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Abstract: The summer of 2022 was very dry across Missouri and the surrounding regions including
much of the Great Lakes, Midwest, and southern plains of the USA. A comparison of this summer
to the dry summer of 2012 and the relatively wet summers of 2018 and 2021 was carried out using
the National Centers for Environmental Prediction/National Centers for Atmospheric Research
reanalysis, the Climate Prediction Center teleconnection indexes, and the blocking archive at the
University of Missouri. The summer of 2022 was like that of 2012 which was characterized by a strong
500 hPa height anomaly centered over the western US and plains as well as very little blocking in the
East Pacific. The summers of 2018 and 2021 were characterized by more zonal flow over the USA
and more blocking in the East Pacific, similarly to the results of an earlier study. The teleconnection
indexes for the prior spring and summer were largely similar for the two drier years and opposite
for the wetter years. The surface conditions for the drier years were more similar while these were
opposite for the wetter years. The integrated enstrophy (IE) used in earlier studies identified a change
in the large-scale flow regime in early June 2022, which coincided with a decrease in the precipitation
over the study region. However, one key difference was that the spring of 2022 was characterized
by blocking more consistent with a wetter summer. This would have made the predictability of the
drought of summer 2022 less certain.

Keywords: drought; blocking; teleconnections; integrated enstrophy; ENSO; long-range forecasting

1. Introduction

A drought is a typical ongoing issue during summer months for various parts of the
United States; however, droughts can occur in any region of the world. The definition
of a drought is a period that has abnormally dry weather sufficiently prolonged for the
lack of water to cause serious hydrologic imbalance in an affected area (e.g., [1–3]). There
are five different types of droughts that are categorized and defined based on what they
affect. These five types of droughts include meteorological, agricultural, hydrological,
socioeconomic, and ecological, and [3–8] (and references therein) describe the types of
drought. Meteorological drought occurs when dry weather patterns dominate an area and
evaporation exceeds precipitation (e.g., [5,7,8]). Hydrological drought occurs when low
water supply becomes evident in the water system (e.g., [4,5]). Agricultural drought is
associated with a lack of soil moisture in the root zone, which primarily affects crops due
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to insufficient support for plant growth (e.g., [8]). Socioeconomic drought occurs when
the supply and demand of various items become affected by drought (e.g., [6]). Ecological
drought occurs when the natural ecosystem is affected by drought.

Short-term drought focuses on differences between precipitation and evaporation on
the seasonal time scale (e.g., [4,9,10]), whereas these references describe long-term drought
on a time scale of six months or greater. In addition, ref. [9] shows a trend toward more
intense seasonal droughts in the Mediterranean over the last decade, while ref. [10] showed
that longer term drought was forecast better in Peru using their technique.

Weather patterns that occur and relate to climatological conditions in disparate parts of
the world are known as teleconnections, and these were defined as early as the mid-to-late
20th century (e.g., [11–13]). These common weather patterns and their variations will
influence whether a region experiences such anomalies as hot and dry weather or wet and
rainy conditions (e.g., [14–20] and references therein). These teleconnections have been found
to result from Rossby wave propagation over a large region, and these can be driven by
atmospheric dynamics as well as surface conditions (e.g., [20–23]). Studies such as [24,25]
(and references therein) discussed or examined the impact of teleconnections, including
drought, on agriculture. The work of [3] examined the linkage between teleconnections
and droughts for the middle part of the United States and Eastern Europe/western Russia.

Integrated enstrophy (IE) can also be used as a measure for indicating a change in the
Northern Hemisphere (NH) atmospheric flow regime or the onset or dissipation of blocking
(e.g., [18,26–28]). Therein, ref. [29] examined IE for an entire year and determined that
changes in IE could be related to changes in midwestern weather, and these changes could
be anticipated one to two weeks in advance. The work of [18,30] discussed the possible
use of IE to indicate seasonal changes. It is also important to note that east Pacific Region
blocking can also be related to droughts and/or drought-like conditions over the middle
part of North America (see, e.g., [16]).

