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Abstract: The tropospheric Zenith Wet Delay (ZWD) is one of the primary sources of error in Global
Navigation Satellite Systems (GNSS). Precise ZWD modeling is essential for GNSS positioning and
Precipitable Water Vapor (PWV) retrieval. However, the ZWD modeling is challenged due to the high
spatiotemporal variability of water vapor, especially in low latitudes and specific climatic regions.
Traditional ZWD models make it difficult to accurately fit the nonlinear variations in ZWD in these
areas. A hybrid deep learning algorithm is developed for high-precision ZWD modeling, which
considers the spatiotemporal characteristics and influencing factors of ZWD. The Convolutional
Neural Network (CNN) and Long Short-Term Memory (LSTM) are combined in the proposed
algorithm to make a novel architecture, namely, the hybrid CNN-LSTM (CL) algorithm, combining
CNN for local spatial feature extracting and LSTM for complex sequence dependency training. Data
from 46 radiosonde sites in South America spanning from 2015 to 2021 are used to develop models
of ZWD under three strategies, i.e., model CL-A without surface parameters, model CL-B with
surface temperature, and model CL-C introducing surface temperature and water vapor pressure.
The modeling accuracy of the proposed models is validated using the data from 46 radiosonde sites
in 2022. The results indicate that CL-A demonstrates slightly better accuracy compared to the Global
Pressure and Temperature 3 (GPT3) model; CL-B shows a precision increase of 14% compared to
the Saastamoinen model, and CL-C exhibits accuracy improvements of 30% and 12% compared
to the Saastamoinen and Askne and Nordius (AN) model, respectively. Evaluating the models’
generalization capabilities at non-modeled sites in South America, data from six sites in 2022 were
used. CL-A shows overall better performance compared to the GPT3 model; CL-B’s accuracy is 19%
better than the Saastamoinen model, and CL-C’s accuracy is enhanced by 33% and 10% compared
to the Saastamoinen and AN model, respectively. Additionally, the proposed hybrid algorithm
demonstrates a certain degree of improvement in both modeling accuracy and generalization accuracy
for the South American region compared to individual CNN and LSTM algorithm.

Keywords: zenith wet delay (ZWD); convolutional neural network (CNN); long short-term memory
(LSTM); deep learning; spatiotemporal characteristics

1. Introduction

Global Navigation Satellite System (GNSS) signals are affected by atmospheric refrac-
tion and bending of the propagation path, resulting in propagation delay, which is one of
the main sources of GNSS positioning [1]. The troposphere is a non-dispersive medium,
and the tropospheric delay is frequency-independent. This delay cannot be weakened by
dual-frequency or multi-frequency combinations [2,3]. The tropospheric delay is related to
the observed satellite elevation angle, and the Zenith Tropospheric Delay (ZTD) is usually
mapped to the slant path of the observed satellite elevation angle by a mapping function.
ZTD can be regarded as both a hydrostatic and non-hydrostatic component [4]. The former
is called Zenith Hydrostatic Delay (ZHD), which accounts for more than 90% of the total
delay, and the latter is the Zenith Wet Delay (ZWD), caused by water vapor in the lower
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atmosphere, generally only accounting for 10% or less of the total delay [5]. Chen and
Liu [6] counted and analyzed the modeling accuracy of 9 ZHD models and 18 ZWD models,
and the results showed that the modeling accuracy of the existing models for the ZHD
could reach the sub-centimeter level, while the modeling accuracy of the ZWD was poor,
up to 10 cm.

Due to the high variation in water vapor in the lower atmosphere in terms of time,
space, and altitude, it is difficult to accurately calculate ZWD in general [7,8], which makes
it more difficult to estimate ZWD in the process of GNSS positioning solution, thereby
prolonging the convergence time of Ambiguity Resolution (AR) [9]. Therefore, accurate
modeling of ZWD is a crucial issue that holds great significance for monitoring the at-
mospheric water vapor content [10]. Prior accurate ZWD can significantly improve the
performance of positioning and location-based service. Studies have shown that prior
accurate ZWD constraints could shorten the convergence time of Precise Point Positioning
(PPP), especially in the up direction [11–13]. Jiang et al. [14] confirmed that the residual
caused by large height differences can be weakened by attaching tropospheric constraints,
and the fixed rate of AR and coordinate accuracy can be improved. Generally, ZWD can be
obtained by the following: 1. Empirical models, such as the University of New Brunswick
(UNB) proposed models [15] (including UNB, UNB3, and UNB3m) and the Global Pressure
and Temperature (GPT) models [16] (including GPT, GPT2, GPT2w, and GPT3); 2. The
meteorological parameter model can achieve centimeter-level ZWD correction accuracy by
inputting the surface meteorological parameters. The common models include the Hop-
field [17], Saastamoinen [18], Black [19], and Askne and Nordius (AN) [20] models. Among
them, the AN model also needs to provide the weighted mean temperature (Tm) and the
parameter of the exponential decay vertical trend of the water vapor (λ) as input parameters
so it can describe the vertical water vapor variation over the site, and is considered the most
accurate formula for ZWD estimation [21]; 3. Measuring the atmospheric profiles by the
radiosonde over the site and calculating the ZWD by integrating non-hydrostatic refractive
index in each level; 4. ZWD is estimated as an unknown parameter [11]. However, empiri-
cal models are difficult to accurately predict short-term or non-trend fluctuations of ZWD
in some specific regions (generally between the latitudes of 30◦ N and 30◦ S) [22], and the
applicability of meteorological parameter models in specific regions is greatly reduced [21].
Although the direct estimation as a parameter is effective, it may decrease the efficiency of
an algorithm.

