The Seasonality of PM and NO2 Concentrations in Slovakia and a Comparison with Chemical-Transport Model
Abstract
:1. Introduction
Air Quality and Its Seasonal Variation in Slovakia
2. Materials and Methods
2.1. Observed Seasonality
- (1)
- RB—rural background stations,
- (2)
- SB—suburban background stations,
- (3)
- UB—urban background stations,
- (4)
- T—traffic stations,
- (5)
- I—industrial stations.
2.2. Modeled Seasonality
2.3. Simulations Specification
2.4. Validation of Model Results
3. Results
3.1. Observed Trends in Seasonality and Seasonal Factors
3.2. Comparison of the Observed Mean Seasonal Factors with the Model CMAQ
3.3. Comparison of Observed Seasonal Factors with Model CMAQ at Individual Stations
3.3.1. NO2
3.3.2. PM10
3.3.3. PM2.5
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AQ | Air quality |
I | Industrial |
NMSKO | National air-quality monitoring network |
NO | Nitric oxide |
NO2 | Nitrogen dioxide |
NOx | Nitrogen oxides |
PM | particulate matter |
PM10 | PM with diameter smaller than 10 µm |
PM2.5 | PM with diameter smaller than 2.5 µm |
PMs | PM10 + PM2.5, both fractions of PM |
PMC | PM10 − PM2.5, coarse fraction of PM10 |
RB | Rural background |
SB | Suburban background |
SHMU | Slovak hydrometeorological institute |
T | Traffic |
UB | Urban background |
WHO | World Health Organization |
Appendix A. Air Quality Monitoring Sites
N | Name/Short Name | Lat | Lon | Elevation | Location/Type | PM10 | PM2.5 | NO2 |
---|---|---|---|---|---|---|---|---|
1 | Bratislava, Jeséniova/BA, JES. | 48.167952 | 17.106209 | 287 | S/B | 1 | 1 | 1 |
2 | Chopok/CHOPOK | 48.94362 | 19.589236 | 1990 | R/B | 0 | 0 | 1 |
3 | Gánovce/GANOVCE | 49.034601 | 20.322844 | 706 | R/B | 1 | 0 | 1 |
4 | Kojšovská Hoľa/KOJSOVSKA H. | 48.782875 | 20.987112 | 1232 | R/B | 1 | 0 | 1 |
5 | Bratislava, Mamateyova/BA, MAM. | 48.124692 | 17.1254 | 138 | U/B | 1 | 1 | 1 |
6 | Bratislava, Trnavské Mýto/BA, TRN. M. | 48.158359 | 17.128891 | 136 | U/T | 1 | 1 | 1 |
7 | Bratislava, Kam. Nám./BA, KAM. NAM. | 48.14467 | 17.113543 | 139 | U/B | 1 | 1 | 0 |
8 | Senica/SENICA | 48.680681 | 17.36311 | 212 | U/T | 1 | 1 | 0 |
9 | Trnava, Kollárova/TRNAVA | 48.371385 | 17.584926 | 152 | U/T | 1 | 1 | 1 |
10 | Trnovec nad Váhom/TRNOVEC N. V. | 48.15 | 17.9286 | 114 | S/B | 1 | 0 | 1 |
11 | Trenčín, Hasičská/TRENCIN | 48.896419 | 18.04124 | 214 | U/T | 1 | 1 | 1 |
12 | Oslany (SE Nováky)/OSLANY | 48.6333 | 18.47 | 228 | S/B | 1 | 0 | 1 |
13 | Malacky, Mierové nám./MALACKY | 48.436843 | 17.019052 | 162 | U/T | 1 | 1 | 1 |
14 | Nitra, Janíkovce/NR, JAN. | 48.283059 | 18.140716 | 149 | S/B | 1 | 1 | 1 |
15 | Nitra, Štúrova/NR, STUROVA | 48.309436 | 18.07687 | 143 | U/T | 1 | 1 | 1 |
16 | Banská Bystrica, Štef. náb./BB, STEF. NAB. | 48.73511 | 19.154985 | 346 | U/T | 1 | 1 | 1 |
