-Score than the peaks for the raw data, thereby inferring a greater degree of cluster
separation regardless. Interestingly, despite the large decrease in the CH-Score in Figure 6B, a
degree of similarity can be drawn from the optimal clusters observed for both latent outputs
with clusters 3 and 11 being identified. From this we can surmise that the variance between
outputs whether the quadrant information (QI) is included or not is relatively small and
that the inclusion of it does not appear to provide better cluster separation. On the contrary,
the inclusion of this information may contribute unnecessary ‘noise’. This can be further
corroborated upon visualizing a time series of the methods side by side (Figure A4). Indeed,
observing 11 clusters over the duration of the study for both latent outputs, it is clear that a
higher degree of similarity between clusters is present when including the QI (Figure A4B)
as opposed to without (Figure A4A), suggesting several overlapping clusters. In particular,
clusters 0, 1, 3, 4, 5, 6, 9, and 10 (eight in total) are all visually similar, in contrast to the raw
latent output, which exhibits half the number of similarities (clusters 3, 4, 5, and 6). The
sizes of each cluster, as shown in Figure A5, demonstrate consistent agreement, exhibiting
analogous sizes and distributions across all mentioned clusters. This is also the case when
examining the compositional loadings (Figure A5), each of which is marked by a clear
dominance of type B (60–80%) and type A (10–20%).

Atmosphere 2023, 14, x FOR PEER REVIEW  15  of  26 
 

 

(A) 

 

(B) 

Figure 6. Calinski–Harabasz scores (CH) for the Genie clustered dataset performed on both the un-

altered single particle data (‘Raw’) and the encoded data (‘Latent’). (A): CH-Score for the data clus-

tered without quadrant information (no quad). (B): CH-Score for the data utilising quadrant infor-

mation (quad). 

Contrary to the clear differences presented above, comparisons between the  latent 

and raw genie output are more ambiguous. Qualitatively, the latent heatmap (Figure A4A) 

displays  characteristics  consistent with autoencoded data  compared  to Figure A4C.  In 

particular, Figure A4A displays greater clarity and smoothness as well as maintaining 

greater edge consistency compared to the raw output, pointing to probable noise reduc-

tion. This is especially clear when comparing identified events, which are clearly defined 

by the latent output and somewhat amalgamated for the raw data. However, despite the 

CH-Score describing a large drop-off in cluster quality for the raw data (which is some-

what consistent with qualitative comparisons), Figure A4C does identify additional events 

on 9 and 10 June. The differences exhibited in the CH-Score (Figure 6A) may in fact high-

light some of the challenges presented with applying metrics to encoded data. Specifically, 

the CH-Score is calculated based on the distances between data points and is applied to 

the transformed latent space as opposed to the original data. Furthermore, the score as-

sumes an underlying cluster structure, which if not well suited for clustering or exhibiting 

complex patterns, may not accurately reflect the quality of the clustering solution. Thus, 

comparing outputs from a reduced dimensionality latent space to the more complex orig-

inal data may create a natural bias in the score, highlighting the ongoing need for manual 

interpretation of clusters in addition to applied metrics such as the CH-Score. 

   

Figure 6. Calinski–Harabasz scores (CH) for the Genie clustered dataset performed on both the
unaltered single particle data (‘Raw’) and the encoded data (‘Latent’). (A): CH-Score for the data
clustered without quadrant information (no quad). (B): CH-Score for the data utilising quadrant
information (quad).

Contrary to the clear differences presented above, comparisons between the latent
and raw genie output are more ambiguous. Qualitatively, the latent heatmap (Figure A4A)
displays characteristics consistent with autoencoded data compared to Figure A4C. In
particular, Figure A4A displays greater clarity and smoothness as well as maintaining
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greater edge consistency compared to the raw output, pointing to probable noise reduction.
This is especially clear when comparing identified events, which are clearly defined by the
latent output and somewhat amalgamated for the raw data. However, despite the CH-Score
describing a large drop-off in cluster quality for the raw data (which is somewhat consistent
with qualitative comparisons), Figure A4C does identify additional events on 9 and 10 June.
The differences exhibited in the CH-Score (Figure 6A) may in fact highlight some of the
challenges presented with applying metrics to encoded data. Specifically, the CH-Score is
calculated based on the distances between data points and is applied to the transformed
latent space as opposed to the original data. Furthermore, the score assumes an underlying
cluster structure, which if not well suited for clustering or exhibiting complex patterns, may
not accurately reflect the quality of the clustering solution. Thus, comparing outputs from a
reduced dimensionality latent space to the more complex original data may create a natural
bias in the score, highlighting the ongoing need for manual interpretation of clusters in
addition to applied metrics such as the CH-Score.

