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Abstract: To improve our understanding of the carbon balance, it is significant to study long-term
variations of all components of carbon exchange and their driving factors. Gross primary production
(GPP), respiration (Re), and net ecosystem productivity (NEP) from the hourly to the annual sums in
a subtropical coniferous forest in China during 2003–2017 were calculated using empirical models
developed previously in terms of PAR (photosynthetically active radiation), and meteorological
parameters, GPP, Re, and NEP were calculated. The calculated GPP, Re, and NEP were in reasonable
agreement with the observations, and their seasonal and interannual variations were well reproduced.
The model-estimated annual sums of GPP and Re over 2003–2017 were larger than the observations of
11.38% and 5.52%, respectively, and the model-simulated NEP was lower by 34.99%. The GPP, Re, and
NEP showed clear interannual variations, and both the calculated and the observed annual sums of
GPPs increased on average by 1.04% and 0.93%, respectively, while the Re values increased by 4.57%
and 1.06% between 2003 and 2017. The calculated and the observed annual sums of NEPs/NEEs (net
ecosystem exchange) decreased/increased by 1.04%/0.93%, respectively, which exhibited an increase
of the carbon sink at the experimental site. During the period 2003–2017, the annual averages of
PAR and the air temperature decreased by 0.28% and 0.02%, respectively, while the annual average
water vapor pressure increased by 0.87%. The increase in water vapor contributed to the increases
of GPP, Re, and NEE in 2003–2017. Good linear and non-linear relationships were found between
the monthly calculated GPP and the satellite solar-induced fluorescence (SIF) and then applied to
compute GPP with relative biases of annual sums of GPP of 5.20% and 4.88%, respectively. Large
amounts of CO2 were produced in a clean atmosphere, indicating a clean atmospheric environment
will enhance CO2 storage in plants, i.e., clean atmosphere is beneficial to human health and carbon
sink, as well as slowing down climate warming.

Keywords: CO2 balance; gross primary production; respiration; net ecosystem productivity; empirical
model; solar-induced fluorescence

1. Introduction

Global warming (especially in the most sensitive regions, including Three Polar) and its
causes are a great concern for governments and scientists [1–6]. Global CO2 concentrations
are rising since the Industrial Revolution in the 19th century. CO2 accounts for 70% of
greenhouse gas (GHG) emissions [7], and its emission should be critically controlled in
the processes to achieve regional and global carbon neutrality [8,9]. It is also vital to
thoroughly investigate the regional and global ecosystem carbon balance and their long-
term variations, as the terrestrial biosphere can sequester 20%–30% of global anthropogenic
CO2 emissions [10].
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As a reliable technique, the eddy covariance (EC) is extensively used to measure and
validate CO2 exchange during different time scales (half-hour to several tens of years) at
sites with different types of terrain in the world, such as ChinaFLUX, AsiaFIux, AmeriFLUX,
and CARBOEUROPE [11–19]. Flux data are further commonly used in carbon cycle model
developments and evaluations, investigating the processes, mechanisms, and potential
effects of CO2 on climate change. Though much progress has been made, there are still
challenges in EC measurements and model simulations, especially how to reduce their
large uncertainties [20] and how to improve data quality [19,21,22]. The problem of surface
energy imbalance/nonclosure still needs to be better resolved [23–25]. Thus, it is important
to comprehensively study long-term variations and reasons for carbon balance and its
driving factors.

Based on measurements of net carbon exchange, many types of models are developed
and applied to (1) calculate net ecosystem exchange (NEE), net ecosystem productivity
(NEP), respiration (Re), and gross primary production (GPP) [26–35]; (2) analyze their
variations [35–41]; and (3) investigate their responses to the driving factors (light, tem-
perature, water, drought, land cover change, etc.) [26–29,38–41]. These models include
empirical models, sophisticated models [32,42–44], and atmospheric inversions [45,46]. The
process-based dynamic global vegetation models (DGVMs) are commonly used to compute
the land carbon sink in reasonable line with the global carbon budget. Remote sensing and
geographic information system (GIS) data-based methods provide useful tools to study
carbon balance. Machine-learning algorithms (e.g., extreme gradient boosting (XGBoost)
and artificial neural networks (ANN)) are also applied as promising methods [47–49].
Although much progress has been made, there are still large differences between dif-
ferent models [44] and large uncertainties in CO2 flux observations and model predic-
tions [11,50–55]. Additionally, many hypotheses are still used in complex models [56]. Res-
piration is an important part of carbon cycling [57] and is necessary to be well studied, e.g.,
the partitioning between the components of the CO2 atmospheric budget [58]. NEP (or
NEE) as a significant indicator of ecosystem carbon source and sink should be evaluated
as well.

The greening pattern during 2000–2017 worldwide is markedly evident in China [59].
To fulfill carbon peak and carbon neutrality, more and more plants and grasses will
be cultivated in China. China hosts several typical ecosystems, and great progress has
been achieved by Chinese scientists on China’s land carbon exchange. For example, the
number of sites in the ChinaFLUX network between 2002 and 2022 increased to 81, in-
cluding 25 forest stations, 19 grassland stations, and 18 agriculture stations. Numerous
flux tower measurement and model studies, along with fruitful results, have been con-
ducted [27,30,31,33,35–37,39]. Since 1982, 1.65 ± 0.76 PgC has been stored in forest [60]. Fur-
ther studies are required to investigate ecosystems’ carbon budgets, especially the long-term
variations of GPP, Re, and NEP [27,39,61] and the reasons for these variations [26,60–63]. It
will benefit us to make effective policies to achieve the Dual Carbon Goals, along with air
pollution reduction. Satellite remote sensing provides useful information to study carbon
balance and its related issues over large space. Satellite solar-induced fluorescence (SIF) as
a by-product of photosynthesis and an effective proxy for plant photosynthesis has been
applied to calculate GPP for ecosystems [64,65] and to monitor plant stress and growth
states [66,67]. Through correlation analysis with satellite and in situ GPP, the SIF product
shows good performance in estimating GPP [68].

This study made further progress based on our previous ones [40,41] and applied our
developed empirical models to investigate long-term variation features of carbon balance
in the Qianyanzhou forest region. More introductions about EC measurements and their
uncertainties, model simulations, and their uncertainties of GPP, Re, and NEP/NEE are
reported in studies [40,41].

As an important carbon sink, a subtropical coniferous forest in China was chosen
for this study. Our aims were to study the long-term variations of GPP, Re, and NEP
over 15 years, as well as their variation patterns and mechanisms, and then propose
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suggestions for achieving win–win effects in dual carbon goals, reducing air pollutants,
and slowing down climate warming. Therefore, we (1) estimated GPP, Re, and NEP values
in 2003–2017 with the applications of our previously developed empirical models of GPP,
Re, and NEP (EMGPP, EMRe, EMNEP) and the use of the observed solar radiation and
meteorological variables, (2) further evaluated the performances of EMGPP, EMRe, and
EMNEP, (3) studied long-term variations of GPP, Re, and NEP during 2003–2017 and
analyzed the reasons between their simulations and observations, as well as providing
some beneficial recommendations, (4) investigated the reasons for their variations due to
their driving factors, (5) investigated (a) GPP under different atmospheric conditions and
which condition is the best to improve carbon storage in the forests and (b) is there any
way to store more carbon in the plants and improve air quality? Then, (6) quantified the
relationships between GPP and SIF and applied them to estimate GPP.