In the United States, there have been severe droughts in years past particularly during
the 1970s and since the 2010s as found in [3], with minima in the 1990s and 2000s. In
this paper, a comparison is described of a recent severe drought summer (2012) with the
non-drought years (2018 and 2021) for the Midwest United States (US) in order to determine
if there was a common denominator using Northern Hemisphere teleconnections. Here,
we will compare these summers with the recent drought year of 2022, which has not been
studied yet. This work will examine whether blocking could have been used as an indicator
for the drought of 2022. While this is not novel, this would provide support for earlier
research. Also, IE is examined here in order to determine whether or not the start of the dry
regime could be identified, and this has not been studied previously. Section 2 describes
the materials and methods used. Section 3 will examine the large-scale atmospheric and
surface conditions related to drought as in [3]. Section 4 will discuss the Midwest drought
of 2022, and the last section will present the conclusions of this work.

2. Materials and Methods
2.1. Data

For this work, several data sources were used. The National Centers for Environ-
mental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis
dataset was obtained via the website [31] to examine large-scale variables and to obtain the
blocking characteristics. The NCEP/NCAR reanalyses are available on a 2.5 × 2.5-degree
latitude/longitude grid and at 6-h intervals, but 1200 UTC data were used since these
contain the most observations. This dataset is described in [32,33], has been assessed for
quality by many (e.g., [34,35]), and has been used in numerous studies. These data have
sufficient resolution for examining large-scale atmospheric phenomena and processes and
over large study regions (e.g., [14–16]). Blocking events and the characteristics that are
associated with each event are accessible on the University of Missouri archive [36]. This
archive, the algorithms used, and the statistical character of blocking can be found in [37,38]
and the references therein.
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The primary upper air and surface variables used were 500 hPa geopotential height
(m), surface precipitation rate (mm day−1), and surface potential evaporation (E) (W m−2).
The potential evaporation data were converted to mm day−1 by dividing E by the latent
heat of vaporization (L = 2.5 × 106 J kg−1) and the density of water (1000 kg m−3), and
100 units of E are roughly 3.5 mm day−1. This analysis will compare a severe drought
season in the United States to wetter summers that occurred recently. For the United States,
the years that were analyzed here were 2012, 2018, 2021, and 2022.

2.2. Study Region

The focal areas of this paper were that of the US as seen in Figure 1 and used in [3], and
the box denotes the approximate study region outlined by 30◦ N to 50◦ N and 100◦ W to
80◦ W. These areas include much of the Midwest US and parts of the South and Northeast
as seen in Figure 2. The primary dates consisted of the meteorological spring (1 March–31
May) and summer months (1 June–31 August), and the years chosen were 2012, 2018, 2021,
and 2022.
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Figure 1. The study region in the US as defined by [3] and adapted from them. The three dots across
the State of Missouri correspond to the National Weather Service Office locations for Kansas City
(MCI), Columbia (COU), Saint Louis (STL) from west to east, and Springfield (SGF) in the Southwest.

2.3. Methodology

The methodology used in this analysis followed that found in [3] and is explained
briefly here. In their work, the maximum E anomaly in mm day−1 was subtracted from the
maximum negative precipitation anomaly to obtain a drought anomaly. The anomaly was
modified by the percent of the study area covered by −1 mm day−1 or greater, which was
estimated using box counts and the estimated error was +/− 0.02. In [3], severe drought
was defined as a precipitation minus evaporation anomaly of −9.0 or greater. This work also
examined the relationship with respect to the phase of El Niño and Southern Oscillation
(ENSO) and the summer season transition. They also examined the preceding spring
in order to determine whether or not drought was developing during the spring. This
information is shown in Table 1. The years 2018 and 2021 did not count as drought years
because of the small areas impacted. In this analysis, we will determine why precursors
were not in favor of a drought for the summer of 2022 and the reasoning behind such.
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Figure 2. The sections of the US that include the West (deep orange color), Midwest (green color),
South (light orange color), Southwest (yellow color) and Northeast (blue color) as defined by [39].

Table 1. From [3], the occurrence of extreme and moderate North American (NA) drought. Columns
one, two, and three show the maximum precipitation minus evaporation anomaly (mm day−1), the
percent of the study region covered by −1 mm day−1 or greater P–E, and the product of columns
two and three, respectively. Columns four, five, and six show the ENSO phase, as well as the type of
ENSO transition taking place during the summer, and whether the preceding spring showed drought
conditions, respectively. The estimated error in column 4 is +/− 0.1 to +/− 0.2 units.