3.3. Ambient Airborne Concentration Analysis

Throughout the study period, the 1 min average number concentration of fluorescent
particles was 0.38 ± 0.28 cm−3. Of the seven fluorescent particle types, the most abundant
were A (average concentration of 0.06 cm−3), B (0.16 cm−3), BC (0.05 cm−3), and ABC
(0.05 cm−3). As shown in Figure 7B, the measured particle type was largely size-dependent
with A and B corresponding to the smallest particles on average (0.87 and 0.86 µm in diame-
ter, respectively), followed by BC (1.28 µm) and ABC (2.18 µm). The greatest concentration
was observed during the first week of the study period on 12 June at 00:33 when the average
concentration of fluorescent particles reached 5.1 particles cm−3 (Figure 7C). During this
time, the majority (84%) of fluorescent particles were submicron, averaging 0.78 µm in
diameter, with a significant portion (54%) attributed to type B fluorescence. Similar events
were observed on 6 June at 20:07 and on 8 June at 21:28 when the fluorescent concentrations
reached 4.0 and 3.4 particles cm−3, respectively. Of the fluorescent particles measured
during the 6 June event, 92% were submicron and 59% were type B. A similar relationship
was observed for the 8 June event where 94% of fluorescent particles were submicron and
72% were type B. These three events represent a common occurrence that was observed
throughout the study period. Specifically, fluorescent particles peak in the evening as the
relative humidity increases. Notably, the higher fluorescent concentration observed on 12
June occurred with a higher relative humidity (83%) when compared to the 6 June (59%)
and 8 June (62%). Together, these three events indicate a positive relationship between
relative humidity and nighttime fluorescent concentrations and highlight the significant
influence of submicron and type B fluorescent particles.

The identification of distinct clusters during this study was found to align with the
observed events depicted in Figure 7A. Further examination of the observed events using
heatmaps, both for latent and raw Genie analysis (Figure 7A), provided additional insights
into the disparities between the two approaches. Interestingly, the raw approach exhibited
a lack of clear identification of events observed in June, with a primary focus on events
occurring in July. However, this observation aligns with previous comparisons as the two
clusters exclusively identified by the raw Genie analysis (refer to Section 3.2) exhibited peak
activity between the 5 and 9 of July, as well as the 13 and 14 of July. Although the analysis of
these trends shall be reserved for a future study, a note of particular significance is the fact
that these periods of peak activity coincided with observed rainfall and a notable increase in
the compositional loading of type ABC (Figure A6). Under these specific conditions, coupled
with the prevalence of larger-sized particles measuring 3 and 4 µm in relatively low quantities,
one can speculate that this activity may be attributed to either fragmented pollen or fungal
spores, as observed in a recent study [56]. In contrast, the four clusters exclusively identified
through the latent GenieClust analysis were predominantly observed in June, aligning with
the peak on 12 June, whilst also exhibiting some activity at the beginning of July.
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Figure 7. (A–C): (A) (Left)—Time series illustrating the fluorescent concentration throughout the
duration of the study as well as the corresponding temperature and relative humidity at the supersite.
(B) (Top Right)—Size distribution heatmap displaying particles by their category. (C) (Bottom
Right)—FL conc. Time series (including meteorological conditions) for the first week of the study
zoomed in.

4. Discussion

As a study, the breadth of which was to compare the clustering capabilities of various
new and traditional approaches, several key findings were made.

The consistency between the transformed clusters identified by K-means and HCA,
except for the outlier cluster, highlights the reliability of K-means in capturing the essential
patterns within the data. It is important to note that despite the slight discrepancy in
the number of clusters identified by K-means and HCA, the overall agreement in cluster
profiles and sizes reinforces the effectiveness of both methods in clustering and identifying
distinct particle types.