2. Instrumentation and Methods
2.1. Site Description

CO2 fluxes, solar radiation, and meteorological parameters were measured at a 45 m
tower in the Qianyanzhou subtropical coniferous forest, Taihe County, Jiangxi Province
(26◦44′48′′ N, 115◦04′13′′ E) in China (Figure 1) since 2003 [69]. Solar radiation, meteoro-
logical variables, and BVOC (biogenic volatile organic compounds) emission fluxes were
also observed at this tower from 22 May, 2013–4 January, 2016 [70]. Around the tower,
the dominant trees and shrubs, forest coverage, canopy height, and mean slope are intro-
duced in [70]. Annual total precipitation is 1485.1 mm and annual mean air temperature
is 17.9 ◦C [71]. The annual totals of global solar radiation and PAR are 4579 MJ m−2 and
7998 mol m−2 in 2013, respectively [70].
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Figure 1. A sketch map about the site of Qianyanzhou subtropical coniferous forest (red point),
located in Taihe County, Jiangxi Province, China.

2.2. Instruments and Measurements

The EC system is composed of a 3-D sonic anemometer (Model CSAT3, Campbell
Scientific Inc., Logan, UT, USA), an open-path CO2/H2O analyzer (Model LI-7500, Li-
COR Inc., Lincoln, NE, USA), and a CR5000 datalogger (Campbell Scientific Inc., Logan,
UT, USA). The EC system is installed at 23.6 and 39.6 m above ground to measure CO2
flux in Qianyanzhou subtropical coniferous forest [69,72], and the hourly observational
data (NEE/NEP, Re, and GPP) at 23.6 m from 1 January 2003, to 31 December 2017, were
used in this study. Radiation (upward and downward short wave solar radiation, and
upward and downward longwave radiation) and PAR were measured using radiometers
(a four-component net radiometer, model CNR1, Kipp and Zone, Delft, ZuidHolland, the
Netherlands; LI-190SB Quantum Sensor, LI-COR, Inc., Lincoln, NE, USA) and recorded
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by a data-collection system (41.6 m for shortwave and longwave solar radiation, and
23.6 m for PAR). Solar radiation (global radiation Q, direct radiation D, scattered radiation
S = Q−D × cos (Z), Z is the solar zenith angle, and PAR) and meteorological variables
were also measured by another set of solar radiation systems (Bai’s group) from 21 May
2013–31 December 2016, at the Qianyanzhou station [70]. Meteorological variables (air
temperature (T, ◦C), relative humidity (RH, %), and water vapor pressure (E, hPa)) from
2003–2017 were obtained using a sensor (HMP45C, Vaisala, Helsinki, Finland) [72,73].
Figure 2 displays CO2 flux, solar radiation, and meteorological measurement instruments
operated by the Qianyanzhou experimental station and Bai’s group, respectively.
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Figure 2. The eddy covariance (EC, up left) and solar radiation measurement (up right) systems
in Qianyanzhou subtropical coniferous forest operated by the Qianyanzhou experimental station.
Another set of solar radiation (global radiation, direct radiation, and PAR) measurement systems
(bottom left) located at a top of the building, and a HOBO weather station (bottom right) located at a
meteorological observation station operated by Bai’s group.

2.3. Processing and Usage of Flux Data

ChinaFLUX has used several mature methods to study the performance of the ob-
servational system and data quality [40,72,74]. The methods of raw data processing, data
gap filling of CO2 flux in the daytime and nighttime, and the threshold have been fully
reported [40,72,75–80] and were employed in this study.

In this study, a multi-source-driven SIF product (named GOSIF) was used to evaluate
the relationship between SIF and GPP [81], which is based on Orbiting Carbon Observatory-
2 (OCO-2) SIF data, Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation
index data, and Modern-Era Retrospective analysis for Research and Application (MERRA-
2) meteorological data. The SIF product provides a spatial resolution of 0.05◦ and a temporal
resolution of 8 days on a global scale (see GOSIF website at https://globalecology.unh.edu/
data/GOSIF.html, accessed on 1 October, 2024). The long time series of the SIF product
with a temporal extent from 2000 to 2022 makes it a powerful dataset for ecosystem change

https://globalecology.unh.edu/data/GOSIF.html
https://globalecology.unh.edu/data/GOSIF.html
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research. Here, we have selected the SIF product at 8-day temporal for the period from
2003 to 2017 within a 1◦ radius of the Qianyanzhou station to analyze the relationships
between SIF and GPP under different atmospheric conditions.

2.4. Applications of Empirical Models of GPP, Re, and NEP

On the basis of the PAR balance principle, the empirical models (EMGPP, Equation
(1); EMRe, Equation (2); EMNEP, combined Equations (1) and (2), NEP = GPP−Re) in
Qianyanzhou subtropical coniferous forest have been developed using the hourly observa-
tional data (fluxes measured by the Qianyanzhou station, PAR, S/Q, and meteorological
parameters measured by Bai’s group) from 22 May 2013–31 December 2014. These empirical
models were then used to calculate GPP, Re, and NEP from 1 January 2013–31 Decem-
ber 2016, also using hourly solar radiation and meteorological parameters measured by
Bai’s group. Their simulations were compared and evaluated in different ways (from
hourly to daily, monthly, and annual values in different years, 2013–2016) and showed
reasonable performances (the statistical metrics, including coefficient of determination (R2),
average and maximum of the absolute relative bias, normalized mean square error (NMSE),
standard deviations of calculated and observed fluxes, mean absolute deviations (MAD),
and root mean square errors (RMSE)) of GPP, Re, and NEP (including the hourly, daily,
monthly, and annual values), and reproducibility of their seasonal and annual variations
from 2013–2016 [40,41]. Considering the limitation of direct or diffuse solar radiation at
stations in China, 2-factor empirical models of GPP, Re, and NEP (i.e., without scattering
term) were also developed for their practical applications. Generally, the simulations of
GPP, Re, and NEP were in reasonable agreement with the measurements (e.g., 20–50% for
CO2 flux measurements) and popular used models (e.g., standard deviations of calculated
and observed fluxes, RMSE). The RMSE simulated using the Yale Interactive Terrestrial
Biosphere (YIB) model was 3.21 gC m−2 day−1 (57 evergreen coniferous forests), which is
in good line with that of 3.55 and 3.44 gC m−2 day−1 from 2013–2016, which was calculated
using 3-factor and 2-factor EMGPP [40]. Annual GPP, RE, and NEP estimates overestimated
the observations from 2013–2016 by 31% and 29% for GPP, 30% for Re, and 22.0% and 27.0%
for NEP, respectively, using the 3-factor and 2-factor models [40,41]. In more detail, the
empirical models (EMGPP, EMRe, and EMNEP) considered the two atmospheric condi-
tions (described by a scattering factor, S/Q), S/Q < 0.5 and S/Q ≥ 0.5, representing low
or high gas, liquid, and particle (GLP) loads in the atmosphere, corresponding to a clean
atmosphere (low amounts of clouds, aerosols, etc., along with strong solar radiation and
high air temperature) or misty atmosphere (a large number of clouds, aerosols, etc., as well
as low solar radiation and air temperature), respectively, and combined them together for
the simulations of GPP, RE, and NEP under realistic atmospheric conditions (S/Q = 0–1).