Year P–E Anomaly %Area Col. 2 × 3 ENSO Phase Transition Precursor

2012 −9.0 0.30 −2.7 NEU NEU—NEU Yes
2018 −6.6 0.10 −0.7 LA LA—NEU N/A
2021 −6.5 0.15 −1.0 LA LA—LA N/A
2022 −9.0 0.35 −3.2 LA LA—LA No

The definition used for blocking can be found in [26,27] and references therein, and
this includes the algorithm for calculating BI which was based on 500 hPa height data. In
calculating the integrated enstrophy (IE), we used the following equation:

IE = ∑i>0 λi ≈
∫

A
ζ2dA (1)

where z is the 500 hPa vorticity and the value squared is enstrophy. The development and
physical meaning of IE are discussed in [27] and the IE was calculated as in [28,30]. This
value and the significance here will be discussed further in Section 4.

3. Results
3.1. Drought 2022 in Context: United States Statewide Ranks

Focusing on the summer months which include 1 June through 31 August 2012 and
2022, it is apparent that portions of the study region endured a drought, but 2018 and
2021 experienced much less over the same area (Table 1, Figures 3–7). Precipitation totals
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were low for most of the Midwest, with temperatures being much above normal [40,41].
The years 2018 and 2021 were not drought years due to the lower (absolute) values of the
drought index used here and shown in Table 1. In Figures 3–7 are shown the state-by-state
ranks for temperature and precipitation for the summer season over an approximately
120-year period. Temperature (precipitation) is ranked from coldest (driest) (number one)
to warmest (wettest). The comparison for the summer of 2012 versus 2022 in Figures 3 and 7
would indicate that 2012 was qualitatively worse when examining the ranks of temperature
and precipitation. Further comparisons will be made below. Figure 4 demonstrates that the
entire year of 2012 was among the warmest and driest for many of the states in the study
region [39]. Most of the states had much above normal temperatures with eighteen states
enduring record warmest temperatures for 2012 [42]. This indicates that the 2012 drought
was persistent for much of the Midwest and portions of the South and West.
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Figure 3. Statewide temperature and precipitation ranks for the United States during summer 2012
(Source: [40,41]). In (a), the dark red, orange, beige, white, light blue, medium blue, and dark blue
indicate temperatures that were record warmest, much above normal, above normal, near normal,
below normal, much below normal, and record coldest, respectively. In (b), the dark green, medium
green, light green, white, yellow/light brown, medium brown, and dark brown indicate precipitation
that was wettest, much above normal, above normal, near normal, below normal, much below
normal, and driest, respectively. Temperature is on the left and precipitation, on the right. Ranks are
such that the highest number indicates the warmest or wettest months, respectively.
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Examining Figure 5, it can be deciphered that the Midwest endured temperatures that
were much cooler during summer 2018 especially than that of the summer 2012, but still
above normal. As for precipitation totals, areas that had above average precipitation were
the states of North Dakota, Kansas, South Dakota, and Minnesota. As for the remainder
of the Midwest including areas of Illinois, Indiana, Michigan, Wisconsin, Ohio, Iowa, and
Nebraska, those areas had precipitation totals that were much above average.

The Midwest had temperatures that ranged from above average to much above
average for the summer 2021 as seen in Figure 6. Missouri, Illinois, Indiana, Nebraska,
Iowa, and Oklahoma were the states that had above average temperatures. However,
Michigan, Ohio, Wisconsin, Minnesota, South Dakota, and North Dakota all endured
temperatures that were much above average for the year 2021. Precipitation totals varied
with Missouri, Illinois, Michigan, Indiana, Ohio, and the southern states being the states
that had above average precipitation totals for the year 2021 as seen in Figure 6. However,
Kansas through North Dakota and Minnesota had a lack of precipitation with precipitation
totals being below average for the summer of 2021.

Temperature ranks for the Midwest and South during the summer of 2022 experienced
mainly above average temperatures as seen in Figure 7. However, Oklahoma, Texas,
Mississippi, and Louisiana had temperatures that were much above average. Precipitation
totals varied for the Midwest for the year 2022 as seen in Figure 7. Nebraska was the only
state in the Midwest that saw much below average precipitation totals. As for the other
states in the Midwest, including Kansas, Iowa, Indiana, Minnesota, Missouri, and South
Dakota, these areas had below average precipitation totals.
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By July 2022 (Figure 8a), much of the study region was in the earlier stages of drought
and this persisted into the summer and became more severe by mid-fall 2022 (Figure 8b). Af-
ter November 2022, drought conditions slowly abated, but spring 2023 was very dry across
the study region (not shown) and it could be argued that drought continues to persist.
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3.2. Teleconnections