In recent years, machine learning (deep learning) algorithms have achieved promising
applications in atmospheric modeling thanks to their excellent abilities in information ex-
traction, nonlinear feature modeling, and large data processing [23,24]. Yang et al. [25] used
the Back Propagation (BP) neural network to model the residuals of the Hopfield model and
Saastamoinen model. They improved the ZWD modeling accuracy of the meteorological
parameter model. Li et al. [26] used three machine learning algorithms of the BP neural
network, the Radial Basis Function (RBF) neural network, and the Least Squares Support
Vector Machine (LSSVM), combined with the fifth generation of the European Centre for
Medium-Range Weather Forecasts Reanalysis (ERA5) and GNSS data, to construct the ZTD
model of 2020 in North America. The experiments showed that the accuracy and stability
of LSSVM and RBF were better than BP, but the LSSVM and RBF could not be applied to
large sample data. Based on 118 radiosonde sites in China and surrounding areas, Gao
et al. [27] established two Tm models using the Recurrent Neural Network (RNN) and
Long Short-Term Memory (LSTM) neural network, comparing to the BP neural network,
confirmed that LSTM had better generalization ability for long-term sequence processing
than RNN due to its special memory cell, and the nonlinear fitting ability of LSTM was
stronger than BP neural network. Lu et al. [28] established a Precipitable Water Vapor
(PWV) model on the West Coast of the United States by fusing Moderate-resolution Imag-
ing Spectroradiometer (MODIS) and ERA5 data using the Convolutional Neural Network
(CNN). Compared to the Multilayer Perceptron (MLP) algorithm, one verified that CNN
could extract more detailed spatial features in multivariate time series data. Osah et al. [29]
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constructed a regional ZTD model based on the location and surface meteorological param-
eters (pressure, temperature, and water vapor pressure) of four International GNSS Service
(IGS) stations in West Africa using the deep learning algorithm. Ding et al. [30] verified
the effectiveness of multi-parameters for constructing the ZWD model by the multilayer
feedforward neural network.

Tropospheric delay is greatly affected by location, season, and other factors. Current
research focuses on improving the performance of ZWD models in low-latitude tropical
regions [31]. However, the algorithm’s structural characteristics and the adaptability of the
atmospheric spatiotemporal characteristics are not considered in most studies. Therefore,
taking advantage of the deep learning algorithms, this paper combines the local spatial
feature extraction ability of CNN and the ability of LSTM to learn complex sequences with
long-term dependencies for ZWD modeling research. The hybrid algorithm is proposed
from encoder to decoder, while CNN is an encoder and LSTM is a decoder. The input
parameters of each epoch are encoded by the multilayer CNN, and the local spatial features
are identified and then compressed into a one-dimensional vector with spatiotemporal
information transmitted to the LSTM. The multilayer LSTM receives the spatiotemporal
features sequence, then extracts the long sequence of temporal dependencies and inter-site
spatial features and decodes the output. The ZWD modeling strategies are considered in
different scenarios and explore the influence of the surface meteorological parameters on
ZWD regression modeling. This paper evaluates the accuracy of models established by
the hybrid algorithm, using both modeling and non-modeled sites in the South American
region for the year 2022. The assessment utilizes Root Mean Square Error (RMSE) as a metric
and compares the proposed models with empirical and meteorological parameter models.
The results indicate that the hybrid algorithm exhibits good spatiotemporal modeling
ability in South America and shows a significant enhancement in ZWD modeling accuracy
compared to the empirical and meteorological parameter models. This study validates
the effectiveness of the hybrid approach in enhancing the modeling precision of ZWD in
South America.

The structure of this paper is as follows. Section 2 describes the principle and structure
of the proposed hybrid deep learning algorithm. Subsequently, Section 3 introduces the
dataset employed for ZWD modeling and the determination of hyperparameters for the
hybrid deep learning algorithm. Section 4 is the experimental analysis. By comparing
with the numerical integration of radiosonde data, the spatiotemporal modeling accuracy
and generalization ability of different models are discussed. The conclusion is given in
Section 5.

2. Methodology
2.1. Spatial Feature Extraction of ZWD

ZWD is affected by the location of the site, water vapor in the lower atmosphere,
temperature, and other factors varying with time, and the spatiotemporal characteristics
of ZWD should be fully considered in the modeling so as to fit the complex nonlinear
relationship and improve the ZWD modeling ability [32,33].

ZWD modeling is formulated as a spatiotemporal sequence regression and forecasting
problem. Spatiotemporal characteristics are usually affected by many factors: (1) complex
spatiotemporal feature changes due to the regional spatiotemporal correlations; (2) different
spatiotemporal variation characteristics of ZWD due to the changes in climatic conditions
at different sites; (3) local spatiotemporal correlations help capture the changes in ZWD in
neighboring regions, while global spatiotemporal correlations are beneficial for extracting
overall ZWD variations.

CNN was initially employed in the field of image recognition [34] and has later found
widespread application in natural language processing [35] and time series forecasting [36].
CNN exhibits enhanced capability in extracting latent information from multidimensional
data. In contrast to the intricate structures and hidden nodes of deep networks, CNN
significantly reduces computational costs through weight sharing [37]. A typical CNN
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includes convolutional layers, pooling layers, and fully connected layers. The convolutional
layer consists of a series of convolutional kernels whose parameters are adjusted through
the backpropagation algorithm. Convolution is considered a linear operation, sliding over
the input data, multiplying at each position, and summing the results, thus extracting
various features from the input data [38]. The pooling layer reduces the computational load
of the network by down-sampling the features from the convolutional layer output [39].
The fully connected layer combines all local features into global features [40]. Therefore, the
advantages of the convolutional layer and pooling layer are considered, employing them as
encoders in the hybrid algorithm to extract local spatial features from the input data. The
mathematical expressions of convolution and pooling layers are shown in Equations (1)
and (2), respectively, in which the pooling layer selects the max pooling mechanism.

