Effect of Biomass Burnings on Population Exposure and Health Impact at the End of 2019 Dry Season in Southeast Asia
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Air Quality Model
2.3. Emission Data
2.4. Model Configuration
2.5. Health Impact
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Biomass Burning Emission
Appendix A.2. Anthropogenic Emission
Appendix B
Pollutant | Health Endpoint | Study Location | RR (95% CI) per 10 μg/m3 | Reference |
---|---|---|---|---|
PM10 | Mortality—cardiorespiratory | Portugal (Europe) | 1.024 (1.010, 1.038) | Augusto et al., (2020) [45] |
PM2.5 | Mortality—cardiovascular | Europe | 1.0342 (1.0064–1.0628) | Faustini et al., 2015 [46] |
PM2.5 | Mortality—all non-accidental, all ages | Finland (Europe) | 1.020 (0.924, 1.086) | Kollanus et al., 2016 [47] |
Mortality—all non-accidental, ages > 65 | Finland (Europe) | 1.024 (0.935, 1.12) | ||
PM2.5 | Mortality—all causes | Global | 1.019 (1.016, 1.022) | Chen et al., 2021 [48] |
Mortality- cardiovascular | Global | 1.017 (1.012, 1.021) | ||
Mortality—respiratory | Global | 1.019 (1.013, 1.025) | ||
PM2.5 | Morbidity—respiratory hospitalisation | U.S | 1.072 (1.0025, 1.15) | Liu et al., 2017 [30] |
PM2.5 | Morbidity—asthma hospitalisation | U.S | 1.14 (1.10, 1.20) | Reid et al., 2016 [16] |
Morbidity—ED * visits for chronic obstructive pulmonary disease (COPD) | U.S | 1.04 (1.02, 1.08) | ||
PM2.5 | Morbidity—respiratory hospitalisation | U.S | 1.028 (1.014, 1.041) | Delfino et al., 2016 [27] |
Morbidity—asthma hospitalisation | U.S | 1.048 (1.021, 1.076) |
Appendix C
Appendix D
Appendix E
Vietnam | Thailand | Cambodia | Laos | |
---|---|---|---|---|
Population (2019) | 96,372,928 | 70,111,586 | 16,603,117 | 7,158,249 |
2019 incidence mortality rate (%) | 0.65 | 0.71 | 0.67 | 0.62 |
Premature deaths (mean) due to biomass burnings 2019 (2019) | 935 | 3290 | 411 | 1066 |
Proportion of effected population 2019 | 0.00097% | 0.0047% | 0.0025% | 0.0148% |
Appendix F
Authors | Study Period | Method | Health Impact (Mortality) | Impact Nature |
---|---|---|---|---|
Nguyen et al., (2022) [34] | March 2012 | Modelling WRF-CMAQ BENMAP (log-linear exposure response function) | Thailand—~3629 Laos—~11131 Cambodia—~3625 Vietnam ~ 3376 | Short term impact PM2.5 (health burden) |
Punsompong et al., (2020) [41] | 2016 | Monitoring data All fires (forest and all agricultural burnings) IER exposure response function | Thailand—~18003 mortalities | Long term impact PM2.5 |
Reddington et al., (2021) [20] | 2003–2015 (Full modelling for 2014) | Modelling GLOMAPv.7 (2003–2015) WRF-Chem (2014) FINN 1.5 emission All fires | Mainland SEA and southeast China ~ 59000/year averted deaths if no fires Thailand—~10800/year Vietnam—~5100/year Cambodia—~1500/year Laos—~1600/year | Long-term impact PM2.5 and Ozone (health benefit) |
Present study | March 2019 | Modelling WRF-Chem FINN 1.5 emission IER exposure response function | Thailand—~2171 mortalities Vietnam—~565 Cambodia—~315 Laos—~277 | Short term impact PM2.5 (health burden) |
References
- Schraufnagel, D.E.; Balmes, J.R.; De Matteis, S.; Hoffman, B.; Kim, W.J.; Perez-Padilla, R.; Rice, M.; Sood, A.; Vanker, A.; Wuebbles, D.J. Health Benefits of Air Pollution Reduction. Ann. Am. Thorac. Soc. 2019, 16, 1478–1487. [Google Scholar] [CrossRef] [PubMed]