e−0.1aGPPtm × cos (Z) = A1PAR + A2e−kWm × cos (Z) + A3e−S/Q + A0 (1)

e−0.1bRetm × cos (Z) = B1PAR + B2e−kWm × cos (Z) + B3e−S/Q + B0 (2)

where in the GPP term (e−0.1aGPPtm), the attenuation coefficient for CO2 in the atmosphere
a is 1 mg CO2

−1 m2 s−1), m is the optical air mass, GPP (mg CO2 m−2 s−1) is the hourly
GPP in the sampling period (t, h), and 0.1 is a normalizing coefficient for GPP. In the
photochemical term (e−kWm), W = 0.021E × 60, E is the average water vapor pressure
(hPa) at ground during the sampling period and k is the mean absorption coefficient of
water vapor (0.70–2.845 µm). In the scattering term (e−S/Q), S/Q describes the relative
amounts of atmospheric GLPs. b = 1 mg CO2

−1 m2 s−1. Re is the hourly respiration in
the sampling period. Coefficients of Ai and Bi are determined using hourly observational
datasets (solar radiation, water vapor pressure, GPP, and Re). More detailed results about
the empirical model (EMGPP, EMRe, and EMNEP) developments and evaluations are
reported in references [40,41].

Based on previously reasonable simulations of GPP, Re, and NEP from 2013–2016 [40,41],
these empirical models (EMGPP, EMRe, and EMNEP) were further applied to investigate
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GPP, Re, and NEP and their long-term variations from 1 January 2003–31 December 2017
in this forest using the hourly observational data (CO2 fluxes, solar radiation, and mete-
orological variables) measured by the Qianyanzhou station. Figure 3 shows a graphical
diagram of the study.
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Firstly, the hourly GPP and Re values from 2003–2017 under all sky conditions were
computed using the 2-factor EMGPP and EMRe, respectively, considering the direct solar ra-
diation was not measured by the Qianyanzhou station. Secondly, the hourly NEPs under all
sky conditions were calculated as the difference between GPP and Re (NEP = GPP − Re).

Under all sky conditions, two types of atmospheric conditions (S/Q < 0.5 and S/Q ≥ 0.5)
were also considered. The EMGPP or EMRe used different coefficients to describe different
roles of PAR and photochemical terms to GPP or Re in two S/Q situations, respectively [40,41].

Due to the lack of S/Q from 2003–2017, AF factor (Equation (3) was used as an indicator
of S/Q and to identify atmospheric conditions (i.e., high or low GLPs).

AFi = 1−PARi × m/PARMmax (3)

where AFi and PARi were hourly averages of AF and the observed PAR during one h,
respectively. PARMmax is the maximum of the observed PAR in a month.

When using the empirical models of GPP and Re, AFi < 0.5 and ≥0.5 were applied
to represent the conditions of S/Q < 0.5 and S/Q ≥ 0.5, respectively, and combined
considering PAR level (high or low). The range of AFi was from 0 to 1, corresponding to
that of S/Q from 0 to 1.

3. Results
3.1. Model Simulations of GPP, Re, and NEP under All Sky Conditions from 2003–2017

Under all sky conditions, the hourly GPP, Re, and NEP values were estimated using
the 2-factor empirical models of GPP, Re, and NEP, respectively, together with the measured
PAR and water vapor pressure as inputs. The coefficients of EMGPP or EMRe for two
atmospheric conditions (S/Q < 0.5 or S/Q ≥ 0.5), and their combination were suitable to
the realistic S/Q situations (identified using AF as AF < 0.5 or AF ≥ 0.5 in this study), which
were used to investigate variations of GPP, Re, and NEP for relatively clean, polluted, and
realistic atmospheric conditions (S/Q = 0–1), respectively. These corresponding simulations
of GPP, Re, and NEP were expressed as GPPcal1, GPPcal2, GPPcal3, Recal1, Recal2, Recal3,
NEPcal1, NEPcal2, and NEPcal3, respectively.

3.1.1. Hourly Simulations of GPP, Re, and NEP

The hourly GPP, Re, and NEP values from 1 January, 2003, to 31 December, 2017,
were calculated using EMGPP, EMRe, and their combinations (i.e., NEP = GPP − Re) for
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atmospheric conditions at AF < 0.5 and AF ≥ 0.5, as well as realistic atmospheric conditions,
respectively. Tables 1 and 2 show their hourly results and statistical metrics, including
averages of calculated and observed GPP, Re, and NEP, the ratios of the calculated to the
observed value (cal/obs), standard deviations of calculated and observed fluxes (σcal and
σobs), mean absolute deviations (MAD, in mgCO2 m−2 s−1 and percentage of the mean
measured value, %), and root mean-square errors (RMSE, in mgCO2 m−2 s−1 and the
percentage of mean measured value).

Table 1. Hourly mean estimates of GPP, respiration (Re), and net ecosystem productivity (NEP)
(shown in lines 2, 3, and 4) under relatively clean, polluted, and realistic atmospheric conditions (cal1,
cal2, cal3), respectively, and their observed values (obs) in a subtropical coniferous plantation from
2003–2017, statistical metrics, i.e., the averages of the calculated and observed GPP, the corresponding
ratios of the calculated to observed GPP (cal/obs, R1, R2, R3), normalized mean-square error (NMSE),
standard deviations of calculated, and observed GPP (σcal and σobs), together with mean bias errors
(MAD, mgCO2 m−2 s−1, and %) and root mean-square errors (RMSE, mgCO2 m−2 s−1, and %).

RMSE MAD
σobs σcal NMSE R3 R2 R1 obs cal3 cal2 cal1 Model

(%) (mgCO2
m− 2 s−1) (%) (mgCO2

m−2 s−1)

69.51 0.301 52.75 0.228 0.299 0.333 0.434 1.114 1.035 1.931 0.433 0.482 0.447 0.835 EMGPP

174.98 0.367 141.04 0.215 0.073 0.320 2.888 1.060 0.592 3.611 0.153 0.162 0.090 0.551 EMRe

41.58 0.247 35.85 0.213 0.259 0.155 0.265 0.651 0.598 0.472 0.998 0.761 0.727 0.761 EMNEP

Table 2. Same as Table 1, but for daily GPP, Re, and NEP simulations.

RMSE MAD
σobs σcal NMSE R3 R2 R1 obs cal3 cal2 cal1 Model

(%) (mgCO2
m− 2 s−1) (%) (mgCO2

m−2 s−1)

55.81 2.643 42.82 2.028 2.372 3.338 0.280 1.114 1.035 1.931 4.736 5.276 4.901 9.144 EMGPP

151.01 2.533 126.42 2.121 0.801 3.192 2.159 1.056 0.592 3.611 1.678 1.771 0.993 6.058 EMRe