Z(l)
m−n+1(u) =

m

∑
i=1

n

∑
j=1

x(l−1)
m (i) · k(l)n (j) + b(l) (1)

A(i) = maxi+q−1
p=1 Z(p) (2)

where x(l−1)
m and Z(l)

m−n+1 represent the input and output of the current convolutional layer;

k(l)n and b(l) are the convolution kernel and bias in the current layer, respectively. n, m, and
m − n + 1 denote the sizes of the convolution kernel, input, and output in the current layer,
respectively. A is the pooling layer output. q is the pooling window size.

Figure 1 illustrates the process of local spatial feature extraction by the convolutional
and pooling layers for input data. Here, b and m represent the time and feature dimen-
sions of the input data, respectively, while the rest corresponds to Equations (1) and (2).
Utilizing the one-dimensional CNN for fixed-time step input data convolution in the time
series [36,41], in the feature dimension, as indicated by Equation (1), the feature dimension
is reduced to m − n + 1 after a single convolution, and it decreases with the stacking of
convolution layers. Along the time axis, the convolution kernel performs convolution
calculations with a stride of 1 from top to bottom. The pooling layer further compresses
the spatial features extracted by the convolutional layer. Due to the fixed-time step in
the operations of the convolutional and pooling layers, their outputs do not alter the size
of the time dimension. The flattening layer unfolds the output of the pooling layer into
a one-dimensional sequence inputted into the LSTM. Based on the above analysis, it is
evident that the sequence unfolded by the flattening layer contains both temporal and local
spatial information extracted by CNN.
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2.2. Feature Training for Long Spatiotemporal Sequences

Although CNN can extract data spatial correlation characteristics, its applicability
will decrease in a long-term complex sequence [42]. RNN is frequently employed in
time series modeling owing to its recurrent structure. However, for long time series, the
backpropagation of errors in RNN, computed through the chain rule, can result in the
vanishing or exploding gradient problem [43]. Consequently, RNN can effectively learn
only short-term dependencies in the data. LSTM is a variation of RNN that addresses
this issue by introducing a memory unit structure. The memory unit consists of three
components: the input gate; the forget gate; and the output gate [44]. The input gate
controls the inputting of external data to the memory cell, while the forget gate and output
gate determine whether information is retained or released at each time step, thereby
accommodating both long-term and short-term dependencies in the input data. Therefore,
this paper introduces LSTM to receive the output sequence from the flattening layer and
learns long- and short-term dependency information through the interaction between the
gating mechanism and the unit state update module. The mathematical expressions are
shown in Equations (3)–(8).

ft = σ(W f · [ht−1, A(t)] + b f ) (3)

it = σ(Wi · [ht−1, A(t)] + bi) (4)
∼
Ct = tanh(WC · [ht−1, A(t)] + bC) (5)

Ct = ft ∗ Ct−1 + it ∗
∼
Ct (6)

ot = σ(Wo · [ht−1, A(t)] + bo) (7)

ht = ot ∗ tanh(Ct) (8)

Equation (3) indicates that the forget gate receives the input A(t) of the current epoch
and the hidden state ht−1 of the previous epoch, calculating weights for each input section
to update Ct. Equation (4) indicates an update to the information entered in the current

cell. Equation (5) creates a candidate memory cell
∼
Ct using the tanh function. Equation (6)

represents the preservation weight for the previous cell state Ct−1 and the current candidate

memory cell
∼
Ct in the update of the current cell’s state. Equations (7) and (8) indicate the

weight of output in the cell and the influence of current information on the hidden state ht,
respectively. W∗ and b∗ represent the weight and bias matrix of the corresponding module.
Among them, σ(·) is the sigmoid function, which can be represented using Equation (9),
tanh(·) is the tanh function, which can be represented with Equation (10).

σ(x) =
1

1 + e−x (9)

tanh(x) =
ex − e−x

ex + e−x (10)

As illustrated in Figure 1, after the convolutional and pooling layers, the input data is
flattened into a one-dimensional sequence. This sequence contains both the temporal and
spatial feature information of the input data. Subsequently, the LSTM layer receives the
sequence, through its special memory cell, identifies long and short-term dependencies,
modeling the output as illustrated in Figure 2. Cell represents the cell structure of the
LSTM, and the pooling layer transmits the spatiotemporal sequence to the LSTM layer.
Each cell’s input includes the local spatial feature of each site, and the cell state C and
hidden state h are calculated by the previous site via the cell. It means that LSTM can
identify the short-term characteristics, as shown by the inter-site spatial characteristic in
Figure 2. According to Equations (6) and (8), LSTM can selectively retain key information
and update C and h between the historical epoch and the current epoch by the gating
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mechanism so that C and h can better capture the long-term dependency, which is the
temporal characteristic for one site in Figure 2.
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2.3. Combination of CNN and LSTM

Based on the above analysis, the hybrid algorithm of CNN-LSTM (CL) is proposed,
and the hybrid architecture is shown in Figure 3, where DOY represents the day of the year;
Lat is latitude; Lon is longitude; H is orthometric height; Ts denotes surface temperature,
and es indicates surface water vapor pressure. XA, XB, and Xc correspond to different
training samples. The input layer receives the information of various parameter features;
then, the convolutional layer and the pooling layer are used to extract local spatial features.
The convolutional layer plays a similar filtering role through convolution operation to
recognize the important features of the input parameters [45]. The pooling layer compresses
the features extracted by convolution, which are then transformed into a one-dimensional
sequence containing both temporal information and spatial features through a flattening
layer. They act as the data encoder in the entire network. The max pooling mechanism of
the pooling layer retains the essence of data [39]. The LSTM layer trains the spatiotemporal
correlation between spatiotemporal sequences through its special memory cell and fits the
nonlinear relationship between the input parameters and the ZWD outputs.