- Broome, R.A.; Fann, N.; Cristina, T.J.N.; Fulcher, C.; Duc, H.; Morgan, G.G. The health benefits of reducing air pollution in Sydney, Australia. Environ. Res. 2015, 143 Pt A, 19–25. [Google Scholar] [CrossRef] [PubMed]
- WHO (World Health Organization). Health Effects of Black Carbon; WHO Regional Office for Europe: Geneva, Switzerland, 2012. [Google Scholar]
- Salimi, F.; Henderson, S.; Morgan, G.; Jalaludin, B.; Johnston, F. Ambient particulate matter, landscape fire smoke, and emergency ambulance dispatches in Sydney Australia. Environ. Int. 2017, 99, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Janssen, N.A.H.; Hoek, G.; Simic-Lawson, M.; Fischer, P.; Van Bree, L.; ten Brink, H.; Keuken, M.; Atkinson, R.W.; Anderson, H.R.; Brunekreef, B.; et al. Black Carbon as an Additional Indicator of the Adverse Health Effects of Airborne Particles Compared with PM10 and PM2.5. Environ. Health Perspect. 2011, 119, 1691–1699. [Google Scholar] [CrossRef]
- Aguilera, R.; Corringham, T.; Gershunov, A.; Benmarhnia, T. Wildfire smoke impacts respiratory health more than fine particles from other sources: Observational evidence from Southern California. Nat. Commun. 2021, 12, 1493. [Google Scholar] [CrossRef]
- Ooi, M.C.-G.; Chuang, M.-T.; Fu, J.S.; Kong, S.S.; Huang, W.-S.; Wang, S.-H.; Pimonsree, S.; Chan, A.; Pani, S.K.; Lin, N.-H. Improving prediction of trans-boundary biomass burning plume dispersion: From northern peninsular Southeast Asia to downwind western North Pacific Ocean. Atmos. Chem. Physics 2021, 21, 12521–12541. [Google Scholar] [CrossRef]
- Duc, H.N.; Bang, H.Q.; Quang, N.X. Modelling and prediction of air pollutant transport during the 2014 biomass burning and forest fires in peninsular Southeast Asia. Environ. Monit. Assess. 2016, 188, 106. [Google Scholar] [CrossRef] [PubMed]
- Duc, H.N.; Bang, H.Q.; Quan, N.H.; Quang, N.X. Impact of biomass burnings in Southeast Asia on air quality and pollutant transport during the end of the 2019 dry season. Environ. Monit. Assess. 2021, 193, 565. [Google Scholar] [CrossRef]
- Pani, S.K.; Lin, N.-H.; Griffith, S.M.; Chantara, S.; Lee, C.-T.; Thepnuan, D.; Tsai, Y.I. Brown carbon light absorption over an urban environment in northern peninsular Southeast Asia. Environ. Pollut. 2021, 276, 116735. [Google Scholar] [CrossRef]
- Marlier, M.E.; DeFries, R.S.; Voulgarakis, A.; Kinney, P.L.; Randerson, J.T.; Shindell, D.T.; Chen, Y.; Faluvegi, G. El Niño and health risks from landscape fire emissions in southeast Asia. Nat. Clim. Change 2012, 3, 131–136. [Google Scholar] [CrossRef]
- Frankenberg, E.; McKee, D.; Thomas, D. Health consequences of forest fires in Indonesia. Demography 2005, 42, 109–129. [Google Scholar] [CrossRef] [PubMed]