17 | Banská Bystrica, Zelená/BB, ZELENA | 48.733486 | 19.115325 | 425 | U/B | 1 | 1 | 1 |
18 | Ružomberok (SUPRA SCP)/RK SUPRA | 49.0786 | 19.32 | 478 | U/I | 1 | 0 | 0 |
19 | Ružomberok, Riadok/RUZOMBEROK | 49.079025 | 19.302536 | 475 | U/B | 1 | 1 | 1 |
20 | Žiar nad Hronom, Jil./ZIAR N. H. | 48.59959 | 18.842841 | 296 | U/B | 1 | 1 | 0 |
21 | Bystričany, Rozvodňa (SSE)/BYSTRICANY | 48.666957 | 18.514107 | 261 | S/B | 1 | 1 | 0 |
22 | Handlová, Mor. Cesta/HANDLOVA | 48.733096 | 18.756472 | 448 | U/B | 1 | 1 | 0 |
23 | Prievidza, Malonecpalská/PRIEVIDZA | 48.782641 | 18.628071 | 276 | U/B | 1 | 1 | 1 |
24 | Žilina, Obežná/ZILINA | 49.21147 | 18.771289 | 356 | U/B | 1 | 1 | 1 |
25 | Hnúšťa, Hlavná/HNUSTA | 48.583789 | 19.951648 | 320 | U/B | 1 | 1 | 0 |
26 | Zvolen, J. Alexyho/ZVOLEN | 48.558198 | 19.156881 | 321 | U/B | 1 | 1 | 0 |
27 | Martin, Jesenského/MARTIN | 49.05963 | 18.921378 | 383 | U/T | 1 | 1 | 1 |
28 | Jelšava, Jesenského/JELSAVA | 48.631194 | 20.240498 | 289 | U/B | 1 | 1 | 1 |
29 | Košice, Štefánikova/KOSICE, ST. | 48.72631 | 21.258902 | 209 | U/T | 1 | 1 | 1 |
30 | Veľká Ida, Letná/VELKA IDA | 48.592119 | 21.1752 | 209 | S/I | 1 | 1 | 0 |
31 | Košice, Amurská/KOSICE, AM. | 48.690223 | 21.285495 | 201 | U/B | 1 | 1 | 0 |
32 | Prešov, Arm. Gen. L. Svo./PRESOV | 48.992475 | 21.266767 | 252 | U/T | 1 | 1 | 1 |
33 | Krompachy, SNP/KROMPACHY | 48.915658 | 20.873901 | 372 | U/T | 1 | 1 | 1 |
34 | Leles (SE Vojany)/LELES | 48.4628 | 22.0231 | 100 | R/B | 1 | 0 | 1 |
35 | Humenné, Nám. Slobody/HUMENNE | 48.930897 | 21.913688 | 160 | U/B | 1 | 1 | 1 |
36 | Strážske, Mierová/STRAZSKE | 48.874013 | 21.837536 | 133 | U/B | 1 | 1 | 0 |
37 | Vranov nad Topľou/VRANOV N.T. | 48.886367 | 21.68758 | 133 | U/B | 1 | 1 | 0 |
38 | Topoľníky/TOPOLNIKY | 47.959423 | 17.860238 | 113 | R/B | 1 | 1 | 1 |
39 | Starina/STARINA | 49.042734 | 22.260012 | 345 | R/B | 0 | 0 | 1 |
40 | Stará Lesná/STARA LESNA | 49.151384 | 20.289529 | 808 | R/B | 1 | 1 | 1 |
41 | Kolonické Sedlo/KOL. SEDLO | 48.934886 | 22.273772 | 431 | R/B | 1 | 1 | 0 |
42 | Rovinka (Slovnaft)/ROVINKA | 48.104 | 17.2278 | 133 | S/I | 1 | 1 | 1 |
43 | BA, Pod. Bisk. (Slovnaft)/BA, POD. | 48.1347 | 17.2056 | 132 | U/B | 1 | 1 | 1 |
44 | BA, Vlčie Hrdlo (Slovnaft)/BA, VLCIE | 48.1333 | 17.1694 | 134 | S/I | 1 | 0 | 1 |
Appendix B. Mean Seasonal Factors for Station Types
References
- Fowler, D.; Brimblecombe, P.; Burrows, J.; Heal, M.R.; Grennfelt, P.; Stevenson, D.S.; Jowett, A.; Nemitz, E.; Coyle, M.; Liu, X.; et al. A chronology of global air quality. Philos. Trans. R. Soc. A 2020, 378, 20190314. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease; World Health Organization: Geneva, Switzerland, 2016; Available online: https://iris.who.int/handle/10665/250141 (accessed on 30 August 2024).