The proposed algorithm leverages a serial coupling of CNN and LSTM, allowing
for the integration of spatial features extracted by CNN with the temporal modeling
capabilities of LSTM [46]. The encoder uses the stacking of two sets of convolutional layers
to extract multiple sets of convolution results. The first convolutional layer extracts the
basic features of the input data, while the second layer further captures composite features
of these basic features [47]. Considering the feature dimensions of the input data, the
convolutional kernel size is fixed at 3 with a stride of 1, without zero padding, adding a
batch normalization layer before the activation layer to mitigate the vanishing gradient
problem. The pooling layer receives the extracted features by convolutional layer and
compresses them into spatiotemporal feature vectors through a pooling window of size
2 with a stride of 1. The decoder is designed as a two-layer sequence structure, which
produces an output for each epoch. The information of C and h transfer between adjacent
cells capture and process the long-term and spatial correlations in the spatiotemporal
sequence. Finally, observing the output of a single epoch, the overfitting phenomenon is
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restrained by adding a dropout layer to abandon part of neuronal activation. This achieves
a hybrid CL algorithm that combines the advantages of CNN for spatial feature extraction
and LSTM for long sequence learning.
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In addition, Mean Square Error (MSE) is employed as the loss function, and the
backpropagation algorithm is utilized to update network parameters, minimizing the MSE
between the predicted value y and reference value y. The mathematical expression of the
loss function is as follows. N is the total number of samples.

Loss(y, y) =
1
N

N

∑
i=1

(y − y)2 (11)

3. Case Study: South American ZWD Modeling
3.1. Data Sources and ZWD Extraction

Radiosonde is one of the most accurate means of measuring the ZWD [48], and
the radiosonde data in this research is collected from the Integrated Global Radiosonde
Archive (IGRA, https://www.ncei.noaa.gov/pub/data/igra/, (accessed on 15 October
2023)). IGRA covers high-quality meteorological observations from more than 1500 sites
since 1960. These observations provide vertical profiles of tropospheric meteorology,
including air temperature, total pressure, relative humidity, altitude, and more. The data
are recorded twice a day at 00:00 and 12:00 (UTC) [49]. This study focuses on South
America, a region that spans both sides of the equator and exhibits complex climatic and
topographical conditions. The presence of the Amazon Rain Forest in Northern South
America contributes significantly to the water vapor, potentially causing notable deviations
in the ZWD modeling of the surrounding area [50]. In order to establish the ZWD model
in South America, 46 radiosonde sites were selected for modeling from 13◦ N to 54◦ S in
latitude and 31◦ W to 82◦ W in longitude in 2015–2021. Six radiosonde sites in 2022 were
used to verify the generalization ability of the modeling. Figure 4 shows the distribution
of selected radiosonde sites, with red dots for sites participating in training for modeling

https://www.ncei.noaa.gov/pub/data/igra/
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and performance evaluation, and blue dots for non-modeled sites that are not involved
in training but only used to evaluate the generalization ability of the model. In addition,
the radiosonde data were preprocessed with quality control before extracting ZWD. The
data were removed when two adjacent isobaric layers exceeded 200 hPa or the top pressure
layer was greater than 300 hPa [21].
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ZWD is considered to be the integral of the non-hydrostatic refractive index [4].
According to the atmospheric vertical profiles obtained from the radiosonde data, the
refractive index of the zenith direction of the radiosonde site can be estimated, and then the
ZWD can be obtained after numerical integration. The ZWD obtained from the radiosonde
is used as a reference value. The equation is expressed as follows [51]:

ZWD = 10−6
∫ Top

Hs
Nw(h)dh = 10−6

∫ Top

Hs
[k′2 ·

e
T
+ k3 ·

e
T2 ] · Z−1

w dh (12)

where k′2 and k3 are atmospheric refractivity coefficients [52]. e and T indicate the water
vapor pressure [hPa] and temperature [K] of each isobaric layer above the site, respectively.
Zw is the compressibility factor for atmospheric water vapor. Hs and Top represent the
site altitude and the top of the lower atmosphere, respectively. They can be obtained
by converting the geopotential height of the IGRA data. The conversion formulas are as
follows [53]:

H(h, φ) =
γ45 · R(φ) · h

γ(φ) · R(φ)− γ45 · h
(13)

γ(φ) = 9.780325 ·
[

1 + 000193185 · sin (φ)2

1 − 0.00669435 · sin (φ)2

]1/2

(14)

R(φ) =
6378.137

1.006803 − 0.006706 · sin (φ)2 (15)

where H and h represent orthometric height [m] and geopotential height [m], respectively.
γ(φ) and R(φ) are the gravitational acceleration and radius of curvature of the earth at
latitude φ. γ45 is the normal gravity at latitude 45◦ with a value of 9.80665 m/s2. Finally, the
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conversion between the orthometric height and the geodetic height is completed through
the Earth Gravitational Model 2008 (EGM2008) [54].

ZWD is integrated by 46 radiosonde data in 2019, and the spatiotemporal changes
with the seasons are plotted, as shown in Figure 5. Seasons and corresponding months
are shown in Table 1. As shown in Figure 5, ZWD varies with spatial location and has an
obvious negative correlation with latitude. ZWD generally shows a trend of being bigger
in the east and north and smaller in the west and south of South America. The reason
for this phenomenon is that the western terrain distribution is higher, and the lower the
temperature and water vapor pressure, the smaller the ZWD. The northern part is mainly
affected by the tropical rainforest climate, with high temperatures and rainfall throughout
the year, and the ZWD is bigger in summer and autumn. ZWD is significantly affected by
the subtropical monsoon climate and the temperate continental climate seasonal changes
in the southeastern region and southern region, respectively. It presents the characteristics
of larger ZWD in summer and smaller ZWD in winter. Therefore, ZWD is affected by
the climate and geographic regions in South America, displaying distinct spatiotemporal
characteristics throughout the year.
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Table 1. Seasonal Correspondence in Hemispheres.

