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Abstract: There is a pressing need for tools that can rapidly predict PM2.5 concentrations and assess
health impacts under various emission scenarios, aiding in the selection of optimal mitigation strate-
gies. Traditional chemical transport models (CTMs) like CMAQ are accurate but computationally
intensive, limiting practical scenario analysis. To address this, we propose a novel method integrating
a conditional U-Net surrogate model with health impact assessments, enabling swift estimation
of PM2.5 concentrations and related health effects. The U-Net model was trained with 2019 South
Korean PM2.5 data, including precursor emissions and boundary conditions. Our model showed
high accuracy and significant efficiency, reducing processing times while maintaining reliability. By
combining this surrogate model with the EPA’s BenMAP-CE tool, we estimated potential premature
deaths under various emission reduction scenarios in South Korea, extending projections to 2050 to
account for demographic changes. Additionally, we assessed the required PM2.5 emission reductions
needed to counteract the increase in premature deaths due to an aging population. This integrated
framework offers an efficient, user-friendly tool that bridges complex air quality modeling with
practical policy evaluation, supporting the development of effective strategies to reduce PM2.5-related
health risks and estimate economic benefits.

Keywords: air pollutant prediction; CMAQ surrogate model; health impact assessment

1. Introduction

Although air pollution levels, including those of particulate matter (PM2.5), have
shown some improvement over time, the aging population poses a significant challenge.
If current emission levels are maintained, the number of premature deaths attributed to
PM2.5 is expected to continue rising due to the increasing vulnerability of older adults [1–3].
Therefore, additional efforts to reduce emissions are necessary to counteract the rise in
premature deaths associated with population aging. This study aims to address this issue
by establishing a method for predicting PM2.5 concentrations in response to emission reduc-
tions and estimating premature deaths based on these predicted concentrations. Specifically,
we develop a model that incorporates the aging population’s impact on premature death
rates and determines the additional emission reductions required to offset the increase in
premature deaths.

The complex nature of PM2.5 pollution in South Korea presents a significant chal-
lenge for air quality management [4,5]. PM2.5 levels in South Korea are influenced by a
combination of domestic emissions and transboundary pollution, primarily from China.
While domestic emissions are a crucial target for mitigation efforts, the impact of foreign
sources, which is beyond the country’s direct control, must also be considered [4,6–9].
To address this, the South Korean government is implementing a comprehensive strategy
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that includes regional assessments, advanced PM2.5 concentration modeling, and dynamic
emission reduction policies [10]. Emergency measures are also in place for severe pollution
events [11]. Effective management requires the ability to rapidly simulate and evaluate
multiple emission scenarios under varying conditions, including the impact of transbound-
ary pollution. Therefore, there is a need for a PM2.5 concentration prediction model that
can account for the influence of boundary conditions from neighboring countries, such as
China. Developing such models is essential for establishing rational, responsive, and ef-
fective policies for managing fine particulate matter and safeguarding public health in
South Korea.

One of the most well-known air pollutant concentration simulation tools is the Com-
munity Multiscale Air Quality Modeling System (CMAQ), developed by the U.S. Environ-
mental Protection Agency (EPA) [12]. CMAQ accurately simulates pollutant dispersion
based on physical and chemical processes and is widely used by governments and organi-
zations, including those in South Korea, for air quality management. While CMAQ offers
the advantage of incorporating complex chemical reactions and providing sophisticated
simulations, its high data management complexity, substantial computational demands,
and lengthy processing times for each emission scenario pose significant challenges for
efficient policy evaluation across multiple air quality scenarios [13]. To address these
limitations, research has focused on developing surrogate models using statistical tech-
niques like polynomial chaos and response surface modeling (pf-RSM) and deep response
surface modeling (deepRSM) [14–17], as well as deep learning approaches such as Convo-
lutional Neural Networks (CNN) and U-Net models [18,19]. These surrogate models have
demonstrated the ability to emulate CMAQ with high performance. However, they still
face challenges in terms of data handling complexity, which can limit their accessibility
for non-experts in air pollution simulation—such as those focused on evaluating health
impacts and formulating air pollution policies.

In this study, we present an innovative methodology that bridges the gap between
complex air quality modeling and practical policy evaluation (Figure 1). Our approach inte-
grates a high-speed CMAQ surrogate model based on a conditional U-Net architecture with
the widely used Environmental Benefits Mapping and Analysis Program (BenMAP) health
impact assessment tool [20,21]. This combined framework allows policymakers to swiftly
assess the health impacts of various precursor emission strategies. The surrogate model,
designed to emulate annual PM2.5 concentrations in South Korea, uses adjustable precursor
emission rates and boundary conditions as inputs. It demonstrates high performance and
scientific validity, as confirmed by input–output relationship analysis. Notably, the model
significantly reduces computational time, enhancing efficiency for specific applications.
By leveraging this surrogate model and BenMAP pipeline, we can evaluate how human
health impacts shift under different annual emission scenarios and boundary conditions,
providing decision-makers with a more efficient and accurate tool for policy development.

The paper is organized as follows: Section 2 (Materials and Methods) provides details
on data preparation, explains the conditional U-Net architecture, describes the training
and evaluation processes, and outlines the health impact assessment approach using
BenMAP. Section 3 (Results) presents the performance metrics of the surrogate model and
the outcomes of the health impact assessments. Finally, Section 4 (Discussion) explores
the implications of our findings, acknowledges the study’s limitations, and proposes
directions for future research. This work represents a significant advancement toward
more responsive and effective air quality management, especially in regions dealing with
complex PM2.5 pollution challenges.
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Figure 1. A graphical abstract of the pipeline that uses the model we developed. From top to bottom,
the pipeline we present in this paper is as follows: (1) Compute the minimum data required to train
the model via CMAQ simulation, (2) Train an emulator that mimics CMAQ by training a conditional
U-Net model using the computed data. (3) Finally, we use this emulator to conduct and utilize
various studies. The details of the model’s operation are explained in the Methods section.