39.06 2.547 34.99 2.282 1.411 0.608 0.235 0.650 0.599 0.473 6.522 4.240 3.906 3.084 EMNEP

3.1.2. Daily Sum Simulations of GPP, Re, and NEP

The daily sums of GPP, Re, and NEP from 2013–2017 were obtained from their sums
of hourly values. The results are shown in Table 2. The RMSE and MAD for daily sums and
hourly average of Re were much larger than that of GPP and NEP, and it was mainly caused
by the lower Re values compared to that of GPP and NEP. Generally, the daily sums of
GPP, Re, and NEP agreed with the observations under realistic atmospheric conditions. For
example, the empirical models overestimated the observed (mean) GPP and Re by 11.4%
and 5.6%, respectively, and they underestimated the (mean) observed NEP by 35.0%. In
contrast, the empirical models overestimated the (mean) observed GPP and Re by a factor
of 1.93 and 3.61 for relatively clean atmospheric conditions (low GLP loads) and 1.04 and
0.59 for more polluted atmospheric conditions (high GLP loads), respectively. This indicates
that GPP would increase evidently under a relatively clean atmosphere and decrease under
a more polluted atmosphere. In other words, more CO2 (e.g., GPP) would be produced by
increased PAR utilization through vegetation photosynthesis and microorganism activity
(respiration, e.g., bacterial decomposition of a litter) and then stored in the ecosystem under
a clean atmosphere. The empirical models exhibited similar performances for polluted
atmospheric conditions as for realistic atmospheric conditions, and it was attributed to the
closer GLP loads, e.g., the atmosphere was in high GLP levels in Qianyanzhou coniferous
plantation from 2003–2017.
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It is found that RMSE values were 2.60 gC m−2 and 55.81% for the simulations of the
mean daily sums of GPP from 2003–2017, which reasonably agreed with the simulations
from 2013–2016, 3.55 gC m−2 and 87.60% using the 3-factor EMGPP and solar radiation
and meteorological inputs measured by another measurement system (Bai’s group), and
3.43 gC m−2 and 83.23% using the 2-factor EMGPP, respectively [40]. Under all sky condi-
tions, the simulated Re values were higher than the observations from 2003–2017, similar to
those from 2013–2016. However, the NEP simulations were underestimated from 2003–2017,
which were different from that (overestimation) from 2013–2016, i.e., the calculated Re
values overestimated the observations by ~30% for the mean hourly and annual sums in
4 years [41].

3.1.3. Monthly Sum Simulations of GPP, Re, and NEP

Similarly, the monthly sum simulations of GPP, Re, and NEP were computed and
displayed in Figures 4–6. The empirical models of GPP, Re, and NEP can capture their
seasonal variations under three atmospheric situations: higher in summer and lower in
winter. It was found that (1) much higher carbon was predicated (about two times the
observed GPP) under relatively clean atmospheric conditions (low S/Q, monthly mean
ratio GPPcal1/GPPobs from 2003–2017 = 1.93), e.g., a clean atmosphere is beneficial to carbon
dioxide storage in the plants; (2) this ratio was 1.04 and 1.11 for polluted (high S/Q) and
realistic atmospheric conditions, i.e., less GPP was fixed in the ecosystem under polluted
atmosphere or high GLP load conditions. Therefore, a cleaner atmosphere and reducing
high GLP loads in the atmosphere are synergistically effective and beneficial methods
to enhance carbon storage in the ecosystem. A similar result is also reported by Yang
et al. [82]. (3) the simulated GPP values (GPPcal3) under realistic atmospheric conditions
were in reasonable line with the observations, and most of the GPPcal3 were within two
times standard deviations of the observed GPPs. (4) similar simulations as GPPcal3 were
also obtained for GPPcal2, revealing that the realistic atmospheric conditions were close to
that under high GLPs conditions (i.e., S/Q ≥ 0.5), i.e., the atmospheric and environmental
conditions in the Danzhou Region were under high GLP loads.
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with error bars showing two times standard deviations of the observed GPPs from 2003–2017.
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Figure 6. Observed and calculated monthly sums of NEPs using the 2-factor EMGPP with coefficients
at S/Q < 0.5, S/Q ≥ 0.5, and their combinations (NEPobs, NEPcal1, NEPcal2, and NEPcal3, respectively),
with error bars showing two times standard deviations of the observed NEPs and EMRe from
2003–2017.

The EMRe overestimated the measured respirations by 5.52% in the averages from
2003–2017, but with a larger variation range. The EMNEP underestimated the NEPs by
52.71%, 40.09%, and 34.99%, respectively, for the three atmospheric conditions (clean, pol-
luted, and realistic). Large differences also existed in NEP simulations such as GPP. The
reasons were (1) more complicated processes happened in daytime and nighttime respira-
tions and then influenced NEP; (2) both GPP and daytime respirations were influenced by
PAR [40,41] and GPP was more sensitive to the changes in PAR than other factors (E, S/Q);
(3) the observed PAR from 2003–2017 by the station may have large measurement errors,
which may be the main reason. It can be speculated from the results that the simulations
of monthly sums of Re, as well as NEP using EMRe and EMNEP and measured PAR by
Bai’s group, were in reasonable agreement with their observations from 2013–2016 [40,41];
(4) extreme positive and negative observed respirations were removed in the quality control,
resulting in the small change ranges; (5) there were data gaps in the observations, but this
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issue did not affect empirical model developments of EMGPP, EMRe, and EMNEP [40,41];
and (6) estimation errors in empirical models.

3.1.4. Annual Sum Simulations of GPP, Re, and NEP

The annual sum simulations of GPP, Re, and NEP were calculated and shown in
Figures 7–9. Similar phenomena and estimates were also found for their annual sums as
for the monthly sums. The mean annual ratios were 1.93, 1.04, and 1.11 for GPPcal/GPPobs
under three atmospheric conditions from 2003–2017, respectively, 1.06 for Recal/Reobs
under the realistic atmospheric conditions, and 0.473, 0.599, and 0.650 for NEPcal/NEPobs
under three atmospheric conditions. Thus, the empirical models also performed better
simulations for Re (with a relative bias of 5.52%) and underestimated annual sums of
NEP by 34.99% under realistic atmospheric conditions. The empirical models captured
the peaks of GPP and Re in 2006, 2010, and 2016. The simulations of annual sums of
NEP exhibited similar variations for polluted and realistic atmospheric conditions; the
observed GPP and NEP in 2016 had some measurement problems, which are reflected
by the simulations [40,41]. In general, the empirical models of GPP, Re, and NEP better
reproduced their interannual variations.
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Figure 9. Observed and calculated annual sums of NEP using the 2-factor EMGPP with coefficients
at S/Q < 0.5, S/Q ≥ 0.5, and their combinations and EMRe with error bars showing two times
standard deviations of the observed NEPs (NEPobs, NEPcal1, NEPcal2, and NEPcal3, respectively) from
2003–2017.

The ratio GPPcal/GPPobs of 1.93 and GPP decreases with the increase in S/Q (rep-
resentative of all atmospheric GLPs) [40], which reveals that a clean atmosphere is more
beneficial to large GPP production and storage in plants than a polluted atmosphere. A
similar phenomenon is also reported where fire pollution causes a GPP reduction [83].
Therefore, we strongly recommend controlling the increase of all kinds of GLPs in the
atmosphere (e.g., GHGs, as well as air pollutants, aerosols, and VOCs (volatile organic
compounds)) so as to mitigate climate warming. In the future, with the extensive imple-
mentation of the afforestation strategy in China and other countries in the world, more
and more BVOCs will be emitted from vegetation, resulting in fast increases of ozone,
secondary organic aerosols (SOA), and other new GLPs, i.e., the increases of atmospheric
GLPs [65,84–86]. So, a stronger control of GLP emissions and production than before is
suggested. This point of view is supported by a study that a clear positive and non-linear
relationship exists between air temperature and total atmospheric GLPs for some represen-
tative stations, Qianyanzhou, Ankara (39◦58′21.7′′ N, 32◦51′49.3′′ E), Sodankylä (67.367 N,
26.630 E) in the Arctic, and Dome C (75◦06′ S, 123◦21′ E) in the Antarctic, indicating an
important mechanism that air temperature will decrease with the decrease of all types of
chemical compositions in the atmosphere [87].