The utilization of an AE in conjunction with the two methods yielded intriguing
findings, providing insights into the potential effects on outlier detection for K-means
and HCA. Curiously, the incorporation of an AE in the K-means algorithm unveiled
differences in outlier detection. By leveraging the capabilities of the AE to capture and
represent underlying patterns, K-means may have benefited from the enhanced feature
representation by identifying outliers within the main body of the dataset (below 2 microns
in this case), particularly in identifying the compositional loadings of each cluster. This
enhanced performance appears to be in agreement with a study comparing K-means to
AE K-means, which reported an enhanced ability of the autoencoded approach to deal
with high-dimensionality data [57]. This was similarly the case for the autoencoded HCA
analysis; however, the application of the AE revealed a potential reduction in the number
of clusters identified. This appears to suggest the possibility of distortions in important
features during the encoding process, leading to a compromised representation of the data
and subsequently affecting the clustering outcomes. Furthermore, the observed reduction
in clusters implies that the AE may not have adequately preserved the critical information
required for HCA to effectively identify and differentiate clusters.

Remarking upon the comparative analysis of GenieClust with K-means and HCA to
the transformed dataset, it is clear that GenieClust demonstrated a distinguished ability
to detect outliers in this study, challenging the capabilities of the traditional methods.
For example, the algorithm successfully distinguished four outlier clusters characterized
by larger sizes and lower concentrations, compared to three for HCA and two for K-
means. As is evident from the removal of larger particles by the autoencoded analysis,
the majority of particles (approx. 80%) captured throughout the campaign appear to lie
within the 0.5 micron to 2 micron range. This is of consequence since the combination of
the autoencoder with GenieClust yielded unexpected improvements. The AE GenieClust



Atmosphere 2023, 14, 1416 17 of 25

approach provided the highest number of optimal clusters; however, the most overlapping
clusters were identified here also.

Nevertheless, similar to K-means, the AE analysis identified a greater number of distinct
clusters in the smaller size ranges. This is likely the consequence of the autoencoder filtering
out the larger and less frequent particle data, resulting in the identification of additional
distinct clusters within the lower size ranges. However, as a result, the algorithm was unable
to identify the three larger-sized clusters previously identified in the transformed analysis.

The findings here appear to align with the existing literature assessing GenieClust’s
performance. Benchmarks posted by Gagolewski (the algorithm’s developer) to the online
documentation for GenieClust compare Genie’s performance to several agglomerative
linkage methods. The Adjusted Rand (AR) Index value for GenieClust was reported to be
3.5, among the lowest mean ranks, suggesting that, on average, GenieClust performs better
than many of the other listed algorithms [58].

The study also utilized the Calinski–Harabasz score to compare GenieClust approaches
and explored the potential improvement in clustering by including quadrant detector
measurements. The optimal number of clusters demonstrated by the score was in good
agreement with the manual interpretation, with the raw analysis highlighting 8 clusters
and the AE analysis showing 11 clusters. Furthermore, the CH-Score analysis indicated
that encoding the data into a latent vector resulted in an increase in cluster quality, as
was demonstrated by the consistently higher scores. However, as has been shown here,
care must be taken when drawing conclusions from comparative analysis between latent
vectors and raw data, owing to the changes in the data structure and how metrics such as
the CH-Score determine cluster quality. Additionally, despite a notable decrease in cluster
quality exhibited with the inclusion of quadrant information for the CH-Score, the optimal
clusters for both demonstrated good agreement, suggesting that the inclusion or exclusion
of QI led to relatively small differences and did not provide better cluster separation.

What is evidenced by this study is that GenieClust exhibits a distinguished ability to
capture finer patterns and differentiate complex compositions within clusters. Whilst the
benefits of this have already been remarked upon, misinterpreting the enhanced precision
of GenieClust could lead to an underestimation of the intricacies and multifaceted nature
of bioaerosol emissions. In turn, traditional methods, including K-means and HCA, might
fail to capture the same level of complexity, potentially leading to the oversimplification of
particle associations. Moreover, the integration of AEs alongside other analytical methods
introduces the potential for altering the attributes of identified clusters due to dimensional-
ity reduction, which is evident in the divergence between transformed and autoencoded
cluster profiles. This aspect holds significant importance, as a failure to acknowledge that
the utilization of autoencoders can induce modifications in cluster characteristics could lead
to erroneous inferences regarding bioaerosol emission patterns. It is essential to recognise
that the application of AEs might bring about shifts in cluster attributes. Overlooking
this phenomenon could lead to misconceptions about the advantages of the differences
observed following AE implementation. Such an oversight might lead to the dismissal of
crucial insights stemming from the filtering effect observed in larger clusters, as demon-
strated in this study. As a result, if the methodology were to exclusively rely on AEs, it
might entail the inadvertent loss of pivotal information pertaining to bioaerosol emissions.