Season Corresponding Months in
Northern Hemisphere

Corresponding Months in
Southern Hemisphere

Spring March, April, May September, October, November
Summer June, July, August December, January, February
Autumn September, October, November March, April, May
Winter December, January, February June, July, August

3.2. ZWD Modeling and Impact Factors

The proposed ZWD modeling approach takes the spatiotemporal distribution of
ZWD and its factors into account, as shown in Figure 6, mainly including three parts.
The first part is data quality control, extracting ZWD from the numerical integration of
atmospheric profiles and correlation analysis to determine the relevant impact factors of
ZWD modeling. Normalization is conducted to eliminate dimensional discrepancies among
various features. Secondly, three strategies are determined according to different scenarios,
and the combined ZWD models based on CL are established. The 7-year modeling impact
factors are used as an input, and the ZWD obtained from the radiosonde is an output. Cross-
validation is conducted to determine the hyperparameters of the combined ZWD models.
Simultaneously, the ZWD models are established by the same operation using the CNN
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algorithm and LSTM algorithm to verify the effectiveness of the hybrid algorithm. Finally,
the combined ZWD models are applied to calculate the ZWD of 2022 and evaluate the
performance by comparing them to the traditional models (empirical and meteorological
parameter models).
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Previous studies on ZWD modeling show that the location, surface temperature, and
surface water vapor pressure of the site are factors affecting ZWD [21,29,55]. Correlation
analysis is used to calculate the correlation coefficient between different parameters, serving
as the basis for selecting the modeling impact factor, as shown in Figure 7.
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Figure 7. Pearson correlation coefficient of modeling parameters.

As seen in Figure 7, ZWD exhibits a clear positive correlation with surface meteo-
rological parameters (Ts and es), while it shows a negative correlation with latitude and
altitude. The correlation with longitude is relatively low. Among these factors, es has the
highest correlation coefficient of 0.87. Similarly, Ts and es exhibit a significant correlation
with latitude and a relatively weak correlation with longitude while showing a negative
correlation with altitude.
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Three modeling strategies are designed to explore the influence of surface meteorologi-
cal parameters on ZWD regression modeling according to the difficulty of obtaining surface
meteorological parameters and the correlation coefficient. These strategies include (A)
strategies without surface meteorological parameters, (B) strategies using surface tempera-
ture, and (C) strategies using surface temperature and water vapor pressure. The output
of the model is the high-precision ZWD value calculated by integrating from radiosonde
data. Three spatiotemporal distribution models of regional ZWD are established by the
proposed hybrid algorithm, using radiosonde data from 2015 to 2021. Table 2 presents
the different modeling strategies used in this paper, along with the required parameters
and their respective function expressions. The GPT3 model is calculated by the AN model
using the meteorological parameters from the Numerical Weather Model (NWM) through
a spherical harmonic function inputting the location of the site and DOY.

Table 2. Parameters and formulations for different modeling methods.

Name Input Parameters Formulation

CL-A
DOY, Lat, Lon, Hs

FA(DOY, Lat, Lon, Hs)

GPT3 /

CL-B DOY, Lat, Lon, Hs, Ts FB(DOY, Lat, Lon, Hs, Ts)

Saastamoinen Lat, Hs, Ts, es
0.002277·( 1255

Ts
+0.05)·es

1−0.00266·cos(2·Lat)−0.00028·Hs

CL-C DOY, Lat, Lon, Hs, Ts, es FC(DOY, Lat, Lon, Hs, Ts, es)

Askne and Nordius es, Tm, λ 10−6 · (k′2 +
k3
Tm

) · Rd
(λ+1)·gm

· es

Due to the different magnitude order between the above parameters, direct mod-
eling using the original data may ignore the impact of smaller orders of magnitude of
data. Original data will be standardized in advance, using the maximum and minimum
standardization method:

X′ =
2(X − Xmin)

Xmax − Xmin
− 1 (16)

where X′ is the normalized value; X is the original value, and Xmax and Xmin represent the
maximum and minimum values, respectively, X′ ∈ [−1, 1].

3.3. Determination of Hyperparameters

Deep learning primarily focuses on uncovering the connections between inputs and
outputs through hidden layers. In the case of the CL hybrid algorithm, crucial hyperpa-
rameters impacting the algorithm’s learning and generalization include the number of
convolution kernels in the CNN layer and the number of hidden neurons in the LSTM
layer [27,56]. To attain optimal modeling and generalization ability, 10 structures are de-
signed in the CNN layer with the number of convolution kernels ranging from 4 to 40 and
a step size of 4. Simultaneously, in the LSTM layer, 10 structures are designed with the
number of hidden neurons ranging from 5 to 50 and a step size of 5 to identify the optimal
hyperparameters in ZWD modeling. Meanwhile, the performance of CNN and LSTM
are compared in the same conditions. The max epoch is set to 100, and the mini-batch
is set to 128. Figure 8 shows the effect of the number of hyperparameters on the model
RMSE. The global performance of the model under different hyperparameters is analyzed
by grid-search and 10-fold cross-validation. The 10-fold cross-validation uses 90% of the
input data as training samples and 10% as validation samples, iterating this process ten
times to ensure that the entire input dataset is utilized for training. Model optimization is
achieved by minimizing the loss function through the backpropagation algorithm. There-
fore, in the early stages of model optimization, the RMSE of both training and validation
samples decreases with an increase in hyperparameters. When the RMSE curve of the
validation samples converges or shows an inflection point, it can be considered that the
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model parameters are appropriately optimized. Otherwise, overfitting or underfitting
may occur.
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As shown in Figure 8, the RMSE of the model is affected by the number of hyperpa-
rameters, and the RMSE of different algorithms shows a downward trend with the increase
in their respective hyperparameters. Furthermore, with the hyperparameters number
increasing, the hybrid algorithm exhibits better accuracy compared to CNN and LSTM
algorithms. The number selection of the convolution kernel depends on the inflection
point appearing or flattening in the RMSE curve, so the convolution kernel numbers of
CNN-A, CNN-B, and CNN-C are set to 32, 36, and 36, respectively. Similarly, for LSTM,
the number of hidden neurons of A/B/C are set to 35/45/40, respectively. In the hybrid
algorithm, considering the influence of the two hyperparameters, the accuracy change in
the diagonal direction is used as the basis for the optimal hyperparameters. The RMSE de-
creases with the increase in the number of hyperparameters in the diagonal direction, so the
hyperparameters of A/B/C are set to (28,35), (24,30), and (32,40), respectively. In addition,
the optimizer algorithm is used, and the overfitting phenomenon is further suppressed
by adding a dropout layer to improve the generalization ability of the model, with the
dropout value set to 0.1. The proposed hybrid deep learning algorithm, as well as the CNN
and LSTM algorithms depicted in Figure 8, are all implemented using the Matlab Neural
Network Toolbox. Table 3 provides the additional parameter settings for the proposed
algorithm. Table 4 summarizes the average pre-training time, prediction time, and changes
in learnable parameters for each algorithm under three different strategies.
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Table 3. Parameter setting of the proposed algorithm.