- Emmanuel, S.C. Impact to lung health of haze from forest fires: The Singapore experience. Respirology 2000, 5, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Butt, E.W.; Conibear, L.; Reddington, C.L.; Darbyshire, E.; Morgan, W.T.; Coe, H.; Artaxo, P.; Brito, J.; Knote, C.; Spracklen, D.V. Large air quality and human health impacts due to Amazon forest and vegetation fires. Environ. Res. Commun. 2020, 2, 095001. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Azzi, M.; White, S.; Salter, D.; Trieu, T.; Morgan, G.; Rahman, M.; Watt, S.; Riley, M.; Chang, L.T.-C.; et al. The Summer 2019–2020 Wildfires in East Coast Australia and Their Impacts on Air Quality and Health in New South Wales, Australia. Int. J. Environ. Res. Public Health 2021, 18, 3538. [Google Scholar] [CrossRef]
- Reid, C.E.; Brauer, M.; Johnston, F.H.; Jerrett, M.; Balmes, J.R.; Elliott, C.T. Critical review of health impacts of wildfire smoke exposure. Environ. Health Perspect. 2016, 124, 1334–1343. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-Y.; Zhao, C.; Liu, X.; Lin, N.-H.; Chen, W.-N. Modelling of long-range transport of Southeast Asia biomass-burning aerosols to Taiwan and their radiative forcings over East Asia. Tellus B Chem. Phys. Meteorol. 2014, 66, 23733. [Google Scholar] [CrossRef]
- Xing, L.; Li, G.; Pongpiachan, S.; Wang, Q.; Han, Y.; Cao, J.; Tipmanee, D.; Palakun, J.; Aukkaravittayapun, S.; Surapipith, V.; et al. Quantifying the contributions of local emissions and regional transport to elemental carbon in Thailand. Environ. Pollut. 2020, 262, 114272. [Google Scholar] [CrossRef]
- Aouizerats, B.; van der Werf, G.R.; Balasubramanian, R.; Betha, R. Importance of transboundary transport of biomass burning emissions to regional air quality in Southeast Asia during a high fire event. Atmos. Chem. Phys. 2015, 15, 363–373. [Google Scholar] [CrossRef]
- Reddington, C.; Conibear, L.; Robinson, S.; Knote, C.; Arnold, S.; Spracklen, D. Air pollution from forest and vegetation fires in Southeast Asia disproportionately impacts the poor. GeoHealth 2021, 5, e2021GH000418. [Google Scholar] [CrossRef]
- Khan, M.F.; Latif, M.T.; Saw, W.H.; Amil, N.; Nadzir, M.S.M.; Sahani, M.; Tahir, N.M.; Chung, J.X. Fine particulate matter in the tropical environment: Monsoonal effects, source apportionment, and health risk assessment. Atmos. Meas. Tech. 2016, 16, 597–617. [Google Scholar] [CrossRef]
- Wiedinmyer, C.; Akagi, S.K.; Yokelson, R.J.; Emmons, L.K.; Al-Saadi, J.A.; Orlando, J.J.; Soja, A.J. The Fire INventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning. Geosci. Model Dev. 2010, 4, 625–641. [Google Scholar] [CrossRef]
- Wiedinmyer, C.; Kimura, Y.; McDonald-Buller, E.C.; Emmons, L.K.; Buchholz, R.R.; Tang, W.; Seto, K.; Joseph, M.B.; Barsanti, K.C.; Carlton, A.G.; et al. The Fire Inventory from NCAR version 2.5: An updated global fire emissions model for climate and chemistry applications. Geosci. Model Dev. 2023, 16, 3873–3891. [Google Scholar] [CrossRef]
- Yin, S.; Wang, X.; Zhang, X.; Guo, M.; Miura, M.; Xiao, Y. Influence of biomass burning on local air pollution in mainland Southeast Asia from 2001 to 2016. Environ. Pollut. 2019, 254, 112949. [Google Scholar] [CrossRef] [PubMed]
- WHO (World Health Organization). Health Risks of Air Pollution in Europe—HRAPIE Project Recommendations for Concentration–Response Functions for Cost–Benefit Analysis of Particulate Matter, Ozone and Nitrogen Dioxide. 2013. Available online: https://www.swisstph.ch/fileadmin/user_upload/SwissTPH/Institute/Ludok/WHO2013_HRAPIE_Bericht.pdf (accessed on 20 February 2024).