- Thangavel, P.; Park, D.; Lee, Y.-C. Recent Insights into Particulate Matter (PM2.5)-Mediated Toxicity in Humans: An Overview. Int. J. Environ. Res. Public Health 2022, 19, 7511. [Google Scholar] [CrossRef] [PubMed]
- Kyung, S.; Jeong, S. Particulate-Matter Related Respiratory Diseases. Tuberc. Respir. Dis. 2020, 83. [Google Scholar] [CrossRef] [PubMed]
- Holm, S.M.; Balmes, J.R. Systematic Review of Ozone Effects on Human Lung Function, 2013 Through 2020. Chest 2022, 161, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Brender, J.D. Human Health Effects of Exposure to Nitrate, Nitrite, and Nitrogen Dioxide. In Just Enough Nitrogen; Sutton, M.A., Ed.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Kowalska, M.; Skrzypek, M.; Kowalski, M.; Cyrys, J. Effect of NOx and NO2 Concentration Increase in Ambient Air to Daily Bronchitis and Asthma Exacerbation, Silesian Voivodeship in Poland. Int. J. Environ. Res. Public Health 2020, 17, 754. [Google Scholar] [CrossRef]
- EEA. Europe’s Air Quality Status 2023, Permalink (May 31, 2023 version). Available online: https://www.eea.europa.eu/publications/europes-air-quality-status-2023 (accessed on 28 March 2024).
- Zhang, A.; Xia, C.; Li, W. Exploring the effects of 3D urban form on urban air quality: Evidence from fifteen megacities in China. Sustain. Cities Soc. 2022, 78, 103649. [Google Scholar] [CrossRef]
- Wang, L.; Niu, D.; Fan, H.; Long, X. Urban configuration and PM2.5 concentrations: Evidence from 330 Chinese cities. Environ. Int. 2022, 161, 107129. [Google Scholar] [CrossRef]
- Shelton, S.; Liyanage, G.; Jayasekara, S.; Pushpawela, B.; Rathnayake, U.; Jayasundara, A.; Jayasooriya, L.D. Seasonal variability of air pollutants and their relationships to meteorological parameters in an urban environment. Adv. Meteorol. 2022, 2022, 5628911. [Google Scholar] [CrossRef]
- Bodor, Z.; Bodor, K.; Keresztesi, Á.; Szép, R. Major air pollutants seasonal variation analysis and long-range transport of PM10 in an urban environment with specific climate condition in Transylvania (Romania). Environ. Sci. Pollut. Res. 2020, 27, 38181–38199. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y.; Lu, J. Exploring the relationship between air pollution and meteorological conditions in China under environmental governance. Sci. Rep. 2020, 10, 14518. [Google Scholar] [CrossRef]
- Manju, A.; Kalaiselvi, K.; Dhananjayan, V.; Palanivel, M.; Banupriya, G.S.; Vidhya, M.H.; Panjakumar, K.; Ravichandran, B. Spatio-seasonal variation in ambient air pollutants and influence of meteorological factors in Coimbatore, Southern India. Air Qual. Atmos Health 2018, 11, 1179–1189. [Google Scholar] [CrossRef]
- Zareba, M.; Weglinska, E.; Danek, T. Air pollution seasons in urban moderate climate areas through big data analytics. Sci Rep. 2024, 14, 3058. [Google Scholar] [CrossRef] [PubMed]
- Dobson, R.; Siddiqi, K.; Ferdous, T.; Huque, R.; Lesosky, M.; Balmes, J.; Semple, S. Diurnal variability of fine-particulate pollution concentrations: Data from 14 low- and middle-income countries. Int. J. Tuberc. Lung Dis. 2021, 25, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Soleimanpour, M.; Alizadeh, O.; Sabetghadam, S. Analysis of diurnal to seasonal variations and trends in air pollution potential in an urban area. Sci. Rep. 2023, 13, 21065. [Google Scholar] [CrossRef]
- Pérez, I.A.; García, M.Á.; Sánchez, M.L.; Pardo, N.; Fernández-Duque, B. Key Points in Air Pollution Meteorology. Int. J. Environ. Res. Public Health 2020, 17, 8349. [Google Scholar] [CrossRef]
- Mohtar, A.A.A.; Latif, M.T.; Baharudin, N.H.; Ahamad, F.; Chung, J.X.; Othman, M.; Juneng, L. Variation of major air pollutants in different seasonal conditions in an urban environment in Malaysia. Geosci. Lett. 2018, 5, 21. [Google Scholar] [CrossRef]
- US EPA Office of Research and Development. Zenodo; CMAQ (5.3.3); US EPA: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Štefánik, D.; Šedivá, T.; Krajčovičová, J.; Beňo, J.; Matejovičová, J. Operational air quality forecast for central Europe. In Proceedings of the 22nd International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Tartu, Estonia, 10–14 June 2024. H22-114. [Google Scholar]
- Slovak Hydrometeorological Institute with Ministry of Environment of the Slovak Republic. Informative Inventory Report 2023, Submission under the CLRTAP and NECD, Slovak Republic. 2023. Available online: https://oeab.shmu.sk/app/cmsFile.php?disposition=i&ID=209%27,%20%27SK_IIR_2023_v2%27 (accessed on 19 August 2024).