2. Materials and Methods
2.1. Preparing Datasets
2.1.1. Community Multiscale Air Quality

In this study, we used the Community Multiscale Air Quality (CMAQ) modeling
system, version 4.7, to simulate annual average air pollutant concentrations over South
Korea for the year 2019. CMAQ, developed by the U.S. Environmental Protection Agency,
is a state-of-the-art tool that integrates emissions, transport, chemical transformation,
and deposition processes. Our model setup incorporated the SAPRC-99 chemical mech-
anism and included two nested domains: a Korean domain with a resolution of 9 km
(82 × 67 grid cells).

To capture the vertical structure of the atmosphere, we used a 30-layer configuration
in our simulations. The SMOKE-Asia system was used to process precursor emissions,
using the CREATE v3.0 emissions inventory as the basis. Importantly, our study went
beyond standard CMAQ simulations by incorporating varying boundary conditions. This
approach allowed us to evaluate the effects of varying regional background pollutant levels
on local PM2.5 concentrations. We conducted multiple year-long simulations, each with
different boundary conditions, to generate a comprehensive dataset of annual average
PM2.5 concentrations. This dataset not only captured the spatial variability of PM2.5 across
South Korea, but also reflected the influence of changing regional pollution patterns,
providing a robust basis for training and evaluating our conditional U-Net model.
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2.1.2. Control Matrix

When the original CMAQ simulation is run, the precursor emissions are represented as
a two-dimensional map, and each grid is assigned the corresponding emission value. How-
ever, such data are difficult to use and are prone to limitations that reduce their usefulness.
Here, we have created a one-dimensional control matrix that shows the activity of precursor
emissions for each region as a percentage of the reference scenario. By systematically vary-
ing the activity levels of five precursor emission activities (NOx, SO2, NH3, VOC, PM2.5) in
17 different regions of Korea, 238 unique scenarios were created. Of the 238 scenarios, half
of the data are simulated PM2.5 concentrations with boundary conditions set at 0.5x. This
approach allowed for a broad investigation of potential emission patterns and air quality
impacts. To efficiently sample the vast parameter space of emission variations, we used
Latin Hypercube Sampling (LHS). This statistical technique allowed us to generate a nearly
random but well-distributed set of control factors for each emission sector and region.
The control factors were varied between 0.5 and 1.5 times the baseline values, allowing for a
comprehensive exploration of potential emissions changes while minimizing the number of
simulations required. Of these 238 scenario data, 100 were used to train our model and the
remaining 138 were used as test data for evaluation in the text. The training and evaluation
data were carefully controlled to ensure there were no data omissions, and the data were
randomly extracted. Table 1 shows an example of a control matrix.

Table 1. Example of random control matrix scenario. Each scenario is sampled with the Latin Hyper
Sampling method. Each column indicates the precursor emission activity of each emission source
and each row indicates the activity of each region of Korea.

Region Name NOx SO2 VOC NH3 PM2.5 Activity

Seoul 0.514 0.927 0.945 0.692 1.109 -
Incheon 0.611 1.087 0.949 0.546 0.778 -
Busan 0.504 1.364 1.046 1.192 1.249 -
Daegu 1.274 0.951 0.708 1.247 0.786 -

Gwangju 0.872 1.069 0.621 0.840 1.497 -
Gyeonggi-do 0.574 1.379 1.436 0.842 1.177 -
Gangwon-do 1.479 1.167 0.540 1.098 1.173 -
Chungbuk-do 1.134 0.710 0.725 1.410 0.503 -
Chungnam-do 0.520 0.562 0.812 1.021 0.994 -
Gyeongbuk-do 1.063 1.073 1.192 1.343 1.045 -
Gyeongnam-do 0.581 1.337 1.057 0.811 0.671 -

Jeonbuk-do 0.702 1.286 0.580 1.150 1.063 -
Jeonnam-do 1.311 1.187 1.001 1.281 0.805 -

Jeju-do 1.034 1.224 1.395 0.520 0.752 -
Daejeon 1.173 0.718 1.386 0.762 0.864 -

Ulsan 1.197 0.919 0.528 1.284 0.534 -
Sejong 0.996 1.394 0.549 0.787 1.343 -

Boundary - - - - - 1.000

2.2. Emulating CMAQ Simulation
2.2.1. Conditional U-Net Architecture

The basic concept of a conditional U-Net is an architecture used in the diffusion model,
which has been widely used in the field of image generation in recent years, especially in
the field of stable diffusion [22,23]. In Stable Diffusion, the conditional U-Net is used to
predict the diffusion of noise in the latent tensor of a VAE-encoded image at a given time,
using an integer representing the latent tensor and time step, and the prompt information
encoded in the text encoder. The prompt information encoded by the text encoder is
input. In this study, we have adapted the architecture of the conditional U-Net used in
stable diffusion, where the input parameters are “the latent tensor of a certain image” and
“the condition of a given time and prompt”, to a model that takes as input “the emission
information from a particular scenario” and “the activity of the boundary condition”.
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We apply this modified structure to our emulator to capture the relationship between
emissions/boundary activities and PM2.5 concentration.