A linkage was found by [3] between teleconnections and droughts over North America
and Eastern Europe. The teleconnections examined were the Arctic Oscillation (AO), North
Atlantic Oscillation (NAO), and Pacific/North American Pattern (PNA), and the data were
obtained from [46]. The AO is a daily index that is projected daily at a height of 1000 mb
height anomalies poleward of 20◦ N. The NAO is a daily index that shows anomalies
for the North Atlantic region based on two centers of action. The PNA is another index
that is used to describe the flow pattern over the Northeast Pacific region based on four
centers of action. This index has been used in numerous studies to determine characteristic
patterns of weather or climate cycles at different times of the year for North America. As
mentioned in a previous study [3], blocking and teleconnections play an important role in
determining and forecasting droughts and/or non-drought conditions for North America.
The daily (Figure 9) values of these three indexes for 1 April to 30 June 2012 and 2022 are
shown below, while the seasonal mean spring and summer values for all years studied
here are shown in Table 2. These quantities will be discussed in Section 4; however, as
demonstrated by [3,29,30], as well as previously by Lebedeva et al. [49], there is a high
correlation between the daily AO and the NAO in 2012 and 2022 (0.46, 0.62/p = 0.01) (see
Table 3) and a negative correlation between the AO and PNA (−0.23, −0.21/p = 0.05, 0.1,
respectively) and NAO and PNA (−0.17, −0.26/the latter significant at p =0.05).

Table 2. Mean seasonal teleconnection index values that occurred during the spring/summer months
for the years of study over the US [50].

Year AO NAO PNA

2012 0.39/−0.15 0.28/−1.61 −0.05/−0.28
2018 0.26/0.61 0.81/1.48 −1.05/0.47
2021 0.58/0.42 −0.65/0.17 −1.12/0.73
2022 0.29/−0.08 0.37/0.42 −0.48/1.01
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Table 3. Correlations of the daily teleconnection index values that occurred during the
spring/summer months for the years of study over the US [50]. Correlations that are statistically
significant at p = 0.01, p = 0.05, p = 0.1 are in bold red, blue, and green.

Year AO/NAO NAO/PNA PNA/AO

2012 0.46 −0.17 −0.23
2018 0.61 0.32 0.26
2021 0.65 0.49 0.01
2022 0.62 −0.25 −0.21

3.3. 500 hPa Flow, IE, and Blocking—United States

Focusing on the US (Figure 10) for the 500 hPa height anomalies associated with the
summer season (1 June through 31 August), the summer season 500 hPa height anomalies
for 2012 and 2022 more closely resembled each other with positive anomalies over the
western and central US. Conversely, the height anomalies of 2018 and 2021 were higher
over southern Canada and the northern tier of states and lower over Northern Canada,
implying a more zonal flow pattern over North America. Only the year 2012 was included
in the composites in [3] and these will be discussed below.
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An examination of the spring and summer season blocking (Table 4) demonstrates
results consistent with those found in [3], but also earlier studies such as [16,18]. The severe
drought of 2012 was associated with no spring or summer blocking upstream of North
America, consistent with the low 500 hPa height anomalies over the Gulf of Alaska and
East Pacific (Figure 10a). A similar configuration is seen in Figure 10d. However, for 2022,
the spring season was associated with six blocking events which is more consistent with a
wet season. Then during summer 2022, there was only one weak blocking event (BI = 2.13
compared to mean event BI = 3.12—weak being about one standard deviation or more
below the mean, see [36,38]), characteristic of dry summers.

Table 4. Blocking events occurring during the spring (March–May)/summer (June–August) months
for the years of study over the Pacific Region 180◦ to 100◦ W in longitude.