Parameter Type Initial Value Search Range

Input Size Dependent on feature
dimensions /

MaxEpochs = 100;
Minibatchsize = 128;
Optimizer = ‘Adam’

Kernel Size 3 /

Pooling Size 2 /

Stride 1 /

Padding no /

Learning Rate 0.01 0.001–0.01

Learning Rate Drop
Period 10 0.1–0.5 × MaxEpochs

Learning Rate Drop
Factor 0.1 0.1–0.9

Dropout 0.1 0.1–0.5

Output Size 1 /

Table 4. Average pre-training time, prediction time, and parameter changes for different algorithms
under three strategies.

Algorithm Training Time Parameter Numbers
Change Prediction Time

CNN About 8 min 289–361 About 3 s
LSTM About 11 min 5700–9400 About 4 s

CNN-LSTM About 45 min 33,600–69,700 About 5 s

Table 4 illustrates that the hybrid deep learning algorithm demonstrates a more
intricate network structure and a notable increase in learnable parameters compared to
the individual CNN and LSTM algorithms. Consequently, additional time is needed to
update the network parameters during the pre-training phase. However, after completing
pre-training and establishing the optimal model coefficients between input and output, the
proposed hybrid algorithm does not encounter prolonged prediction times on the test set
despite its complex network structure.

Taking CL-C corresponding training samples from Table 2 as an example, we extracted
the intermediate layer output of the CNN in the proposed hybrid algorithm to validate
its feature extraction capabilities. Figure 9 illustrates the Pearson correlation coefficients
calculated between the output of the two CNN intermediate layers (referred to as CONV1
and CONV2, respectively) and the training samples. From Figure 9, it can be observed that
the feature dimension of the training samples is 6. After the first convolutional layer, the
dimension is reduced to 4, demonstrating that the convolutional layer can decrease the input
dimension through convolutional operations. One-dimensional convolution is commonly
regarded as a linear transformation. Therefore, using a convolutional kernel of size 3 in the
first convolutional layer, each output extracts different feature information. For example,
Output 1 extracts DOY and Lat; Outputs 2 and 3 extract spatial position information of
the input data, and Output 4 extracts Ts and es while considering their variations with
Hs. In the second convolutional layer, the feature dimension of the output was further
compressed and reduced to 2, concurrently extracting important features from the input
data. As depicted in Figure 9b, it is evident that the inputs of the second convolutional layer
are most correlated with DOY, Lat, Ts, and es, consistent with the findings in Figure 7. This
substantiates that the convolutional layer in the proposed algorithm effectively reduces the
input data dimensionality and extracts spatial features through convolutional operations.
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4. Accuracy Analysis and Evaluation
4.1. Performance Analysis

Based on the above modeling strategies, three ZWD models are constructed by the
hybrid algorithm, and the 46-radiosonde data from 2015–2021 are used to train the models
and optimize the hyperparameters. The performance of the above models and other models
is verified using the data from 2022. The joint probability density and evaluation indexes
are shown in Figure 10.
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Figure 10 shows that the bias of the models established by the deep learning algorithms
under different strategies are millimeter level, and the model values are evenly distributed,
significantly weakening the systematic bias compared to the traditional models. Figure 10
reveals that in South America, the CL-C model established with surface temperature and
surface water vapor pressure performs better than other models, with an RMSE of 3.60 cm
and a Bias of 0.12 mm. In comparison to the Saastamoinen model and the AN model,
the CL-C model demonstrates an accuracy improvement of 30% and 12%, respectively.
The statistical results show that the ZWD modeling performance of the hybrid algorithm
exhibits a certain degree of improvement under three different strategies when compared to
the CNN algorithm and LSTM algorithm, as well as the traditional models. RMSE exhibits
varying degrees of improvement with different surface parameters can be accessed, as
shown in Table 5.

Table 5. Statistical results of three combined models and the other model at 46 radiosonde sites
in 2022.

Model RMSE/cm Improvement in
GPT3

Improvement in
Saastamoinen

Improvement in
AN

GPT3 5.11 / / /
CNN-A 5.20 −2% / /
LSTM-A 4.94 3% / /

CL-A 4.91 4% / /

Saastamoinen 5.14 / / /
CNN-B 4.92 4% 4% /
LSTM-B 4.73 7% 8% /

CL-B 4.40 14% 14% /

Askne and
Nordius 4.09 / / /

CNN-C 3.96 23% 23% 3%
LSTM-C 3.87 24% 25% 5%

CL-C 3.60 30% 30% 12%

To explore the spatial distribution of the modeling accuracy, the calculated results of
the accuracy of each model are shown in Figure 11, with the ZWD by integrating radiosonde
as a reference.