3.1.5. Long-Term Variations of Annual Sums of GPP, Re, and NEP

Under all sky conditions (i.e., realistic atmospheric conditions) from 2003–2017, the
simulated and observed annual sums of GPP increased by 1.04% and 0.93%, respectively.
Similarly, the estimated and observed annual sums of Re increased by 4.57% and 1.06%,
respectively, whereas the computed and observed annual sums of NEP decreased by 0.18%
and 0.01%, respectively. Considering NEE = −NEP, the calculated and observed annual
sums of NEE increased by 0.18% and 0.01%, respectively, indicating that a carbon sink
increased in the Qianyanzhou subtropical coniferous forest from 2003–2017. The above
results manifested that a carbon sink increased in the Qianyanzhou subtropical coniferous
forest from 1985 to 2017. Though annual sums of NEP were underestimated, similar long-
term variations were found for the simulated and observed NEP. In addition, long-term
variations of the simulations of GPP and Re were in agreement with their measurements.

As for the long-term variations of driving factors of GPP, RE, and NEP, annual averages
of PAR and air temperature in 2003–2017 decreased by 0.28% and 0.02% (corresponding to
0.06 ◦C), respectively, and annual mean water vapor pressure increased by 0.87% (Figure 10).
Therefore, the increase in water supply (e.g., precipitation, soil moisture, vapour pressure
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deficit, and canopy water content) contributed to the increases in the calculated and
observed annual sums of GPP and Re [40,88–90]. It is known that many factors (light, T,
RH, water, O2, and CO2 concentrations, etc.) control the processes of GPP, Re, and NEP,
and the PAR energy controls the main processes and the interactions between GPP, Re, NEP,
and their other driving factors (e.g., T, RH, and E) through different ways and mechanisms
in the atmosphere, plants, and soil. PAR energy balance at the canopy level can capture and
describe these multiple and dynamic interactions from the hourly to annual time scales,
and some detailed mechanisms of PAR use are reported in papers [40,41] and this study.
Therefore, the positive and negative responses of GPP, Re, and NEP to their driving factors
are easier and much more accurate to be determined using the PAR energy method than
each single-direction specific process studying method.
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3.2. Relations between GPP and SIF and Its Application to Calculate GPP

The strong relationships (most linear) between GPP and satellite SIF are found in
various forests and can be used to estimate GPP [91–96]. For example, the square of the
correlation coefficient (R2) is in the range of 0.62–0.92 in evergreen forests [91]. The rela-
tionships between GPP and SIF were studied using the calculated monthly GPP (GPPcal1,
GPPcal2, and GPPcal3, representing relatively clean, realistic, and polluted atmospheric con-
ditions, respectively) and monthly SIF at this subtropical coniferous forest. Firstly, strong
linear correlations were found (Figure 11). Stronger correlations were obtained between
GPPcal2, GPPcal3, and SIF (R2 = 0.912, 0.900) than between GPPcal1 and SIF (R2 = 0.599),
indicating that better correlations existed between GPP and SIF for realistic and polluted
atmospheric conditions, revealing that (1) the representative atmosphere in this subtrop-
ical coniferous forest was the atmospheric conditions at S/Q ≥ 0.5, and the atmosphere
had very high GLP loads (more aerosols, clouds, misty, etc.). For example, the hourly
average of S/Q was 0.85 from May 2013 to December 2016 [40]; (2) the estimated GPP
and satellite SIF have better temporal and spatial consistency under realistic and polluted
atmospheric conditions.

In addition, the linear correlation between the observed monthly GPP and monthly
SIF was 0.8460, which was lower than that between GPPcal2, GPPcal3, and SIF, indicating
that the calculated GPP (GPPcal2, GPPcal3) using EMGPP can provide more reasonable
estimates of GPP, as the SIF was derived from another independent data source, and some
advantages to solve unavoidable shortages in GPP measurements (e.g., in 2016) [40].

Secondly, larger correlations were found for non-linear correlations between calculated
monthly GPP and monthly SIF (Figure 12). R2 was 0.618, 0.915, and 0.914 between GPPcal1,
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GPPcal2, GPPcal3, and SIF. Similarly, higher non-linear correlations were also obtained
between GPPcal2, GPPcal3, and SIF than those between GPPcal1 and SIF.
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The R2 values between the observed monthly GPP and monthly SIF were 0.895 for the
non-linear relationship and 0.846 for the linear relationship. These values were smaller than
the corresponding R2 between GPPcal2, GPPcal3, and SIF. This indicates that the non-linear
GPP/SIF can better describe the inherent interactions associated with the processes of GPP
and SIF than the linear GPP/SIF.

Using Equations (4) and (5) determined by linear and non-linear fitting of the monthly
estimated GPP (GPPcal3 l, and GPPcal3 n) and the monthly SIF, the monthly sums of GPP
were calculated (Figure 13). Generally, the GPP estimates were in reasonable agreement
with those calculated using EMGPP. The ratio of GPPcal3 l/SIF was 1.29 (range from
0.52–10.16), and GPPcal3 n/SIF was 1.07 (−1.97–7.61). The estimated GPP using GPP/SIF
and EMGPP methods can better reproduce the seasonal variations in GPP. Their GPP
simulations with the larger ratios appeared in winter seasons (December and January), and
this was mainly caused by low GPP.

GPP = 739.21 × SIF + 40.585 (R2 = 0.903) (4)

GPP = 87.439 × ln(SIF) + 354.09 (R2 = 0.914) (5)

where GPP and SIF are the monthly sums of GPP and monthly mean SIF, respectively.
Furthermore, the annual sums of GPP were also obtained, and both simulation per-

formances were significantly improved. The relative errors were 5.20% (0–15.33%) and
4.88% (0.15–13.23%) when using linear and non-linear Equations (1) and (2), respectively.
Therefore, both GPP/SIF methods captured the annual sums of GPP and can be used as
an additional tool, and the non-linear GPP/SIF method showed a slightly better perfor-
mance than the linear method (for monthly and annual GPP). It was due to GPPcal3 l/SIF or
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GPPcal3 l providing a more detailed description of the direct and diffuse PAR roles related
to canopy structure, while the EMGPP expressed the multiple interactions between PAR
and absorbing and scattering GLPs, and the reflections between canopy, land, and the atmo-
sphere from sunrise to sunset [40]. However, most of the SIF obtained by popular methods
were limited to these important factors that were not well-described, as many factors affect
the accurate SIF quantification contributed by the whole canopy, e.g., observation angle,
light absorption, multiple light scattering, and canopy structure [91,95–99]. It should also be
noted that the non-linear relationship better revealed the inherent connections between the
low GPP and low SIF, corresponding to the winter season and low solar zenith angle during
the day. Under these specific conditions, the diffuse radiation and high atmospheric GLPs
play significant roles in GPP, which can be seen from the sensitivity tests using EMGPP and
larger GPP changes with the change in S/Q (representing atmospheric GLPs) at high S/Q
levels compared to that at low S/Q [40]. The hourly processes of GPP, light absorption, and
scattering (i.e., the GPP, photochemical, and scattering terms) in the atmosphere, as well as
the canopy, are described in empirical models of GPP, Re, and NEP, especially using the
optical air mass to describe the optical length and its hourly changes from sunrise to sunset.
All of these calculations describe the light distributions of absorption and scattering under
all sky conditions [40,41]. The above non-linear relationship was mainly caused by PAR
transferring in relative curve lines in the realistic atmosphere, especially around the early
morning and late afternoon.