Year Blocking Events Days Block Intensity (BI)

2012 0/0 0.0/0.0 NA/NA
2018 1/2 9.0/14.0 4.24/2.69
2021 4/3 34.5/24.5 2.78/2.28
2022 6/1 52.5/20.5 3.00/2.13

The calculation of integrated enstrophy (IE) was conducted using a built-in computer
programming code using Python. Again, as mentioned above, enstrophy is a conservative
quantity in two-dimensional inviscid flow [51]. The NCEP-NCAR reanalysis [31] was used
to obtain both the u and v wind components during the year 2022. These data were inputted
into a Python code (see [30]). The works of [26–28] established that the local maxima in
the IE were associated with a change in the large-scale flow regime over the NH as well
as North America. This led to changes in the associated weather over the central part of
North America [29,30], and [18,30] associated IE changes with a change in the seasonal
character of temperature and precipitation regimes. Also, [29] showed that the IE has an
annual cycle and the years 2012 and 2022 had a distinct annual cycle in IE (not shown), but
only the period from 1 April to 30 June is shown here (Figure 11). The IE maxima in early
June for both years will be discussed below.
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3.4. Precipitation and Surface Potential Evaporation

Surface potential evaporation is the amount of water that could evaporate at the
surface. More surface potential evaporation would equate to warmer temperatures and
drought. The spring season precipitation and potential evaporation showed that during
2012 (Figure 12a,b), there was a shortfall of precipitation and excess potential evaporation
in the Great Lakes within the study region as well as just west of the study region. In 2018
(Figure 12c,d) and 2021 (Figure 12e,f), respectively, the Southern Plains and Appalachian
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regions were dry. In 2022 (Figure 12g,h), there was dryness in the Great Plains mainly west
of the study region. Thus, during each year, there was potential somewhere in the eastern
2/3 of the US for a dry summer.
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potential evaporation across much of the Midwest (Figure 13b,h), including much of the 
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Figure 12. The spring (1 March to 31 May) season precipitation (mm day−1) (left) and surface
potential evaporation (W m−2) (right) for (a,b) 2012, (c,d) 2018, (e,f) 2021, and (g,h) 2022.

For the summers of 2012 and 2022, there were areas that consisted of higher surface
potential evaporation across much of the Midwest (Figure 13b,h), including much of the
study region. The summers of 2018 and 2021 showcased negative values of surface potential
evaporation across the Midwest and portions of the South in the US which were more
similar to the spring values (Figure 12b,h). However, upon looking at the summers of
2018 and 2021, the areas of potential evaporation were the opposite of their spring patterns
(Figures 12d,f and 13d,f).

During the spring of 2021 (Figure 12e), there were positive anomalies of surface
precipitation indicating precipitation in abundance for portions of the Midwest and South,
as shown via the areas of cool (blue and purple). Summer of 2012 (Figure 13a) showed
negative values of surface precipitation anomalies indicating the development of strong
drought ongoing in most of the Midwest and portions of the South. The summer of 2018
(Figure 13c) was a bit different in that there were areas of the Midwest and South that
showed positive values of surface precipitation anomalies indicating less potential for
widespread drought. The Great Lakes and extreme South endured negative values of
surface precipitation anomalies showcasing areas of potential drought. Most of the South
had positive values of surface precipitation anomalies for the summer of 2021 (Figure 13e)
resulting in a year with less drought potential. Heavier precipitation was showcased
across extreme portions of the South, shown in purple. This area of precipitation also went
into portions of the Midwest and Northeast, including the eastern portion of the Great
Lakes. Some southern states and northern Midwest areas had negative values of surface
precipitation rate indicating local drought in the northwest portion of the study region.
The entire Midwest endured drought conditions during the summer of 2022 (Figure 13g,h),
with areas along the eastern coast enduring a drought as well. Portions of the South and
Appalachians did have positive anomalies of rainfall.



Atmosphere 2023, 14, 1448 14 of 21

Atmosphere 2023, 14, 1448 17 of 25 
 

 

study region. The summers of 2018 and 2021 showcased negative values of surface poten-
tial evaporation across the Midwest and portions of the South in the US which were more 
similar to the spring values (Figure 12b,h). However, upon looking at the summers of 2018 
and 2021, the areas of potential evaporation were the opposite of their spring patterns 
(Figures 12d,f and 13d,f). 

  

  

  

Figure 13. Cont.



Atmosphere 2023, 14, 1448 15 of 21Atmosphere 2023, 14, 1448 18 of 25 
 

 

  

Figure 13. The summer (1 April to 30 June) season precipitation (mm day−1) (left) and surface po-
tential evaporation (W m−2) (right) for (a,b) 2012, (c,d) 2018, (e,f) 2021, and (g,h) 2022. The color 
palette is the same as in Figure 12. 