Figure 2 shows a schematic of the conditional U-Net architecture for emulating the
annual PM2.5 concentration calculated by the CMAQ simulation. This customized archi-
tecture processes two primary inputs: precursor activities (85-dimensional vector) and
a boundary condition (scalar). The precursor activities are gridded to produce an initial
82 × 67 × 5 spatial representation, which is then resized to 96 × 64 × 5 to facilitate efficient
CNN computation. This resized input passes through a series of CNN blocks that progres-
sively reduce the spatial dimensions while increasing the feature depth. Simultaneously,
the boundary condition is processed through Multi-Layer Perceptrons (MLPs), increasing
its dimensionality to interact with the spatially encoded precursor information at multiple
scales via element-wise addition. The network includes a bottleneck layer (12 × 8 × 40) for
maximum feature compression, followed by a decoder path that upsamples features back to
the original dimensions. Skip connections between the corresponding encoder and decoder
layers preserve fine-grained spatial information. The final output is an 82 × 67 × 1 tensor
representing the predicted annual PM2.5 concentration, matching the spatial resolution
of the CMAQ simulation. This architecture efficiently captures the complex relationships
between precursor emissions, boundary conditions, and PM2.5 concentrations, providing a
computationally efficient alternative to full CMAQ simulations. It is worth noting that the
hyperparameters shown in the figure, such as layer dimensions and feature depths, can be
adjusted to meet specific problem requirements or computational constraints, providing
flexibility in model customization.

Figure 2. Schematic diagram of conditional U-Net architecture used in this study. Each set of
parameters listed next to each block in the figure represents the block dimensions set in this study,
and these are hyperparameters that can be changed as appropriate, depending on the target region,
other parameters to be entered, and the number of data used in the study.
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2.2.2. Gridding Strategy

Our model uses 86-length vector (control matrix with eighty-five precursor activities
and one boundary activity) as an input variable. To take advantage of the spatial feature
extraction capabilities of convolutional neural networks (CNNs), we developed a prepro-
cessing technique that transforms the input from a simple one-dimensional vector to a
structured three-dimensional matrix. This approach involves mapping the data onto an
82 × 67 grid, reflecting the geographical characteristics of Korea, with each grid cell as-
signed the emission activities of the five precursors. The resulting 82 × 67 × 5 matrix serves
as the input to our conditional U-net, which effectively preserves the spatial relationships
between regions while capturing the emission patterns of each precursor. The boundary
activity input is fed into the conditional layer without building a 2D map. See Figure 2.

This preprocessing is performed automatically by a custom-designed layer that holds
index information for each local government as fixed variables and transforms the input
one-dimensional control matrix into the appropriate two-dimensional structure. Users of
the model can simply provide one-dimensional input data without having to understand
the complexities of this transformation process. The administrative divisions and grid
index information for Korea used in this study were referenced from [24]. By adopting this
spatial structuring approach, our model can accurately capture the relationship between
precursor emissions and PM2.5 concentrations, which is calculated by CMAQ simulation,
thus contributing to improved air quality predictions across South Korea.

2.3. Evaluation Methods

In order to increase the level of confidence in the emulation model presented in this
study, and to show that there are no problems in using it for health impact assessment and
policy making, quantitative and qualitative evaluations were performed simultaneously.
The quantitative evaluation was conducted using several indices used to evaluate the
predictive results of deep learning models. The qualitative evaluation analyzed the causal
relationships between the inputs and outputs of the model and the contribution of the
input parameters to show that the model successfully learned the physical and chemical
processes between PM2.5 and its precursors reported in previous studies.

2.3.1. Performance Metrics

To quantitatively assess the performance of our Conditional U-Net model in emulating
CMAQ simulations, we used three widely used statistical metrics: Mean Absolute Error
(MAE), Normalized Mean Absolute Error (NMAE), and Coefficient of Determination (r2).
These metrics provide complementary insight into the model’s accuracy, scale-independent
error, and explanatory power, respectively. The Mean Absolute Error (MAE) measures
the average size of the errors in the predictions without regard to their direction. It is
calculated as

MAE =
1
n

n

∑
i=1

|yi − ŷi| (1)

where yi is the true value (CMAQ simulation result), ŷi is the predicted value (Conditional
U-Net output), and n is the number of samples. The MAE is expressed in the same units as
the PM2.5 concentrations (µg/m3), providing an intuitive measure of the average prediction
error. Normalized Mean Absolute Error (NMAE) expresses the MAE as a percentage of the
observed mean, providing a scale-independent measure of error:

NMAE =
MAE

ȳ
× 100 (2)

where ȳ is the mean of the observations. NMAE allows for the comparison of model perfor-
mance over different scales or data sets. The coefficient of determination (r2) quantifies the
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proportion of variance in the dependent variable that can be predicted by the independent
variable(s). It is calculated as

r2 = 1 − ∑n
i=1(yi − ŷi)

2

∑ i = 1n(yi − ȳ)2 (3)

r2 ranges from 0 to 1, with 1 indicating perfect prediction. It provides insight into how
well the model captures the variability in the CMAQ simulations. These metrics were
calculated for both the training and test datasets to assess the performance and gener-
alizability of the model. By using these complementary metrics, we aim to provide a
comprehensive evaluation of our model’s ability to accurately emulate CMAQ simulations
of PM2.5 concentrations.