The long-term variations of the annual sums of GPP and annual mean SIF from
2003–2017 were investigated. They shared a similar increase trend of 2.00%, 1.97%, and
1.04% per year for the calculated GPPcal3 l, GPPcal3 n, and GPPcal3, respectively, and 0.93%
for GPPobs. The increase in GPP was mainly caused by the increase in water vapor
(0.87% per year), which was consistent with the sensitivity analyses using EMGPP. GPP
increases/decreases with the decrease/increase in PAR and GPP increases/decreases with
the increase/decrease in water vapor [40]. The annual mean PAR and air temperature were
decreased by 0.30% and 0.02% per year from 2003–2017, respectively. It is reported that
global solar radiation decreased at JiAn city (~20 km away from the Qianyanzhou station)
from 2003–2015 [100].
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4. Discussion
4.1. Possible Reasons for the Underestimations of NEP

More detailed analyses for the underestimations of NEP are provided here. The
GPP and Re simulations from 2003–2017 and 2013–2016 using the measured dataset of
solar radiation and meteorology [40] (Bai’s group) exhibited good reproducibility, but a
larger variation ranges more for Re estimates than the observations. This discrepancy
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might be due to the data processing of screening out extreme positive and negative Re
values [41,67,69,101]. It was slightly strange for the larger underestimations of NEPs from
2003–2017, compared to the overestimations of NEPs from 2013–2016 [40,41]. It may be
caused by the calculation of NEP = GPP − Re, positive and negative Re values during a
day, and too many factors affect respiration processes, e.g., PAR, T, RH, E, etc. In addition,
the measurements of PAR may be an important reason because GPP (as well as Re and
NEP) is most sensitive to the changes in PAR [40], but the solar radiation sensors on the
platform in the flux tower are very difficult to keep daily cleaning, maintenance, horizontal
levels, and regular calibration from 2003–2017. For example, the PAR sensor was attenuated
annually by about 3.6% [73]. In contrast, the NEP simulations from 2013–2016 provided
reasonable overestimates as GPP and NEP simulations using the newly calibrated solar
radiation sensors and making timely cleaning and maintenance [70].

The PAR comparison was performed between the measurements from the PAR sen-
sors of the Qianyanzhou station and another set of solar radiation systems (Bai’s group,
described as PARQYZ, PARB, respectively) from May 2013 to December 2016. As shown in
Figure 14, two PAR observations varied in similar patterns generally, but monthly PARB
values were a little larger than PARQYZ, indicating that the PAR sensor at the Qianyanzhou
station requires calibration and timely maintenance. Additionally, it is suggested that
the PAR sensor can also be timely calibrated using a new calibration method described
in [102] for high-quality observations of solar radiation at this station. Regular and timely
calibration and maintenance of solar radiation sensors on flux tower platforms in other
locations worldwide are recommended. This will ensure accurate estimation of carbon
exchange using reliable station measurement data and a variety of models.
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The empirical model of global solar radiation was developed using the hourly ob-
served data (solar radiation and meteorology) from 2008–2011 at the Sodankylä station in
the Antarctic and then applied to estimate global solar radiation from 2000–2018. Generally,
reasonable performance was obtained [5]. A similar empirical model of Q was also devel-
oped using the hourly observed data from 2008–2011, and a little better performance from
2006–2016 was exhibited at the Dome C station in the Arctic [5]. These results indicated
that the accurately observed solar radiation and strict routine maintenance of the solar
sensors (e.g., Baseline Surface Radiation Network (BSRN) protocols) are very important to
model development and, especially, model applications. Therefore, it is very necessary to
conduct strict routine maintenance and timely calibration of the solar sensors and replace
the broken solar sensors. Considering solar radiation (visible/PAR, Q, etc.), it is the basic
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and significant energy to the atmosphere, vegetation, hydrosphere, and land. Together with
their interactions, reliable and long-term measurements of solar radiation are extremely
important in China and the globe.

More and recent long-term measurements using eddy covariance to quantify GPP, Re,
and NEP/NEE are still very significant and useful (e.g., in Africa from 2010–2022) [103], so
as to systemically and accurately understand and evaluate carbon exchange in China and
the world.

4.2. Applications Potential of Empirical Models of GPP, Re, and NEP

There are more potential applications of empirical models of GPP, Re, and NEP in
the future; for example, good relationships between the calculated GPP and satellite SIF
were found and used to compute GPP as another method with large space coverage and
better GPP and Re simulations from 2003–2017 and 2013–2016. From the simulations of
GPP, Re, and NEP from 2013–2016 to 2003–2017, empirical models displayed reasonable
performance from the hourly to daily, monthly, and annual time scales. PAR energy method
showed potential advantages to deal with the multiple and complex interactions in the
processes associated with CO2 balance and is recommended to be further studied. PAR
transfers in the atmosphere and PAR balance above a canopy level can objectively describe
PAR absorption and scattering caused by atmospheric GLPs (including CO2) ([40,41],
and this study). Thus, the transformation/application of PAR balance to the empirical
models of GPP, Re, and NEP exhibited acceptable short-term and long-term simulations
(e.g., 2013–2016 and 2003–2017). The system of PAR–atmosphere–biosphere–land should
be studied as a whole, and the PAR balance is an objective and useful tool for studying
CO2 exchange.

We strongly suggest measuring direct and diffuse solar radiation at solar radiation
monitoring stations in order to fully understand the scattering roles/mechanisms of GLPs
in the CO2 exchange processes associated with the ecosystem [40,41,102], such as diffuse
PAR roles on GPP [83,104–108].

4.3. Further Application of Respiration Model

The EMGPP model (Equation (1) in [40]) is a further application of the PAR balance
method by replacing isoprene (one dominant species of BVOCs) with GPP from an em-
pirical model of BVOC emissions (EMBE [70]. All of the above empirical models were
applied/transformed from the PAR balance equation:

PAR = C1e−a1ISOm × cos(Z) + C2e−kWm × cos (Z) + C3e−S/Q + C0 (6)

The ratio PARTOA/(C1 + C2 + C3 + |C0|) between the measured PAR (PARTOA) and
the calculated PAR (C1 + C2 + C3 + |C0|) at the top of the atmosphere (TOA) can be
used to calibrate the PAR sensor [102]. To further apply the principle of PAR balance,
the Re (DR) model (Equation (3) in [41] was developed to deal with an energy balance
during nighttime. The ratio between C1 + |C0| (the calculated total longwave radiation
emitted by the atmosphere and the surface) and the calculated longwave radiation emitted
by vegetation (using Stefan–Boltzmann law) can be used to calibrate longwave radiation
sensors, and reasonable results were found [41]. The meaning of C1 and C0 is fully discussed
in studies [70,102]. In brief, the energy balance method (i.e., PAR, longwave radiation) has
shown reasonable simulations of BVOCs and carbon flux components (GPP, Re, and NEP),
as well as the application potential in the calibration of longwave radiation sensors.