During the spring of 2021 (Figure 12e), there were positive anomalies of surface pre-
cipitation indicating precipitation in abundance for portions of the Midwest and South, as 
shown via the areas of cool (blue and purple). Summer of 2012 (Figure 13a) showed neg-
ative values of surface precipitation anomalies indicating the development of strong 
drought ongoing in most of the Midwest and portions of the South. The summer of 2018 
(Figure 13c) was a bit different in that there were areas of the Midwest and South that 
showed positive values of surface precipitation anomalies indicating less potential for 
widespread drought. The Great Lakes and extreme South endured negative values of sur-
face precipitation anomalies showcasing areas of potential drought. Most of the South had 
positive values of surface precipitation anomalies for the summer of 2021 (Figure 13e) re-
sulting in a year with less drought potential. Heavier precipitation was showcased across 
extreme portions of the South, shown in purple. This area of precipitation also went into 
portions of the Midwest and Northeast, including the eastern portion of the Great Lakes. 
Some southern states and northern Midwest areas had negative values of surface precip-
itation rate indicating local drought in the northwest portion of the study region. The en-
tire Midwest endured drought conditions during the summer of 2022 (Figure 13g,h), with 
areas along the eastern coast enduring a drought as well. Portions of the South and Appa-
lachians did have positive anomalies of rainfall. 

4. Discussion 
In Section 3, it was noted that 2012 was among the hottest and driest summers across 

the study region except for the southernmost states. The summer of 2022 was qualitatively 
not as hot across the region and much of the region was dry, but not quite as dry across 
the region (Figure 3), but impacted a slightly larger region (Table 1). A comparison with 
two years of no significant drought region-wide was also conducted, and qualitatively, 
2018 and 2021 were years that were not dry across the region (Table1). 

Firstly, Figure 12 will demonstrate that the study region shows areas of positive and 
negative precipitation anomalies, and no real pattern emerges to show differences be-
tween 2012 and 2022 versus 2018 and 2021. Also, in 2022, much of Missouri was above 
average for precipitation from March to May (Figure 12a and Table 5), and the state expe-
rienced regular rain events (not shown). However, three of the four years in Figure 12 
show strong large-scale positive potential evaporation anomalies, except for 2021. None-
theless, large-scale spring positive potential evaporation anomalies may be a precursor 
regardless of the precipitation. 

Figure 13. The summer (1 April to 30 June) season precipitation (mm day−1) (left) and surface
potential evaporation (W m−2) (right) for (a,b) 2012, (c,d) 2018, (e,f) 2021, and (g,h) 2022. The color
palette is the same as in Figure 12.

4. Discussion

In Section 3, it was noted that 2012 was among the hottest and driest summers across
the study region except for the southernmost states. The summer of 2022 was qualitatively
not as hot across the region and much of the region was dry, but not quite as dry across the
region (Figure 3), but impacted a slightly larger region (Table 1). A comparison with two
years of no significant drought region-wide was also conducted, and qualitatively, 2018
and 2021 were years that were not dry across the region (Table 1).

Firstly, Figure 12 will demonstrate that the study region shows areas of positive and
negative precipitation anomalies, and no real pattern emerges to show differences between
2012 and 2022 versus 2018 and 2021. Also, in 2022, much of Missouri was above average
for precipitation from March to May (Figure 12a and Table 5), and the state experienced
regular rain events (not shown). However, three of the four years in Figure 12 show strong
large-scale positive potential evaporation anomalies, except for 2021. Nonetheless, large-
scale spring positive potential evaporation anomalies may be a precursor regardless of
the precipitation.

Table 5. The NDI calculations for four cities in Missouri during spring and summer of 2012, 2018,
2021, and 2022.

Year MCI COU STL SGF

2012 −4.78/−3.79 −2.92/−3.26 −3.88/−2.80 −3.37/−2.30
2018 −1.17/−0.92 −1.32/−2.22 0.64/−1.20 −1.46/−0.84
2021 −0.47/−0.81 0.85/0.95 −0.89/0.44 1.48/−0.69
2022 0.47/−1.95 0.36/−2.04 −0.41/0.98 1.53/−1.93

Then, during summer (Figure 13), again, three of the four years including 2012 and
2022 showed widespread positive potential evaporation in the study region, with 2012
being the strongest. Qualitatively, 2022 was a little weaker than 2012, but covered much of
the same region. For precipitation, 2022 shows the strongest and most widespread area
of negative precipitation anomalies (Figure 13 and Table 1). During 2012, this negative
summer precipitation anomaly was also widespread across the study region but was
tempered in the southern part of the study region on 30–31 August 2012 by the remnants of
Hurricane Isaac [52].
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In order to corroborate the reliability of the methods used here, the recently published
New Drought Index (NDI) was calculated following [53], using four National Weather
Service (NWS) stations across Missouri in Springfield, Columbia, Saint Louis, and Kansas
City. This NDI index uses a standardized anomaly of precipitation and temperature and
here, spring and summer seasonal values were used. This index identifies meteorological
drought similar to our methodology here. Missouri was located near the center of the
study region and is a sub-region of interest to this group. Larger negative values indicate
drier years since a positive temperature anomaly would be subtracted from a negative
precipitation anomaly (see [53]) and uses observed station data.