2.3.2. Contribution Analysis Using SHAP Value

To evaluate the relative importance of input variables in the Conditional U-Net CMAQ
surrogate model, we used SHapley Additive exPlanations (SHAP) values. SHAP values
provide a unified measure of feature importance based on coalitional game theory, provid-
ing consistent and locally accurate attributions that satisfy desirable properties such as local
accuracy, missingness, and consistency [25]. This approach allows for the decomposition
of a prediction into the additive contribution of each input feature, enabling both global
feature importance analysis and detailed local explanations for individual predictions.
The SHAP value for a feature i can be expressed as

ϕi = ∑
S⊆F\{i}

|S|!(|F| − |S| − 1)!
|F|! [ fS∪{i}(sS∪{i})− fS(xS)] (4)

where F is the set of all features, S is a subset of features, and fx is the model output. This
formula captures the average marginal contribution of feature i across all possible feature
subsets. SHAP values are particularly useful in complex models like out conditional U-Net,
where the interactions between input variables can be intricate and non-linear.

We used the PermutationExplainer algorithm to compute SHAP values for our condi-
tional U-Net model. This model-independent method estimates SHAP values by permuting
feature values and observing the effect on model output. By aggregating SHAP values
across multiple predictions, we generated SHAP summary plots to visualize the magnitude,
frequency, and direction of each input variable’s effect on model output. This analysis pro-
vided insight into the key drivers of PM2.5 concentrations in our surrogate model, allowing
for a nuanced understanding of the relative contributions of different input parameters to
predicted air quality impacts.

SHAP values have been successfully used in several recent studies to interpret machine
learning models for air pollution prediction and source attribution. For example, SHAP
values have been used to explain predictions of NO2 concentrations in Madrid [26] and to
quantify the contributions of meteorological factors to PM2.5 concentrations in Paris [27].
SHAP analysis has also been used to determine the relative importance of different variables
in predicting PM2.5 levels in Zhejiang Province, China [28]. More recently, SHAP values
were used to analyze the contributions of different sources of air pollution events in Zibo,
China [29] and to estimate the source contributions of NH3 in Taichung City, Taiwan [30].
These studies demonstrate the growing use of SHAP values in air pollution research for
proving interpretable insights from complex machine learning models. The successful use
of SHAP analysis in different geographical regions and for different air pollutants supports
its validity as an analytical tool in this field.

2.4. Health Impact Assessment
2.4.1. BenMAP-CE Methodology

The health benefits associated with changes in air pollution concentrations were
evaluated using the BenMAP-CE tool, which employs the following equation to quantify
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the relationship between air quality improvements and corresponding health impacts on
the population [20].

Health Benefit = Y0 · Population ·
(

1 − e−β·∆C
)

(5)

In this equation, Supplementary Material S5 the Health Benefit represents the esti-
mated reduction in adverse health outcomes (e.g., premature mortality) due to changes
in pollutant concentrations, calculated separately for different regions and age groups.
The variable Y0 denotes the baseline incidence rate of the health outcome per unit popula-
tion, which varies by region and age group. Population refers to the total number of indi-
viduals within each specified region and age group. The parameter β is the concentration-
response function coefficient, reflecting the sensitivity of the health outcome to changes in
pollution levels. ∆C represents the change in PM2.5 concentration, specific to each region.

The BenMAP-CE framework integrates the following:

• Air quality data (monitored or modeled)
• Detailed population demographics
• Baseline health incidence rates
• Concentration-response functions from the epidemiological literature
• Economic valuation methods

The tool applies this function at fine spatial resolutions, typically grid cells, to account
for local variations in air quality, population, and health status. It can assess impacts
for different pollutants, primarily PM2.5 and ozone, at different geographic scales. Also,
the analysis process includes defining the study area, specifying air quality changes, esti-
mating population exposure, selecting health impact functions, calculating health outcomes,
aggregating results, applying economic valuation, and characterizing uncertainty. Finally,
the open source nature of BenMAP-CE ensures transparency and allows for community-
driven improvements. By providing a standardized, scientifically rigorous approach to
health impact assessment, it plays a critical role in informing air quality management
decisions and supporting evidence-based environmental health policies.

2.4.2. Input Parameters of Health Impact Assessment

Regional PM2.5 concentration forecast data by scenario: Regional PM2.5 concentrations
were estimated using the Conditional U-Net CMAQ surrogate model, with the year 2019
serving as the baseline. Various emission reduction scenarios were modeled by adjusting
boundary conditions to 100% and 50% of baseline values and varying precursor emis-
sions to 100%, 90%, 75%, 50%, 25%, and 10% of the baseline. The annual average PM2.5
concentrations were then predicted for each of the 17 provinces in South Korea.
2019 Population Counts and Estimates: Population data for 2019 and projections through
2050 were obtained from the Korean Statistical Information Service (KOSIS). The population
data included age groups from 30 to 80+ years, segmented into five-year intervals across
the 17 provinces [31].
Mortality rates by disease: Mortality rates for cardiovascular diseases (CVD) and respira-
tory diseases (RD) were derived from the 2019 “Deaths and Death Rates by Cause” statistics
provided by KOSIS, segmented similarly by age and region [32]. For future projections up
to 2050, it was assumed that these mortality rates would remain constant at the 2019 levels.
Beta Coefficient: Beta coefficients for long-term exposure to PM2.5, specific to CVD and
RD, were applied using default values provided by the World Health Organization (WHO).
These coefficients, as outlined in the WHO’s AirQ+ tool, are based on the findings of [33]
and reflect the increased risk per 10 µg/m³ increase in annual PM2.5 concentrations. For in-
dividuals aged 30 and above, the beta coefficient for CVD is 0.0104 (95% CI: 0.0086–0.013)
and for RD, it is 0.0095 (95% CI: 0.0030–0.017) [33,34].