- Krajčovičová, K.; Kocunová, Z. Kvalita ovzdušia-príručka pre okresné úrady v oblasti ochrany ovzdušia (Air Quality—A Manual for District Offices for Air Protection Purposes); Ministry of Environment of the Slovak Republic, Slovak Environment Agency: Banská Bystrica, Slovakia, 2023; ISBN 978-80-8213-124-9. Available online: https://www.enviroportal.sk/dokument/f/kvalita-ovzdusia.pdf (accessed on 20 August 2024).
- Slovenský Hydrometeorologický ústav. Správa o Kvalite Ovzdušia v Slovenskej Republik—2019 (Air quality report for Slovakia-2019). 2020. Available online: www.shmu.sk/File/oko/rocenky/2019_Sprava_o_KO_v_SR%20v3.pdf (accessed on 20 August 2024).
- Šťastný, P.; Sternová, Z.; Lapin, M. Dôsledky zmeny klímy na vykurovanie (Climate Change Impacts on Heating). Život. Prostr. 2004, 38, 250–256. [Google Scholar]
- United States Environmental Protection Agency (EPA). Nitrogen Oxides (NOx), Why and How They Are Controlled. Technical Bulletin; EPA 456/F-99-006R; Office of Air Quality Planning and Standards, Research Triangle Park; 1999. Available online: https://www3.epa.gov/ttn/catc/dir1/fnoxdoc.pdf (accessed on 22 August 2024).
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; pp. 33–38. [Google Scholar]
- US EPA Office of Research and Development. Zenodo; CMAQv4.7.1 (4.7.1); US EPA: Washington, DC, USA, 2010. [Google Scholar] [CrossRef]
- Yarwood, G.; Rao, S.; Yocke, M.; Whitten, G.Z. Updates to the Carbon Bond Chemical Mechanism: CB05, Final Report to the US EPA RT-040067. (Technical Report). 2005. Available online: https://www.camx.com/Files/CB05_Final_Report_120805.pdf (accessed on 5 October 2024).
- Binkowski, F.S. Models-3 Community Multiscale Air Quality (CMAQ) model aerosol component, 1. Model description. Geophys. Res. 2003, 108, 4183. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; Note NCAR/TN-475+STR; National Center for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar] [CrossRef]
- Dou, X.; Yu, S.; Li, J.; Sun, Y.; Song, Z.; Yao, N.; Li, P. The WRF-CMAQ Simulation of a Complex Pollution Episode with High-Level O3 and PM2.5 over the North China Plain: Pollution Characteristics and Causes. Atmosphere 2024, 15, 198. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Z.; Li, Y.; Du, X.; Qu, L.; Tang, W.; Xu, J.; Meng, F. Formation processes and source contributions of ground-level ozone in urban and suburban Beijing using the WRF-CMAQ modelling system. J. Environ. Sci. 2023, 127, 753–766. [Google Scholar] [CrossRef]
- Georgiou, G.K.; Christoudias, T.; Proestos, Y.; Kushta, J.; Pikridas, M.; Sciare, J.; Savvides, C.; Lelieveld, J. Evaluation of WRF-Chem model (v3.9.1.1) real-time air quality forecasts over the Eastern Mediterranean. Geosci. Model Dev. 2022, 15, 4129–4146. [Google Scholar] [CrossRef]
- Chelhaoui, Y.; El Ass, K.; Lachatre, M.; Bouakline, O.; Khomsi, K.; Moussaoui, T.E.; Arrad, M.; Eddaif, A.; Albergel, A. A new optimized hybrid approach combining machine learning with WRF-CHIMERE model for PM10 concentration prediction. Model. Earth Syst. Environ. 2024, 10, 5687–5701. [Google Scholar] [CrossRef]
- Mak, H. Improved Remote Sensing Algorithms and Data Assimilation Approaches in Solving Environmental Retrieval Problems. Ph.D. Thesis, The Hong Kong University of Science and Technology, Hong Kong, China, 2019. [Google Scholar] [CrossRef]
- Krajčovičová, J.; Matejovičová, J.; Nemček, V. High-resolution residential emission model for use in the air quality modelling. Meteorol. J. 2020, 23, 1. [Google Scholar]
- Geletič, J.; Benešová, N.; Belda, M.; Eben, K.; Huszar, P.; Jurus, P.; Krc, P.; Resler, J.; Vlček, O. FUME—A New Open Source Emission Processor for Air Quality Models. In Proceedings of the Air Quality 2018, Barcelona, Spain, 12–16 March 2018. [Google Scholar] [CrossRef]
- Šedivá, T. Comparison of Emission Profiles in the CMAQ Model, Konferencia Mladých Odborníkov SHMU (Conference of Young Specialists of Slovak Hydrometeorological Institute) November 2021. Available online: https://kmo.shmu.sk/ (accessed on 27 August 2024).