The NDI values are shown in Table 5 and imply that the summer of 2012 was a more
severe drought for both the spring and the summer seasons than 2022 for Missouri, but
both summers were clearly worse than 2018 and 2021 overall. Table 1 implies the droughts
were of comparable severity for the summer season, but regionwide. For spring 2022, the
values were mainly positive due to the wetter spring (Figure 14a). For 2018 and 2021, the
NDI values were generally closer to zero and a mix of positive and negative values. Only
one station in central Missouri showed drier conditions locally in 2018, and in 2022, one
station showed a positive value as the result of a 250 mm rainfall in 24 hours during July.
Thus, the NDI and the index used here produced similar qualitative results even though
these indexes may give different quantitative results using different study regions and data
with different resolution, and this has been shown in many studies previously (e.g., [54,55]).
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An examination of the 500 hPa summer height anomalies (Figure 10) showed strong
positive height anomalies over the west US and into the central US and a negative AO index
for the summer season (Table 2), which is consistent with drought years as demonstrated
by [3]. However, [57] posited that summer season ridging will occur annually over the
continental USA, but that the year-to-year differences were mainly in the location, ampli-
tude, and intensity. In Figure 10, the positive (negative) height anomalies over Canada
(USA) in 2018 and 2021 which were not drought years imply more zonal flow as indicated
by positive values for the AO during the summer (Table 2). Thus far, there are differences
in the flow pattern and surface character for North America during drought years versus
non-drought years as established by [3], and 2022 is consistent with those results, but also
numerous other studies (e.g., [24,58–63]).

The second question addressed here is could the drought of 2022 (or any drought year)
be anticipated using surface conditions, blocking, or IE? Previous studies established a lack
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of summer season blocking over the East Pacific region, and that any of these blocking
events would be weak [3]. That was the case for summer 2022, which experienced one
weak event over the East Pacific (Table 4). The non-drought years here did experience
more than one East Pacific blocking, and these were of typical strength for the season and
region [36,38]. However, [3] showed that spring seasons that precede dry summers would
also be associated with weaker and less upstream blocking from North America. In 2022,
this was not the case (Table 3). In fact, there was more blocking in the East Pacific, which is
characteristic of wetter summer conditions.

Finally, here, the IE diagnostic was applied in order to determine whether or not a
change in the regional or NH flow regime could be identified with the onset of the summer
regime, and thus, the 2022 drought. Newberry et al. [18] argued that the onset of the
summer season regime for Missouri could be detected by examining the change in the
local temperatures (more consistently warm), a northward shift in the 500 hPa jet, and
precipitation frequency and intensity. They also used IE to argue that the summer season
flow regimes are associated with weaker enstrophy. They noted that some of these seasonal
changes could be quite abrupt, while others were more gradual. Est et al. [30] investigated
the question of whether the onset of a more spring-like regime could be identified using the
occurrence of IE maxima. Then, ref. [18] identified 3 and 7 June as the onset of the summer
season regime for Missouri and the surrounding region in 2012 and 2022, respectively.

Figure 11 shows that after 5 June 2022, the NH IE decreased and never recovered.
Applying the methodology of [18] would demonstrate that for the Missouri region, the
temperature and precipitation regime was very different before and after 7 June 2022,
and this was also true regionwide (Figure 14). Given that spring was quite wet, drought
conditions did not begin to be displayed regionwide until early July 2022 (Figure 8a). For
2012, the IE decreased after 10 June and this was a little later than 3 June, but consistent
with the change in the 500 hPa height criterion found in [18], which indicated the jet stream
had moved poleward for much of the region.