Atmosphere 2024, 15, 1186 9 of 20

3. Results

The results of this study can be divided into two main categories. One is the confirma-
tion of the emulation performance of the CMAQ emulator, and the other is the results of
the health effect assessment using this emulator and its analysis. In this section, we discuss
these results.

3.1. Emulation Performance Evaluation

We first verify the emulation performance of the CMAQ simulation results for the
conditional U-Net structure used in our methodology. This is an important step in de-
termining whether the health effects assessment using this conditional U-Net is reliable.
The performance is compared from three perspectives: (1) for quantitative evaluation,
simulation and emulation results are compared by scatterplotting all grid verbs, (2) the
mean absolute error (MAE), normalized mean absolute error (NMAE), and coefficient of
determination (r2), (3) for qualitative evaluation, the importance between model inputs
and outputs is analyzed using SHAP values to see how well the model mimics the physical
and chemical processes of CMAQ, and finally, (4) the computation time was evaluated.

3.1.1. Emulation Results

Figure 3 presents a comprehensive comparative analysis of the Conditional U-Net
model’s inference results against CMAQ simulations, using both training and test data
sets. The scatter plots are arranged side-by-side, with the left panel showing the model’s
performance on the training data and the right panel demonstrating its capability on the
unseen test data. Both scenarios show remarkable agreement with the CMAQ simulations,
achieving an impressive r2 value of 0.99. This exceptional correlation underscores the
model’s ability to emulate CMAQ with near-perfect accuracy over a wide range of PM2.5
concentration values. The consistently high performance across both training and test
data sets not only validates the model’s robust learning, but also confirms its ability to
effectively generalize to new scenarios. This consistency is particularly noteworthy because
it eliminates concerns about overfitting, a common challenge for machine learning models.
The tight clustering of points along the diagonal in both plots further illustrates the model’s
precision in capturing the nuances of CMAQ simulations. This visual and statistical
evidence reinforces the reliability of the Conditional U-Net as an efficient and accurate
surrogate for CMAQ simulations, potentially revolutionizing the speed and scale at which
air quality scenarios can be evaluated for policy-making purposes.

Figure 3. Scatter plots for emulation performance evaluation. (left): plot for training data, (right): plot
for test data. The left plot is for the training data and the right plot is for the test data. Also, both the
training and test data show the same performance, indicating that no overfitting has occurred.
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Table 2 presents a quantitative evaluation of the performance of the conditional U-Net
model, which emulates the CMAQ simulation of PM2.5 concentrations in South Korea in
2019. The accuracy of the model was evaluated using three main metrics: mean absolute
error (MAE), normalized mean absolute error (NMAE), and coefficient of determination
(r2). The results showed high accuracy of the conditional U-Net in reproducing CMAQ
results, with significantly lower MAE values (training: 0.222 µg/m3, test: 0.221 µg/m3) and
NMAE values (training: 1.788%, test: 1.762%). The r2 value of 0.996 for both the training
and test sets is particularly impressive, indicating that the conditional U-Net explains
99.6% of the variance in the CMAQ predictions. This near-perfect correlation indicates an
exceptional level of agreement between the surrogate model and CMAQ.

Table 2. Quantitative comparison of the performance of Conditional U-Net emulation results. MAE,
NMAE and r2 metrics were evaluated here. The results indicate that the Conditional U-Net model
emulates CMAQ with very high performance, and the comparison of the results for the training and
test data shows that the model also learns successfully without overfitting problems.

Target Year Target Region Metrics [Units] Data Category Score

2019 South Korea

MAE [µg/m3]
Training set 0.222

Test set 0.221

NMAE [%]
Training set 1.788

Test set 1.762

r2 [-]
Training set 0.996

Test set 0.996

The consistency of the performance metrics between the training and test sets pro-
vides strong evidence that the model effectively learned the underlying patterns without
overfitting. Overall, these results confirm the ability of the conditional U-Net to serve as
a highly accurate and efficient surrogate model for CMAQ in predicting annual average
PM2.5 concentrations across Korea, and may provide important computational advantages
for rapid policy scenario evaluation.

3.1.2. Input Contribution Analysis

The effect of input parameters on the output PM2.5 concentration was analyzed using
SHAP values to evaluate whether the emulators used in this study accurately reproduce
the physical and chemical processes of CMAQ, as well as evaluating simple emulation
performance. First, because our conditional U-Net structure has two major inputs, domestic
emissions expressed in terms of emissions of the five precursors and international emissions
expressed in terms of activity at the boundary, we evaluated domestic and international
impacts on changes in PM2.5 concentrations.