It should be noted that a newly purchased PAR sensor was used in the solar radiation
system (Bai’s group) at the Qianyanzhou station, and routine maintenance (sensor surface
cleaning, horizontal keeping, etc.) was conducted every day to obtain reliable data [70]. To
evaluate the performance of the PAR sensor, a similar PAR empirical model as Equation (6)
without an isoprene term (e−a1ISOm) was developed for relatively clear sky conditions,
using monthly averages from May 2013–December 2016 (n = 9, mean S/Q = 0.443). The
ratio of the mean PAR to visible radiation (400–700 nm) from 2013–2016 (measured by
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Bai’s group) was 4.97 mol MJ−1 (n = 9). The relative bias between the summation of all
coefficients and PARTOA (530.5 W m−2) was 8.47%. It indicated that the PAR sensor had
better stability from 2013–2016 under careful daily maintenance [70,102], and PAR data
were reliable in the use of empirical model development and further application in GPP,
Re, and NEP in the Qianyanzhou subtropical forest region.

4.4. Empirical Models of GPP, Re, and NEP

Empirical models of GPP, Re, and NEP captured their basic features, which were in
agreement with other studies. In addition, these models describe dynamic and multiple-
direction interactions in energy and especially quantify the relationships between energy
(PAR) and atmospheric GLPs (CO2 and other GLPs). The complex and interacted CO2
processes in the atmosphere, biosphere, and land were described using PAR and its related
components (e.g., diffuse PAR). It is an advantage that these empirical models can simplify
CO2 processes and capture the main properties of CO2 without spending much time on
specific processes. In the future, to obtain more accurate simulations of seasonal NEP, more
studies are still needed, such as the improvement of measured PAR data quality and the
timely calibration of PAR sensors. It should be emphasized that the energy interactions
between photons, CO2 molecules, and other GLP quantum obey the statistical law.

An inherent relation exists between E, T, and RH. Compared to T and RH, water
vapor and/or E (as a representative of T and RH) play more vital and objective roles in the
multiple processes and mechanisms (e.g., chloroplasts absorb the incoming PAR to convert
CO2 and H2O and decompose water into [H] and O2) in the atmosphere–vegetation–land
system, along with its transfer between the atmosphere, vegetation, and land system. Water
vapor is also a vital participant in chemical and photochemical reactions (CPRs), associated
with OH, BVOCs, and solar radiation [65,70]. Additionally, the key driving roles of T in GPP
and BVOC emissions can be reflected by the water vapor factor (in the sensitivity tests in
references [40,70]) to some extent. The most important issue is that (1) water is a dominant
driving factor in plant growth and carbon production (e.g., GPP), which was displayed
by a sensitivity analysis of GPP [40]; and (2) water vapor represents air temperature and
humidity objectively [109].

The large variation ranges of the estimated monthly sums of Re and NEP, compared
to their observations for periods from 2013–2016 [41] and 2003–2017, may reveal some
problems in data processing. For example, spike detection, threshold (u*c) determination
of nocturnal friction velocity (u*), and gap filling had evident effects on annual NEE esti-
mates [102]. Using the u*c criterion, >50% of night data are removed [102]. A large quantity
of flux data removal may cause small changes in the variation range in observed Re and
NEP. The ratios of the measured annual sum Re/GPP and NEE/GPP were 0.764 and 0.236,
respectively, from 2013–2016 [40] and 0.744 and 0.256, respectively from 2003–2017, indi-
cating the relative magnitudes of Re and NEP to GPP. Thus, more studies on appreciated
data-processing methods are needed to provide high-quality flux data with more relatively
reliable maxima (positive and negative).

Under all sky conditions from 2003–2017, the simulated and observed annual sums
of GPP, Re, and NEE showed an increasing carbon sink (Section 3.1.5), which was in line
with and contributed to a carbon sink from 1980 to 2019 in China [110]. Wu et al. (2013)
reported that the carbon density and carbon storage in Taihe County (Qianyanzhou located
in Taihe County) increased from 1985–2003 [111].

From 2003–2017, the estimated and observed annual sums increased by 1.04% and
0.93%, respectively, for GPP, 4.57% and 1.06% for Re, and 0.18% and 0.01% for NEE, i.e., the
estimates of GPP, Re, and NEE showed larger increase rates than the observations, revealing
that the simulated GPP, Re, and NEE have larger enhanced carbon sink under realistic
sky conditions than the measurements. It should be noted that the estimations of GPP, Re,
and NEE obtained using continuous measurements of solar radiation and meteorological
parameters at the Qianyanzhou station were more reliable than the observations, in which
such data were removed by several methods in data processing [101]. Meanwhile, the
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better and consistent performances (overestimations) of GPP, Re, and NEP (especially NEP)
from 2013–2016, using the observation data of Bai’s group, provided reasonable simulations
of GPP, Re, and NEP [40,41]. Additionally, the solar radiation sensors were calibrated, and
a HOBO weather station was newly bought before the measurement in the Qianyanzhou
station from 2013–2016.

It would be an advantage and enable much progress to develop a generalized empirical
model of GPP, Re, and NEP in China, following the procedures such as EMBE development
from fitting a typical forest (temperate forest, subtropical bamboo, and plantation) to a
primary generalized EMBE for representative forests in China [70].

4.5. Some Issues Associated with the Empirical Models, GLPs, and Climate Warming

PAR direct absorption and indirect utilization are associated with NO2*, H2O, OH,
and BVOCs + OH + O3 [112]. The photochemical term expresses PAR use by all kinds of
GLPs. In empirical models of GPP, Re, and NEP, the multiple interactions between PAR
and its related terms (photochemical, scattering, and GPP/Re term in previous studies
instead of BVOC terms) and EMBE are fully reported [40,41,70,85].

The sensitivity displayed that the GPP increases with the decrease of S/Q (associating
with the increase of scattered PAR by GLPs, including aerosols and clouds) [40], which
was in line with other model studies and observations (the increased diffuse radiation
due to aerosols brings an increase of GPP) [83,104–108,113–115]. Considering similar
phenomena for respiration together, light-use efficiency (or the diffuse radiation associated
with atmospheric GLPs), and how much direct and scattered PAR is fully utilized by
vegetation play significant roles in plant growth, carbon storage, and model performances.

To comprehensively understand empirical model performance, the uncertainties in the
measurements and model predictions are reported: 20%–50% for the EC measurements [55],
300–600 gC m−2 year−1 for annual sums of NEE at different forests [52], 12–32% for the
annual NEE estimates [53], ±32% for annual NEE, Re, and GPP values [116], and 5–100%
for annual NEP estimates using traditional ecological models [40,41,50–52].

PAR is the first important driving factor in BVOC emissions and CO2 exchange
processes [38–41]. Using the PAR balance principle, we applied the EMBE to empirical
models of GPP, then Re and NEP. Generally, reasonable performances of the Re and
NEP were displayed. The EMGPP, EMRe, and EMNEP are simple and time-saving, and
fewer variables can be obtained from the stations. The revealed basic mechanisms (such
as GPP, Re, and NEP/NEE, which increased with the increases in diffuse PAR) agreed
with other model results [117,118]. It is an important progress that the EMRe during
nighttime was used to calibrate the longwave radiation sensor. Therefore, the energy
balance method and the empirical models (BVOCs, GPP, Re, and NEP) are useful tools and
are recommended to be developed for a better understanding of the carbon balance in China
and in the world [40,119,120]. By combining with the popular models (in the introduction),
it is beneficial to avoid using too many assumptions and parameters, considering these
processes that we have not realized and analyzed. But there is a limitation for these
empirical models. They should be previously developed using reliable observational data
(fluxes, solar radiation, and meteorology) before their applications.