Additionally, [29,30] show that the primary NH teleconnection indexes (e.g., Figure 9)
changed their characteristic slope in association with the maximum in IE. In 2022, all three
indexes (AO, NAO, and PNA) show strong sign changes in their slope during early June
(5 June). The AO and NAO change from a negative slope (−0.22 and −0.08) during the
second half of May up to 5 June, to a positive slope (0.18 and 0.06) following the 5th, and
up to the 20 June 2022. The PNA turned from a positive slope (0.03) before 5 June to a
negative slope following this date (−0.10). In 2012, the changes in the slope sign are the
same as 2022 for all three indexes before and after 3 June.

Also, [3] posited that dry springs generally associated positive AO and NAO but
negative PNA indexes, but extreme dry summers were a bit different in that all three
indexes will generally be negative. As shown in Table 3 and [49], the AO and NAO
correlate positive and strongly, while the PNA correlates negatively by comparison in
general. During these dry summer seasons; however, all three indexes were negative in
2012 and other summers (see [3]), but this was not the case in 2022.

Thus, it can be shown in retrospect, that the onset of the 2022 drought can be identified
as early June given the occurrence of the NH IE maximum and change in teleconnections.
Also, the spring and summer of 2012 and 2022 were similar in several respects including
a large-scale region of potential evaporation over the study region and adjacent regions
and strong, widespread areas of positive potential evaporation and negative precipitation
anomalies resulting in large negative quantities of precipitation and evaporation. The
summer season 500 hPa height anomalies over North America and the lack of frequent
upstream Pacific blocking were similar as well. However, the spring of 2022 did show
frequent upstream spring blocking and a different summer season teleconnection index
regime than summer 2012. In retrospect, it is not clear that the drought of 2022 could have
been anticipated until and in spite of the occurrence of the NH IE maximum. Lastly, 2012
and 2022 differ from 2018 and 2021 in a similar fashion as proposed by [3]. Yet, these results
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show that drought may be anticipated with reasonable certainty based on the surface and
upper air characteristics of atmospheric variables and quantities found and examined here.

5. Conclusions

Drought has always been an issue for the entire world, and it will continue to be an is-
sue for many years to come. Previous studies noted that dry summers were associated with
different large-scale flow regimes over North America from wetter summers and optimal
surface conditions, but these studies also noted that spring was not necessarily an indicator
of summer drought over North America. In this work, the spring and summer of 2022 were
examined to determine how similar the large-scale flow and surface conditions were to
those in 2012, but different from 2018 and 2021, which were not considered drought years.

During the spring of 2022, the East Pacific region was very active in terms of blocking,
and this is more characteristic of wetter summers. However, summer 2022 was like the
summer of 2012 in that there were strong positive height anomalies over the plains with one
relatively weak blocking event occurring in the East Pacific. For summer 2022, it appears
that the monthly NAO and PNA are both the same sign similar to but of opposite sign
to 2012.

Ridging is typically associated with years that endured drought and that is the case
for the summers of 2012 and 2022. Previous work showed that all summers are associated
with ridging over the USA and that the main year-to-year difference is in the amplitude,
intensity, and location. In the United States for the summers of 2018 and 2021, the flow was
relatively more zonal over most of the United States, which is not like the drought years of
2012 and 2022, which were more amplified.

Finally, the surface conditions showed large-scale regions of higher spring season
potential evaporation during the two drought years and 2018. However, for the two
dry summers, these regions of potential evaporation became larger and stronger, while
there were concomitant shortfalls in precipitation. Thus, it is clear that while potential
evaporation during the spring of 2022 may have foreshadowed the summer drought,
the precipitation and large-scale flow patterns, particularly the occurrence of blocking,
produced mixed results. In spite of this, the large-scale conditions for the very dry summer
of 2022 were similar to those found in other studies for previous years (e.g., 2012) within
the area of study. The conditions for the non-drought summers of 2018 and 2021 were quite
different. A recently published drought index qualitatively corroborated the differences
between 2012 and 2022 versus 2018 and 2021.

Lastly, the IE diagnostic employed in previous work may have identified the change
in flow regime over North America that led to drought. There were maxima in both years
during early June when the precipitation and temperature regimes changed over the region.
These IE maxima were also associated with changes in the slope for the daily time series of
the major NH teleconnection indexes as in previous studies.

Additional study is warranted in order to confirm the results, including (a) the poten-
tial to use the results of block occurrence and IE changes to anticipate future drought,
(b) the application of these results to other areas on the globe, or (c) using different
drought indexes.
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