Figure 4 shows the percentage of domestic and international SHAP values for each
region. The six regions shown here are the national average, Seoul, Daejeon, Gwangju,
Ulsan, and Jeju. In the case of domestic impact assessment, the SHAP values for all input
parameters representing domestic precursor emissions were obtained by summing the
SHAP values. Figure 4 shows that international influence is greater than or nearly equal
to domestic influence in every region. For the national average impact, boundary is rated
as more influential, and for the localized results in other inland regions, domestic and
boundary are rated similarly. In particular, Jeju Island, located in the southern part of the
Korean peninsula far from the mainland, is known to be a particularly foreign-influenced
region, with weak influence from land-based precursor emissions and low emission activity
of its own, and the emulation model reflects this well [35]. These results are generally
consistent with the analysis of factors affecting PM2.5 concentrations in Korea reported in
the study by N. Kumar et al. [8] despite differences in the target time period, indicating
that the model successfully mimics the scientific process of CMAQ.
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The second qualitative assessment examined the nonlinear response between PM2.5 and
precursor emissions. Since nonlinear behavior of PM2.5 and its precursors, NH3 and NOx, has
been reported in previous studies based on simulations and actual measurements [36,37], it is
necessary to confirm whether the emulator model we developed behaves in a similar nonlinear
manner. Figure 5 presents a comprehensive visualization of the nonlinear response of PM2.5
concentrations to variations in NH3 and NOx emission activity ratios over South Korea and
five major cities, as in the previous evaluation. The contour maps show different patterns
for different regions, highlighting the spatial heterogeneity in PM2.5 formation dynamics.
The local trend shows that PM2.5 concentrations generally increase with higher emission ratios
of both NH3 and NOx, ranging from about 14 to 17 µg/m3. Seoul shows the highest PM2.5
levels (19–25 µg/m3) with strong sensitivity to both precursors, while Daejeon and Gwangju
show intermediate levels with a more pronounced response to NOx emissions. Ulsan shows
a relatively uniform PM2.5 distribution (13–16 µg/m3), and Jeju Island shows significantly
lower concentrations (7–9 µg/m3) with minimal variation across emission scenarios.

Figure 4. Results of the graphical representation of the contribution of input variables to the con-
centration of PM2.5 in two categories, national and international, using SHAP values. The results
show that the impact of precursor emissions from outside the country is equal to or greater than
the domestic impact, indicating that the simulation results and the actual situation on the Korean
peninsula are properly mimicked. From top left to bottom right, the panels show the contribution
of boundary and domestic emissions to annual PM2.5 concentrations in the whole country, Seoul,
Daejeon, Gwangju, Ulsan, and Jeju Island, respectively.

These contour maps underscore the complexity of PM2.5 chemistry and the importance
of considering both NH3 and NOx emissions in air quality management plans. The ob-
served non-linear responses and regional variations highlight the need for tailored emission
control strategies in different areas of South Korea. This detailed analysis provides valuable
insights for policy makers and environmental scientists, enabling more targeted and effec-
tive approaches to reduce PM2.5 concentrations and improve air quality in different urban
and rural areas across the country. Importantly, these results are consistent with trends
reported in previous studies, confirming the validity of our findings and reinforcing the
established understanding of PM2.5 formation dynamics in relation to precursor emissions
in different geographical contexts in South Korea.
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Figure 5. Contour map showing the non-linear response of PM2.5 to NH3 and NOx emissions,
showing, from top left, the response of PM2.5 concentrations for the entire country, Seoul, Daejeon,
Gwangju, Ulsan, and Jeju Island.
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3.1.3. Computational Performance

Table 3 presents a comparative analysis of the computational time required for CMAQ
simulations and the Conditional U-Net model, highlighting the significant efficiency gains
offered by the latter. The CMAQ v4.7 [38] simulation running on one CPU requires
approximately 24 h to complete a single scenario. In stark contrast, the Conditional U-Net
demonstrates significantly faster performance in both the training and prediction phases.
The Conditional U-Net model was implemented using a custom-developed code based
on Tensorflow v2.14 [39], running on Python 3.10.13 within an Ubuntu 22.04 operating
system environment, leveraging this powerful software stack to optimize performance
and functionality.

Table 3. Time required to compute each method. Compared to the time required to simulate each
scenario in CMAQ, the time saved by the conditional U-Net method is significantly shorter, regardless
of the processor type. It should be noted, however, that the CMAQ simulation data must be computed
in advance in order to train the conditional U-Net model.

Method Processor Batch Size Time Consumed

CMAQ v4.7 CPU (simulation) - ∼24 h/scenario

Conditional U-Net

CPU (training) 256 ∼10 s/epoch

GPU (training) 256 ∼1 s/epoch

CPU (prediction) 32 ∼10 ms/scenario

GPU (prediction) 32 ∼1 ms/scenario

During the training phase, the Conditional U-Net processes an epoch in about 10 s
using a CPU, and this time is further reduced to about 1 s using a GPU, both with a batch
size of 256. The most striking efficiency gain is observed in the prediction phase, where the
Conditional U-Net can produce results for a single scenario in as little as 10 ms on a CPU
and an impressive 1 ms on a GPU, with a batch size of 32.

It is important to note that while the Conditional U-Net offers significant time savings
per scenario, it requires initial training on CMAQ simulation data. However, once trained,
the model’s ability to generate predictions in milliseconds represents a transformative im-
provement in computational efficiency compared to the 24-h runtime of CMAQ simulations.
This dramatic reduction in processing time could significantly increase the capacity for
rapid scenario analysis and policy evaluation in air quality management.

3.2. Health Impact Assessment

Health benefits were evaluated separately for cardiovascular diseases (CVD) and
respiratory diseases (RD), with premature mortality estimated under two boundary condi-
tions: 100% and 50%. Figure 6 illustrates the projected premature mortality due to CVD
and RD from 2019 to 2050. Assuming that the predicted PM2.5 concentrations from the
2019 scenario remain constant over time, a continuous increase in premature mortality
is observed.