Currently, large uncertainties still exist in CO2 flux measurements and model es-
timates (e.g., an underestimated land carbon sink over some regions in China from
2010–2016) [95], and the related knowledge gaps remain [121]. It was a greening pat-
tern from 2000–2017 worldwide, and China contributes about 25% of the global net in-
crease [59]. With the progress in achieving carbon peaking and carbon neutrality in the
future, long-term afforestation will be conducted. It is urgent and beneficial to accurately
estimate GPP, Re, and NEP, along with BVOCs [40,119,120,122], and evaluate the total car-
bon balance/sink (including BVOCs) under different climate scenarios using the integrated
methods, including the empirical models, widely used models (DGVMs, XGBoost, ANN,
GEOS-Chem atmospheric transport model, atmospheric inversion model, etc.), and using
tower and satellite data [40,41,100,123,124].
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It is found that the increases in absorbing and scattering GLPs contribute to the
enhanced losses of global solar radiation in the atmosphere. This energy can heat the
atmosphere and increase the air temperature (i.e., regional climate warming), as well as
weaken the airmass movements (e.g., wind speed). The phenomena and mechanisms are
evidently displayed in the Antarctic and Arctic regions (Sodankylä and Dome C sites)
and other sites, especially (1) in the Dome C station because it is the cleanest and driest
atmosphere [5]; (2) the highest air temperature increase rate appeared in the winter and
the lowest (or lower) in the summer in some sites in China [87], corresponding to the large
losses of solar UV and visible (or PAR) radiation in winter [125]; and (3) the decreasing
trend in precipitation in Beijing (bigger decrease in the city than in the suburbs) from
1961–2004 [125].

The more GLPs (including water and water vapor) in the atmosphere, the more ab-
sorption and scattering energy accumulation and use/release in the atmosphere, resulting
in large changes in precipitation and atmospheric vertical and horizontal movements (re-
lated to natural disasters, e.g., rainstorm, flood, mud-rock flow, and wild wind) of the
atmosphere. Therefore, it will have multiple-win effects to reduce GLPs (GHGs, non-GHGs,
particles, etc.) emitted from the anthropogenic and natural sources into the atmosphere
and produced through CPRs in the atmosphere on achieving carbon peak and neutral-
ization, controlling air pollution, and mitigating climate warming and extreme weather
disasters [5,88].

The most important issue should be emphasized that the synchronous and high-
quality observational data in multiple fields, such as atmosphere, biosphere, hydrology,
land, and solar radiation, are very necessary in the stations in China and the world [126],
especially for empirical model development and evaluation, so as to comprehensively
study the individual process and mechanism along with their integrated processes and
mechanisms in above associated fields as a whole system.

5. Conclusions

GPP, Re, and NEP in a subtropical coniferous forest from 2003–2017 were calculated
using the empirical models of GPP, Re, and NEP, previously developed using hourly ob-
servational data from 2013–2016. Their simulations from the hourly to the daily, monthly,
and annual time scales were in reasonable agreement with the observations, and their sea-
sonal variations were well captured. For the annual sums under all skies, the simulations
overestimated the observations by 11.38% for GPP and 5.52% for Re, while they under-
estimated the observations by 34.99% for NEP. The mean annual ratios GPPcal1/GPPobs
and GPPcal3/GPPobs were 1.93 and 1.04 under relatively clean and polluted atmospheric
conditions from 2003–2017, indicating that the forest would store more CO2 (about two
times GPP) under a clean atmosphere than a polluted atmosphere, and the objectives of
reducing air pollutants and achieving carbon neutrality have win–win effects.

Timely maintenance and the calibration of PAR sensors are necessary to obtain ac-
curate PAR observational data, together with better simulations of GPP, Re, and NEP,
especially NEP.

GPP, Re, and NEE exhibited clear and similar long-term variation trends under all
sky conditions from 2003–2017. The calculated and observed annual sums increased by
1.04% and 0.93%, respectively, for GPP, 4.57% and 1.06% for Re, and 0.18% and 0.01% for
NEE. The estimated and observed annual sums of NEP decreased by 0.18% and 0.01%,
respectively. These results were consistent with the fact that a carbon sink was enhanced in
this subtropical coniferous forest from 1985–2017. As for their driving factors, annual mean
PAR and air temperature decreased by 0.28% and 0.02%, respectively, and annual mean
water vapor pressure increased by 0.87%, demonstrating that the water vapor or water
supply played significant roles in and contributed to the increases in GPP, Re, and NEE, i.e.,
the carbon sink.

Strong relationships (linear and non-linear) between the simulated monthly GPP and
the satellite monthly SIF (R2 > 0.90) under polluted and realistic atmospheric conditions
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were found, revealing that the atmosphere in the Qianyanzhou coniferous forest was in
high GLP loads. The linear and non-linear equations were used to calculate GPP from
2003–2017 with good performances. For annual sums of GPP, the relative biases were
5.20% and 4.88%, respectively, using linear and non-linear equations. It indicates that
(1) the non-linear relationship displayed better performance than the linear, implying that
a non-linear law existed in PAR transfer (associated with GPP and SIF) in the atmosphere;
and (2) better simulations than the EMGPP with a relative bias of 11.38% for the annual
sums of GPP were found. Later, similar increasing trends were also found for the calculated
and the observed GPP. All these results demonstrated that satellite SIF and the method of
GPP/SIF relation provide useful tools to calculate GPP over a large region.

Based on the simulations of GPP, Re, and NEP from 2013–2016 and 2003–2017, the PAR
energy balance method and its transformations to the empirical models (GPP, Re, NEP, and
BVOCs) can be used to study the processes of total carbon exchange (including BVOCs)
and understand the multiple and dynamic interactions between atmospheric components
(CO2 and other GLPs through absorption and scattering) and PAR in this subtropical forest,
and it is deserved for further development and applications in other forests. Several studies
supported that reduced atmospheric substances (i.e., a cleaner atmosphere) are beneficial to
more carbon stored in the plants, a clean atmosphere, and slowing down climate warming.
Thus, it is recommended to reduce the atmospheric GLPs through the control of direct
emissions and secondary formations via CPRs.
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ANN Artificial neural networks
BVOCs Biogenic volatile organic compounds
CPRs Chemical and photochemical reactions
DGVMs Dynamic global vegetation models
EC Eddycovariance
EMGPP, EMRe, EMNEP Empirical models of GPP, Re, and NEP
GHG Greenhouse gas
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GIS Geographic information system
GLP Gas, liquid, and particle
GPP Gross primary production
GOSIF Multi-source-driven SIF product
MAD Mean absolute deviations
MERRA-2 Modern-Era Retrospective Analysis for Research and Applications
MODIS Moderate Resolution Imaging Spectroradiometer
NEE Net ecosystem exchange
NEP Net ecosystem productivity
NMSE Normalized mean-square error
OCO-2 Orbiting Carbon Observatory-2
PAR Photosynthetically active radiation
RE Respiration
RMSE Root mean-square errors
SIF Satellite solar-induced fluorescence
SOA Secondary organic aerosols
VOCs Volatile organic compounds
XGBoost Extreme gradient boosting
Q Solar global radiation
D Solar direct radiation
S Solar diffuse radiation
T Temperature
RH Relative humidity
E Water vapor pressure
R2 Coefficient of determination
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