Limitations and Further Work

Whilst applying an AE yielded mixed results, there are many instances of AEs produc-
ing favourable results. Rather, it highlights the complexity of applying such ML techniques
compared to traditional clustering methods. Specifically, it is clear that whilst these emerg-
ing methods could offer a faster time-to-solution, reduced processing requirements, and
the possibility of improved clustering, the complexity of the techniques is significantly
increased and requires a fundamental understanding of neural networks. Furthermore, the
results here highlight the intricate relationship between the AE, clustering algorithms, and
the preservation of crucial data characteristics.
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Moving forward there are a number of methods that can address the similarities
observed with the autoencoded (latent) clusters:

1. Review and optimize the architecture and hyperparameters of the AE.
2. Applying dimensionality reduction techniques.
3. Explore different AE variations or regularization techniques to enhance the quality of

the encoding.
4. Evaluate the clustering performance using various evaluation metrics beyond similar-

ity, such as the silhouette score or cluster purity.

To gain a deeper understanding of the effects observed between the autoencoded
K-means and HCA algorithms, comprehensive evaluation measures such as validity in-
dices could be employed to quantitively assess the impacts of the AE on the clustering
performance. Furthermore, an examination of the reconstructed data from the AE can
provide valuable insights into the distortions and potential loss of information.

Another limitation that should be acknowledged is the absence of training or labora-
tory data in the current study. This limitation applies not only to GenieClust but also to
the K-means and hierarchal clustering analysis conducted. Although it has been observed
that GenieClust demonstrates a superior ability to distinguish a higher number of distinct
clusters, the lack of reliable training data poses a significant challenge. In order to overcome
this limitation and enhance the accuracy of cluster identification, efforts must be directed
towards building a comprehensive and reliable repository of known particles. Further-
more, it is important to note that the current limitations in training data extend beyond
the scope of this specific study. As researchers aim to delve deeper into the speciation and
identification of individual subspecies within broad categories, the lack of reliable training
data becomes increasingly apparent. Therefore, there is a pressing need to prioritize the
collection and curation of high-quality training data to address this limitation and advance
our understanding of complex particle systems.

5. Conclusions

To conclude, this study aimed to assess and compare the clustering capabilities of
both traditional and emerging methods, shedding light on their respective strengths and
limitations. The consistency observed between transformed clusters using K-means and
HCA underscores their reliability in identifying essential data patterns, and whilst HCA
did outperform K-means, it is debatable whether the difference seen here were significant
enough to warrant the additional processing power and running costs required to run HCA
on large datasets. The application of an autoencoder in this study, much in the same way
as with GenieClust, appears to have removed infrequent particle data (in this case charac-
terized by larger sizes and low concentrations), the implication being that this may allow
for further outlier discrimination within a dataset if used in conjunction with the standard
approach. However, GenieClust emerged as a standout alternative, showcasing superior
outlier detection compared to conventional techniques. GenieClust’s ability to discern
finer patterns and its capacity to identify a greater number of optimal and distinct clusters
exemplify its enhanced performance. This study’s findings have important implications for
various domains, including health and pollution monitoring where GenieClust’s ability to
discern complex particle distributions offers more insightful interpretations. By leveraging
GenieClust’s strengths, researchers and practitioners can potentially enhance the accuracy
and flexibility of unsupervised classification methods. Additionally, the study’s exploration
of the AE’s impacts further contributes to the evolving landscape of data-driven analysis.
It is worth noting that future applications could encompass monitoring air quality, tracking
pollution sources, and assessing health risks associated with specific particle compositions.
The ability to distinguish intricate particle associations using GenieClust holds promise for
more effective identification of bioaerosols and pollutant sources and their potential health
implications. As technology advances and datasets expand, GenieClust’s capabilities may
prove an effective alternative to methods that are now beginning to become outdated.