Under the 100% boundary condition, the combined premature mortality for CVD and
RD was estimated at 15,934 (95% CI: 10,460–21,855) in 2019, rising to 53,146
(95% CI: 34,216–73,392) by 2050. Under the 50% boundary condition, the combined pre-
mature mortality was 11,106 (95% CI: 7241–15,418) in 2019, increasing to 37,043 (95%
CI: 23,679–51,803) by 2050. This represents an approximate 330% increase in premature
mortality by 2050 compared to 2019, regardless of the boundary condition.

The substantial rise in premature mortality is largely attributed to the projected growth
in the population segments with higher mortality rates, particularly among those aged 65
and older. Specifically, the population in the 65–69 age group is expected to increase by
153%, and the 80+ age group by 434% between 2019 and 2050.
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Figure 6. Annual premature mortality due to various diseases and total diseases (cardiovascular
diseases + respiratory diseases) based on PM2.5 concentrations. Panel (a) illustrates the results under
a boundary condition of 100%, while panel (b) shows the results under a boundary condition of
50%. Scenarios were applied where precursor emissions were reduced from 100% to 10%. Premature
mortality for the entire population of South Korea was calculated annually from 2019 to 2050.

In Figure 7, the projected differences in premature mortality from 2020 to 2050 are
compared at five-year intervals, using the scenario with 100% pollutant emissions in 2019 as
the baseline. Under scenarios where emissions are reduced to 10% of 2019 levels, premature
mortality is projected to remain below the baseline under both the 100% and 50% boundary
conditions until 2050. Excluding the 10% emission scenario, premature mortality under
the 100% boundary condition surpasses the baseline across all other scenarios starting
from 2030. Similarly, under the 50% boundary condition, the 25% emission scenario shows
fewer premature deaths compared to the baseline until 2040, after which mortality begins
to exceed the baseline. These findings indicate that reducing emission TO 10–25% is
necessary to counteract the effects of population aging and maintain current premature
mortality rates.

PM2.5 reduction strategies are typically developed with five-year targets. Figure 8
outlines the required reduction targets for each region from 2025 to 2050, segmented into
five-year intervals, to prevent an increase in premature mortality due to an aging population.
To maintain baseline levels of premature mortality from 2019 to 2025, a reduction of
22–42%, averaging 31%, is necessary across 17 provinces. If the 2025 reduction target is
met, an additional reduction of 11–35%, averaging 22%, will be required from 2025 to 2030.
Similar reductions are needed for the subsequent periods: 24% from 2030 to 2035, 26% from
2035 to 2040, 19% from 2040 to 2045, and 11% from 2045 to 2050. These five-year reduction
percentages are consistent under both the 100% and 50% boundary conditions.
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Figure 7. Differences in premature mortality relative to 2019 under scenarios of precursor emissions
at 100%. Panel (a) shows results with a boundary condition of 100%, while Panel (b) shows results
with a boundary condition of 50%. The scenarios applied involve reductions in precursor emissions
from 100% to 10%. The differences in premature mortality for the entire population of South Korea
from 2020 to 2050, calculated in five-year intervals, are shown relative to premature mortality at 100%
precursor emissions in 2019.

Figure 8. Reduction percentages of precursor emissions across 17 provinces over five-year intervals
to sustain premature mortality rates in 2019. The x-axis represents the average reduction percentages
across the 17 provinces. The y-axis denotes the percentage reduction in precursor emissions required
from the start year to the end year, based on the emission levels at the start year. This assumes that
the emission reduction targets for the previous year were achieved.
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4. Discussion and Conclusions
4.1. Development of a CMAQ Emulator Using a Conditional U-Net

In this study, we developed an emulation model that accurately and rapidly simulates
the physicochemical processes of CMAQ using deep learning techniques with a conditional
U-Net architecture. We also established and validated a series of pipelines that leverage
this emulation model for health impact assessments and policy-making applications related
to PM2.5 precursor emissions. While CMAQ is one of the most reliable and widely used air
pollution simulation tools, it requires extensive background knowledge and suffers from
limitations due to its long computational times. These limitations hinder the assessment
of air pollution across multiple scenarios and the formulation of effective policies for miti-
gating respiratory and other health impacts associated with air pollution. The emulation
methodology presented here addresses these challenges by linking CMAQ with health
impact assessments, thereby facilitating simpler, faster, and accurate air quality evaluations.
This advancement supports more efficient policy-making and enhances the ability to assess
health impacts and develop strategies to improve public health outcomes.

For the emulation model that predicts the annual average PM2.5 concentration in
Korea for a given precursor emission activity, the PM2.5 concentration calculated from
the simulation of CMAQ using the emissions, climate, and weather conditions of 2019
as the baseline for this study was used as training data, and a deep learning model with
a conditional U-Net structure specialized in calculating the annual average pollutant
concentration described in the text was employed. The emulation model predicts the
annual average PM2.5 concentration with an MAE of 0.221 µg/m3, NMAE of 1.762%,
and r2 of 0.996 based on the test data. Also, as shown in Table 3, for the trained model
predicting a scenario, based on the machine we used, we were able to perform high-speed
computations on the order of 10ms using CPU and 1ms using GPU, which is a significant
improvement considering the time required to precalculate the data needed for training
with CMAQ. These results demonstrate that the emulation model and methodology we
developed significantly contribute to overcoming the limitations of CMAQ and are well
suited for the applications presented in this study.