Figure 11 illustrates that the CL-A model optimizes the ZWD estimation accuracy of
individual offshore sites in northern South America and is slightly better than the CNN-A,
LSTM-A, and GPT3 models. The empirical models mentioned earlier exhibit accuracy
better than 5 cm in the northern and western regions of South America. However, their
performance diminishes in the eastern region (20◦ S–30◦ S) with an RMSE of about 7 cm,
likely influenced by the subtropical monsoon climate and sea winds in this area. The
empirical models make it difficult to capture the complex changes in short-term non-trend
of water vapor in monsoon climate regions, resulting in the accuracy of these models
decreasing in specific regions.

After introducing the temperature parameter, the CL-B model shows a slight improve-
ment in accuracy, reducing the RMSE in the eastern monsoon area to less than 6 cm. After
reintroducing the water vapor pressure parameter, the CL-C model significantly reduces
the RMSE to 3.5 cm in the subtropical monsoon climate area, where the RMSE of the
empirical model and the AN model are 7 cm and 5 cm, respectively. It shows that the
surface water vapor pressure has a significant effect on ZWD modeling. Additionally,
even though the Saastamoinen model considers the water vapor pressure, it still exhibits
a large error in the ZWD results for northern South America, with RMSE ranging from
5.5 cm to 7.5 cm. This discrepancy may be attributed to the presence of the Amazon Rain
Forest in the northern region, where temperature and humidity remain high throughout
the year and seasonal variations are less pronounced. These conditions challenge the
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Saastamoinen model in accurately reflecting the spatial distribution of ZWD in this area,
resulting in limited modeling capability for regions in the low latitudes, high temperatures,
and frequent rainfalls [21,57].
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Considering the distribution of sites and regional climate differences in South America,
the modeling effects of different models in different latitude ranges are evaluated. The
RMSE is used as the evaluation index, as shown in Table 6.

Table 6 illustrates that the combined ZWD models established based on the hybrid
algorithm have different accuracy improvements compared to the models established
based on CNN and LSTM and the traditional models at various latitudes. Notably, in the
15◦ N–15◦ S region, the accuracy of the CL-A model is improved by 12% compared to the
GPT3 model, and the accuracy of the CL-B model is improved by 38% compared to the
Saastamoinen model, and the CL-C model demonstrates remarkable accuracy improve-
ments of 44% and 19% compared to the Saastamoinen model and AN model, respectively.
In the region of 30◦ S–60◦ S, the water vapor changes are more stable, and the meteorolog-
ical parameter models can express the nonlinear change in ZWD to a certain extent; the
accuracy improvements of the combined models under the three strategies are lower than
that in the low latitude area. However, the RMSE is still increased by 4–22%. In the region
of 15◦ S–30◦ S, it is difficult to express the change in ZWD accurately by the CL-B model
due to the influence of the subtropical monsoon climate in southeastern South America.
In this region, the accuracy of CL-B is lower than that of Saastamoinen, and the accuracy
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of CL-A is comparable to GPT3. When the surface water vapor pressure is introduced
in the CL-C model, it achieves 14% and 7% better than the Saastamoinen model and AN
model, respectively.

Table 6. RMSE [cm] of different models in different latitude ranges.

Model
RMSE

15◦ N–15◦ S 15◦ S–30◦ S 30◦ S–60◦ S

GPT3 4.36 6.02 3.54
CNN-A 4.23 6.25 3.86
LSTM-A 3.94 6.02 3.43

CL-A 3.84 6.04 3.34

Saastamoinen 5.82 4.75 3.13
CNN-B 4.22 5.84 3.51
LSTM-B 3.96 5.67 3.21

CL-B 3.62 5.33 2.94

Askne and Nordius 4.03 4.38 2.56
CNN-C 3.72 4.35 2.79
LSTM-C 3.61 4.30 2.71

CL-C 3.26 4.09 2.45

In order to further explore the accuracy variations in the ZWD models based on the
hybrid algorithm in the time domain, the seasonal influence is analyzed for the modeling
performance. The monthly average RMSE is calculated for different models in 2022, and
the results are shown in Figure 12.
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Figure 12 shows the monthly average RMSE distribution of each ZWD model in 2022.
The accuracy of the CL-A model is slightly better than that of the GPT3 model, and the
accuracy in the time domain is more stable than that of the CNN-A model. When the
meteorological parameters are introduced, the Saastamoinen model has a large error in
the first half of the year compared to the GPT3 model and AN model, and the RMSE is
greater than 5 cm. It shows obvious seasonal terms throughout the year, which may be
caused by the inaccuracies in modeling ZWD in northern South America. The AN model
uses the parameter of the exponential decay vertical trend of the water vapor over the
site, and the RMSE is improved to 4 cm compared to the Saastamoinen model for the
whole year. Compared to the above models, the CL-B and CL-C models can fully take
into account the spatiotemporal characteristics and the annual RMSE of 3.6–5.2 cm and
3.3–4 cm, respectively. The CL-C model primarily enhances ZWD accuracy from January
to May and from August to December, mitigating the impact of the rainy season changes in
South America [58]. It can effectively identify the spatiotemporal characteristics of ZWD
and strengthen the modeling ability of ZWD non-trend terms using the surface water vapor
pressure. Compared to the ZWD models established by CNN and LSTM, the accuracy of
CL-B and CL-C has improved by 5–23% and 5–20% within several months, respectively,
which proves that the CL hybrid algorithm can effectively alleviate the influence of seasonal
changes and enhance ZWD modeling abilities.

4.2. Generalization Assessment

The performance of the established models at modeling sites was validated using
data from 46 sites in 2022, as detailed in Section 4.1. However, beyond these sites, it is
essential to consider the generalization capability of the models to other locations in the
South American region. Therefore, six non-modeled sites in South America, as illustrated in
Figure 4, were selected, and the models were applied to predict their ZWD values using the
data from the year 2022. Table 7 shows statistics of accuracy for these models in comparison
with reference value over the year 2022.

Table 7. Statistical results of three combined models and the other models at 6 radiosonde sites
in 2022.