Atmosphere 2023, 14, 1416 19 of 25

Author Contributions: The following author contributions are acknowledged below: Conceptualiza-
tion, M.A.N.M., D.O.T., M.W.G., and I.C. built the conceptual sampling approach used in this study;
methodology, M.A.N.M. and D.O.T. designed the research methodology and workflow presented
here; Data Procurement, M.A.N.M., I.C., and M.J.F. managed data collection and instrument mainta-
nence; software, D.O.T. wrote and applied the machine learning and analysis scripts applied during
this study; formal analysis, M.A.N.M. aggregated the outcomes of the tools applied; writing—original
draft preparation, M.A.N.M.; and writing—review and editing: M.A.N.M., M.W.G., and D.D.H. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was part funded by the Engineering and Physical Sciences Research Council
grant number (EPSRC, EP/S023593/1). This research was also part funded by Droplet Measurement
Technologies LLC.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data will be provided via the CEDA web site: https://data.ceda.ac.
uk/badc/osca (accessed 4 September 2023).

Acknowledgments: M.M. acknowledges funding from the Engineering and Physical Sciences Re-
search Council (EPSRC, EP/S023593/1). M.M. acknowledges funding from Droplet Measurement
Technologies LLC.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Appendix A

Atmosphere 2023, 14, x FOR PEER REVIEW  20  of  26 
 

 

writing—original  draft  preparation,  M.A.N.M.;  and  writing—review  and  editing:  M.A.N.M., 

M.W.G., and D.D.H. All authors have read and agreed to the published version of the manuscript. 

Funding: This research was part funded by the Engineering and Physical Sciences Research Council 

grant number (EPSRC, EP/S023593/1). This research was also part funded by Droplet Measurement 

Technologies LLC. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data  Availability  Statement:  Data  will  be  provided  via  the  CEDA  web  site: 

https://data.ceda.ac.uk/badc/osca (accessed 4 September 2023). 

Acknowledgments: M.M. acknowledges funding from the Engineering and Physical Sciences Re-

search Council  (EPSRC, EP/S023593/1). M.M. acknowledges  funding  from Droplet Measurement 

Technologies LLC. 

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the de-

sign of the study; in the collection, analyses, or interpretation of data; in the writing of the manu-

script; or in the decision to publish the results. 

Appendix A 

 

Figure A1. Basic illustration of a neural network/autoencoder architecture. 

Input Layer

Encoded Layer

Reconstructed
Layer

Figure A1. Basic illustration of a neural network/autoencoder architecture.

https://data.ceda.ac.uk/badc/osca
https://data.ceda.ac.uk/badc/osca


Atmosphere 2023, 14, 1416 20 of 25Atmosphere 2023, 14, x FOR PEER REVIEW  21  of  26 
 

 

 

Figure A2. Compositional loading contributions of each cluster identified in the four methods. 

 

Figure A3. Compositional loading contributions for the two GenieClust approaches corresponding 

to the number of optimal clusters identified. 

Latent HCA

Raw HCA Raw Kmeans

Latent Kmeans

Figure A2. Compositional loading contributions of each cluster identified in the four methods.

Atmosphere 2023, 14, x FOR PEER REVIEW  21  of  26 
 

 

 

Figure A2. Compositional loading contributions of each cluster identified in the four methods. 

 

Figure A3. Compositional loading contributions for the two GenieClust approaches corresponding 

to the number of optimal clusters identified. 

Latent HCA

Raw HCA Raw Kmeans

Latent Kmeans

Figure A3. Compositional loading contributions for the two GenieClust approaches corresponding
to the number of optimal clusters identified.



Atmosphere 2023, 14, 1416 21 of 25Atmosphere 2023, 14, x FOR PEER REVIEW  22  of  26 
 

 

 

Figure A4. (A–C): GenieClust heatmaps highlighting cluster events over the course of the study for 

the AE approach (with and without the quadrant information included), in addition to the trans-

formed approach.  (A) Latent GenieClust  (Without Quadrant  Information). (B) Latent GenieClust 

Figure A4. (A–C): GenieClust heatmaps highlighting cluster events over the course of the study
for the AE approach (with and without the quadrant information included), in addition to the
transformed approach. (A) Latent GenieClust (Without Quadrant Information). (B) Latent Ge-
nieClust (With Quadrant Information). (C) Transformed GenieClust approach (without Quadrant
Information).
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Figure A6. Time series displaying the rainfall and average fluorescent concentrations over the
duration of the study for the three most abundant particle categories.
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