- Kuenen, J.J.P.; Visschedijk, A.J.H.; Jozwicka, M.; Denier van der Gon, H.A.C. TNOMACC_II emission inventory; A multi-year (2003–2009) consistent high-resolution European emission inventory for air quality modelling. Atmos. Chem. Phys. 2014, 14, 10963–10976. [Google Scholar] [CrossRef]
- Builtjes, P.J.H.; van Loon, M.; Schaap, M.; Teeuwise, S.; Visschedijk, A.J.H.; Bloos, J.P. The Development of an Emission Data over Europe and Further Contributions of TNO-MEP; Freie Universität Berlin, Institut für Meteorologie, Troposhärische Umweltforschung: Berlin, Germany, 2002. [Google Scholar]
- Yarwood, G.; Jung, J.; Whitten, G.; Heo, G.; Mellberg, J.; Estes, M. Updates to the Carbon Bond Mechanism for Version 6 (CB6). In Proceedings of the 9th Annual CMAS Conference, Chapel Hill, NC, USA, 11–13 October 2010; pp. 1–4. [Google Scholar]
- United States Environmental Protection Agency. Overview of AERO7 and AERO7i. CMAQ User’s Guide v5.3. 2021. Available online: https://github.com/CMASCenter/EPA-CMAQ/blob/main/DOCS/Release_Notes/CMAQv5.3_aero7_overview.md (accessed on 24 September 2024).
- Derková, M.; Neštiak, M.; Bellus, M.; Vivoda, J.; Španiel, O.; Dian, M.; Zehnal, R. Recent improvements in the ALADIN/SHMU operational system. Meteorol. J. 2017, 20, 45–52. [Google Scholar]
- CAMS Global Atmospheric Composition Forecasts [Data]. Available online: https://ads.atmosphere.copernicus.eu/ (accessed on 27 August 2024).
- CAMS European Air Quality Forecasts. Available online: https://ads.atmosphere.copernicus.eu/datasets (accessed on 27 August 2024).
- Centrum Dopravního výZkumu, v. v. i. 2024. Available online: https://www.cdv.cz/en/ (accessed on 6 August 2024).
- Geoportál. 2024. Available online: https://www.geoportal.sk/en/zbgis/zbgis/ (accessed on 7 August 2024).
- Information System NEIS. Available online: https://www.air.sk/en/neis.php (accessed on 7 August 2024).
- Copernicus Land Monitoring Service. CORINE Land Cover 2018 (Vector/Raster 100 m), Europe, 6-yearly. 2020. Available online: https://land.copernicus.eu/en/products/corine-land-cover/clc2018 (accessed on 7 August 2024).
- Kuenen, J.; Dellaert, S.; Visschedijk, A.; Jalkanen, J.-P.; Super, I.; Denier van der Gon, H. CAMS-REG-v4: A state-of-the-art high-resolution European emission inventory for air quality modelling. Earth Syst. Sci. Data 2022, 14, 491–515. [Google Scholar] [CrossRef]
- Guenther, A.B.; Jiang, X.; Heald, C.L.; Sakulyanontvittaya, T.; Duhl, T.; Emmons, L.K.; Wang, X. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 2012, 5, 1471–1492. [Google Scholar] [CrossRef]
- Slovak Hydrometeorological Institute. Climatological Summary of January 2017 (Zhodnotenie Mesiaca Január 2017). Available online: https://www.shmu.sk/sk/?page=2049&id=805 (accessed on 30 August 2024).