Model RMSE/cm Improvement in
GPT3

Improvement in
Saastamoinen

Improvement in
AN

GPT3 5.32 / / /
CNN-A 5.51 −4% / /
LSTM-A 5.26 1% / /

CL-A 5.24 2% / /

Saastamoinen 6.13 / / /
CNN-B 5.19 2% 15% /
LSTM-B 5.09 4% 17% /

CL-B 4.84 9% 19% /

Askne and
Nordius 4.59 / / /

CNN-C 4.30 19% 30% 6%
LSTM-C 4.33 19% 29% 6%

CL-C 4.13 22% 33% 10%

Table 7 shows that the ZWD models based on the hybrid algorithm have better
generalization ability compared to the ZWD models based on CNN and LSTM under
the three strategies and traditional models. The accuracy of the CL-A model is slightly
better than that of the LSTM-A and GPT3 models, while the accuracy of the CNN-A model
is lower than that of the above models. When the surface meteorological parameters
can be obtained, the generalization ability of the CL-B model is stronger than that of the
Saastamoinen model, and the accuracy is improved by 19%. The CL-C model achieves 33%
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and 10% better accuracy than the Saastamoinen model and AN model, respectively. This
demonstrates that the proposed hybrid algorithm is more effective for ZWD modeling than
the CNN algorithm, the LSTM algorithm, and traditional models. Table 8 and Figure 13
show the locations of six non-modeled sites and the RMSE of different models, respectively.

Table 8. Location of six non-modeled sites.

Station Lat (◦) Lon (◦) H (m)

82022 2.83 −60.70 124.51
82705 −7.58 −72.77 193.09
83554 −19.00 −57.67 156.36
83899 −27.67 −48.55 5.73
87576 −34.82 −58.53 36.27
87715 −38.95 −68.13 288.64
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Figure 13 shows that the accuracy of the CL-A model is comparable to the GPT3 model
in most of the six sites, with a slight improvement for the low-latitude site (82022) and the
monsoon climate region site (87576). The Saastamoinen model still exhibits RMSE of more
than 7 cm in the northern sites (82022, 82705). The CL-C model generally shows higher
generalization ability than the Saastamoinen model and AN model in the six sites, especially
in the monsoon climate area. The proposed algorithm enhances the generalization ability
better than the traditional models of the ZWD modeling in areas with low latitudes, specific
climates, and complex terrains.

5. Conclusions

This paper introduces a novel spatiotemporal modeling algorithm, denoted as CNN-
LSTM (CL), which integrates both CNN and LSTM algorithms. This algorithm is designed
to capture the spatiotemporal characteristics of tropospheric Zenith Wet Delay (ZWD)
sequences. The proposed algorithm utilizes an encoding–decoding framework, where
CNN is responsible for encoding input parameters and extracting local spatial features,
thereby constructing spatiotemporal features sequence. LSTM is employed to capture
long-term spatiotemporal features and decode the output to estimate ZWD. This algorithm
facilitates the recognition and modeling of both spatial and temporal characteristics of
ZWD, which are crucial for accurate modeling. The research explores three strategies
and investigates the influence of surface meteorological parameters on ZWD modeling,
considering correlation analysis and diverse scenario requirements. This paper is conducted
using a 7-year dataset from radiosonde in South America, covering the years from 2015
to 2021, with data from 2022 serving as a validation set. The accuracy of the proposed
ZWD models established under the same modeling strategy is assessed in comparison



Atmosphere 2024, 15, 121 20 of 23

to the CNN algorithm and LSTM algorithm, as well as traditional models like the GPT3,
Saastamoinen, and AN models. This aims to evaluate the accuracy and effectiveness of the
proposed hybrid ZWD modeling algorithm.

The validation results of the 46 sites in South America for the year 2022 indicate that the
overall accuracy of the CL-A model established based on the CL hybrid algorithm without
surface meteorological parameters is slightly better than the GPT3 model, but the accuracy
improvement in the 15◦ N–15◦ S region is 12%. The CL-B model, with the introduction of
surface temperature, solves the problem of poor applicability of the Saastamoinen model
in the Amazon Rain Forest area in northern South America, and the accuracy is improved
by 38% in the area of 15◦ N–15◦ S. Reintroducing the surface water vapor pressure, the
overall RMSE of ZWD estimated by the CL-C model is 3.60 cm, improved by 30% and 12%,
respectively, compared to the Saastamoinen model and AN model. The CL-C model can
significantly improve the performance by introducing the surface water vapor pressure,
achieving approximately 44% and 19% improvements compared to the Saastamoinen and
AN model in the 15◦ N–15◦ S region and 17% and 7% improvements in the 15◦ S–30◦ S
region, respectively. The CL-C model effectively weakens the adverse effects of monsoon
climate regions. Compared to the ZWD models established using the CNN algorithm and
LSTM algorithm, the proposed hybrid algorithm performs better than the others.

To validate the performance of the proposed models at non-modeled sites in South
America, data from an additional six sites for the year 2022 were selected for assessment.
Results show that the ZWD models established using the CL hybrid algorithm exhibit
strong generalization ability under the three strategies and reliability at different latitudes
and climatic regions. They can effectively improve the overall accuracy of existing empirical
models and meteorological parameter models in low latitudes and specific climate regions.
Under the three strategies, the established models based on the proposed hybrid algorithm
can improve the accuracy of the corresponding empirical and meteorological parameter
models and describe the spatiotemporal variation in ZWD properly.

The hybrid deep learning algorithm, utilizing long-term historical data with multiple
parameters as input, effectively captures the complex nonlinear relationships between input
and output to establish ZWD models. This algorithm demonstrates reliable applicability
and accuracy in South America, showcasing excellent performance at both modeling and
non-modeling sites within the region. In this paper, South America is considered the
research area, and the modeling and generalization capabilities of the proposed models are
validated within this region. Expanding the modeling region by incorporating data from
stations worldwide could be considered as the next research work.
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