Additional contribution analyses performed using SHAP values to increase the reli-
ability of the emulation model, as well as an analysis of the relationship between input
and output values, also show that the methodology does a good job of simulating the
physicochemical computational processes behind CMAQ and their associated properties,
giving policy makers more confidence in using the methodology we have developed. It
is important to note that the SHAP value analysis is qualitative rather than quantitative.
The conditional U-Net model uniquely accommodates both domestic precursor emissions
and transboundary emissions as inputs, enabling the evaluation of their combined ef-
fects on the model’s annual PM2.5 concentration output. Figure 4 illustrates the impacts
of domestic and boundary emissions on annual PM2.5 concentrations for both national
and provincial averages. The evaluated domestic and boundary influences align well
with findings from previous studies, validating that the emulation model’s computational
processes are consistent with those observed in previous simulations and CMAQ results.
Furthermore, the emulation model accurately reflects the nonlinear relationship between
PM2.5 and precursor emissions. Figure 5 highlights the nonlinear interactions between NH3
and NOx emissions and PM2.5 concentrations, which corroborates the nonlinear behavior
reported in previous research. This validation supports the use of the conditional U-Net as
an effective emulation model.

4.2. Health Impact Assessment and Policy Implications

The health impact assessment results, made possible by CMAQ’s rapid simulation of
annual PM2.5 concentrations, highlight the critical role of emission reductions in reducing
premature mortality in South Korea. While premature deaths are expected to increase
significantly from 2019 to 2050 due to an aging population, reducing emission TO 10–25%
from current levels could counteract this increase. The study recommends an average
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reduction of 31% by 2025, followed by further reductions of 11% to 26% every five years
until 2050. This innovative approach allows for the rapid and accurate evaluation of
multiple emissions scenarios, providing policymakers with a powerful tool for real-time
decision making. By integrating rapid CMAQ emulation with comprehensive health impact
assessments, the methodology significantly advances environmental health research and
policy planning. It also benefits society by facilitating more informed, timely, and effective
air quality management strategies, potentially saving thousands of lives and improving the
quality of life for millions. This multidisciplinary approach can be applied to air quality
challenges around the world and represents a major step forward in the integration of
environmental science, public health, and policy making.

4.3. Limitations and Future Research

The CMAQ emulator developed in this study successfully mimics the annual average
PM2.5 concentrations in Korea, but it has several challenges and limitations. First, when
evaluating PM2.5 concentrations and their impact on human health, it is important to
consider not only annual, but also monthly and daily average concentrations, and while
CMAQ is capable of simulating these time resolutions, our model is limited by its structural
limitations in that it can only infer annual average concentrations. While CMAQ can
simulate these time resolutions, our model is limited by its structural limitations in that it
can only infer annual average concentrations. Also, because our model was designed to
simply predict the annual average concentration of PM2.5 from given precursor emissions
and boundary conditions, the meteorological and geographic information necessary to
simulate actual PM2.5 concentrations is not used to predict concentrations. This is because
the model predictions are not based on SHAP values. This means that although the causal
relationship of the model’s prediction results from the SHAP values has been confirmed,
the possibility that inferences are being made using a process that differs from the actual
behavior of CMAQ cannot be ruled out.

Based on the above limitations, future research directions are as follows. First,
the model could be improved to accommodate data with different temporal resolutions.
Health impact assessments based on PM2.5 concentrations are generally conducted at differ-
ent time units, and this improvement is essential to enable more diverse assessments in the
future. Further analysis of the input–output variables of the model is also needed. In partic-
ular, as mentioned above, unlike the original simulation of CMAQ, which is the object to be
emulated, our model has a structure that does not take into account any meteorological or
geographic information. A deeper investigation of whether the emulation results from this
structure accurately mimic the CMAQ process would be essential to increase the credibility
of our methodology. In addition, having meteorological and geographic information as
input means that we will be able to comprehensively explore different scenarios, time
periods, and years, which will allow us to develop a more general surrogate model for
CMAQ. Finally, since our model can in principle predict concentrations of air pollutants
other than PM2.5, such as O3 and NO2, we will confirm the performance of the emulation
and various case studies for these substances in future studies.

4.4. Overall Summary and Conclusions

This study introduces a novel methodology that bridges the gap between complex air
quality modeling and practical policy evaluation. We developed a high-speed surrogate
model based on a conditional U-Net architecture to predict PM2.5 concentrations and
integrated it with the BenMAP health impact assessment tool to evaluate health impacts
efficiently. The surrogate model, trained using annual PM2.5 data from South Korea,
demonstrated impressive performance with an MAE of 0.221 µg/m3, NMAE of 1.762%,
and an r2 of 0.996, significantly reducing computational time compared to traditional
CMAQ simulations. This model allows rapid predictions and assessments of health impacts
under various emission scenarios.
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Furthermore, this research established a method for predicting the number of pre-
mature deaths reflecting population aging levels, and developed a technique to calculate
the additional emission reductions needed to offset the health impacts of increased pre-
mature mortality due to aging. However, the study’s scope is limited to PM2.5, and future
research should extend this approach to other pollutants such as NO2, O3, and SO2. Devel-
oping models to predict various metrics like daily averages and incorporating advanced
dose-response models that consider age-specific sensitivities and threshold values will
offer a more comprehensive evaluation of health impacts. Addressing these areas will
enhance air quality management and public health protection, providing more robust tools
for policymakers.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos15101186/s1, S1. Visualization 2D PM2.5 annual concentra-
tion. S2. Relation between domestic activities and boundary conditions. S3. Contribution analysis
of input variables with various SHAP value analyses. S4. Total premature mortality. S5. Health
Benefits Equation. S6. PM2.5 concentration reduction compared to 2019. S7. 5-year precursor
emission reduction.
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