- Yang, Q.; Kim, J.; Cho, Y.; Lee, W.J.; Lee, D.W.; Yuan, Q.; Wang, F.; Zhou, C.; Zhang, X.; Xiao, X.; et al. A synchronized estimation of hourly surface concentrations of six criteria air pollutants with GEMS data. NPJ Clim. Atmos. Sci. 2023, 6, 94. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, N.R.; Shin, M.Y. Capabilities of satellite Geostationary Environment Monitoring Spectrometer (GEMS) NO2 data for hourly ambient NO2 exposure modeling. Environ. Res. 2024, 261, 119633. [Google Scholar] [CrossRef]
- Mak, H.W.L.; Laughner, J.L.; Fung, J.C.H.; Zhu, Q.; Cohen, R.C. Improved Satellite Retrieval of Tropospheric NO2 Column Density via Updating of Air Mass Factor (AMF): Case Study of Southern China. Remote Sens. 2018, 10, 1789. [Google Scholar] [CrossRef]
- Handschuh, J.; Erbertseder, T.; Schaap, M.; Baier, F. Estimating PM2.5 surface concentrations from AOD: A combination of SLSTR and MODIS. Remote Sens. Appl. Soc. Environ. 2022, 26, 100716. [Google Scholar] [CrossRef]
- Sentinel-5P. Available online: https://sentiwiki.copernicus.eu/web/s5p-mission (accessed on 27 August 2024).
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
Year | Pollutant | Period | n | Coverage [%] | Obs. Mean | R | MB | RMSE |
---|---|---|---|---|---|---|---|---|
2017 | PM10 | summer | 97.4 | 16.5 | 0.22 | −13.16 | 16.01 | |
winter | 95.3 | 41.44 | 0.46 | −31.14 | 44.27 | |||
year | 21 | 97.5 | 24.36 | 0.52 | −17.81 | 26.67 | ||
PM2.5 | summer | 95.7 | 9.54 | 0.19 | −6.37 | 8.99 | ||
winter | 95.5 | 35.75 | 0.45 | −25.72 | 37.48 | |||
year | 21 | 95.7 | 18.27 | 0.54 | −11.94 | 21.04 | ||
NO2 | summer | 91.5 | 7.21 | 0.44 | −4.81 | 8.9 | ||
winter | 94.3 | 20.3 | 0.48 | −13.61 | 21.23 | |||
year | 15 | 93 | 12.43 | 0.54 | −8.02 | 14.14 | ||
2023 | PM10 | summer | 98.6 | 15.53 | 0.56 | −8.09 | 10.86 | |
winter | 98.9 | 21.33 | 0.57 | −7.34 | 16.02 | |||
year | 34 | 97.7 | 16.85 | 0.59 | −7.17 | 12.48 | ||
PM2.5 | summer | 98.2 | 10.78 | 0.54 | −4.72 | 7.42 | ||
winter | 98.9 | 18.95 | 0.56 | −5.17 | 14.69 | |||
year | 31 | 97.9 | 12.95 | 0.60 | −4.21 | 10.01 | ||
NO2 | summer | 95.2 | 5.98 | 0.34 | −2.54 | 5.42 | ||
winter | 95.7 | 14.20 | 0.50 | −5.12 | 11.54 | |||
year | 25 | 93.6 | 9.34 | 0.56 | −3.71 | 8.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šedivá, T.; Štefánik, D. The Seasonality of PM and NO2 Concentrations in Slovakia and a Comparison with Chemical-Transport Model. Atmosphere 2024, 15, 1203. https://doi.org/10.3390/atmos15101203
Šedivá T, Štefánik D. The Seasonality of PM and NO2 Concentrations in Slovakia and a Comparison with Chemical-Transport Model. Atmosphere. 2024; 15(10):1203. https://doi.org/10.3390/atmos15101203
Chicago/Turabian StyleŠedivá, Tereza, and Dušan Štefánik. 2024. "The Seasonality of PM and NO2 Concentrations in Slovakia and a Comparison with Chemical-Transport Model" Atmosphere 15, no. 10: 1203. https://doi.org/10.3390/atmos15101203
APA StyleŠedivá, T., & Štefánik, D. (2024). The Seasonality of PM and NO2 Concentrations in Slovakia and a Comparison with Chemical-Transport Model. Atmosphere, 15(10), 1203. https://doi.org/10.3390/atmos15101203