- Xu, R.; Yu, P.; Abramson, M.J.; Johnston, F.H.; Samet, J.M.; Bell, M.L.; Haines, A.; Ebi, K.L.; Li, S.; Guo, Y. Wildfires, Global Climate Change, and Human Health. New. Engl. J. Med. 2020, 383, 2173–2181. [Google Scholar] [CrossRef] [PubMed]
- Delfino, R.J.; Brummel, S.; Wu, J.; Stern, H.; Ostro, B.; Lipsett, M.; Winer, A.; Street, D.H.; Zhang, L.; Tjoa, T.; et al. The relationship of respiratory and cardiovascular hospital admissions to the southern California wildfires of 2003. Occup. Environ. Med. 2009, 66, 189–197. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Trieu, T.; Cope, M.; Azzi, M.; Morgan, G. Modelling Hazardous Reduction Burnings and Bushfire Emission in Air Quality Model and Their Impacts on Health in the Greater Metropolitan Region of Sydney. Environ. Model. Assess. 2020, 25, 705–730. [Google Scholar] [CrossRef]
- A Horsley, J.; A Broome, R.; Johnston, F.H.; Cope, M.; Morgan, G.G. Health burden associated with fire smoke in Sydney, 2001–2013. Med. J. Aust. 2018, 208, 309–310. [Google Scholar] [CrossRef]
- Liu, J.C.; Wilson, A.; Mickley, L.J.; Dominici, F.; Ebisu, K.; Wang, Y.; Sulprizio, M.P.; Peng, R.D.; Yue, X.; Son, J.-Y.; et al. Wildfire-specific Fine Particulate Matter and Risk of Hospital Admissions in Urban and Rural Counties. Epidemiology 2017, 28, 77–85. [Google Scholar] [CrossRef]
- Surit, P.; Wongtanasarasin, W.; Boonnag, C.; Wittayachamnankul, B. Association between air quality index and effects on emergency department visits for acute respiratory and cardiovascular diseases. PLoS ONE 2023, 18, e0294107. [Google Scholar] [CrossRef]
- USA EPA. Regulatory Impact Analysis for the Final Revisions to the National Ambient Air Quality Standards for Particulate Matter; Office of Air Quality Planning and Standards; Health and Environmental Impacts Division: Research Triangle Park, NC, USA, 2012.
- Johnston, F.H.; Borchers-Arriagada, N.; Morgan, G.G.; Jalaludin, B.; Palmer, A.J.; Williamson, G.J.; Bowman, D.M.J.S. Unprecedented health costs of smoke-related PM2.5 from the 2019–20 Australian megafires. Nat. Sustain. 2021, 4, 42–47. [Google Scholar] [CrossRef]
- Thao, N.N.L.; Pimonsree, S.; Prueksakorn, K.; Thao, P.T.B.; Vongruang, P. Public health and economic impact assessment of PM2.5 from open biomass burning over countries in mainland Southeast Asia during the smog episode. Atmos. Pollut. Res. 2022, 13, 101418. [Google Scholar] [CrossRef]
- Burnett, R.; Cohen, A. Relative Risk Functions for Estimating Excess Mortality Attributable to Outdoor PM2.5 Air Pollution: Evolution and State-of-the-Art. Atmosphere 2020, 11, 589. [Google Scholar] [CrossRef]
- Lloyd, C.T.; Sorichetta, A.; Tatem, A.J. High resolution global gridded data for use in population studies. Sci. Data 2017, 4, 170001. [Google Scholar] [CrossRef] [PubMed]
- Roth, G.A.; Johnson, C.; Abajobir, A.; Abd-Allah, F.; Abera, S.F.; Abyu, G.; Ahmed, M.; Aksut, B.; Alam, T.; Alam, K.; et al. Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. J. Am. Coll. Cardiol. 2017, 70, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.L.; Bui, Q.T.; Tran, H.V.; Hoang, M.V.; Le, T.T.; Ha, D.A.; Nguyen, V.T.; Nguyen, N.D.; Tran, H.H.; Goldberg, R.J. Characteristics, in-hospital management, and complications of acute myocardial infarction in northern and Central Vietnam. Int. J. Cardiol. 2022, 364, 133–138. [Google Scholar] [CrossRef]
- Janwanishstaporn, S.; Karaketklang, K.; Krittayaphong, R. National trend in heart failure hospitalization and outcome under public health insurance system in Thailand 2008–2013. BMC Cardiovasc. Disord. 2022, 22, 203. [Google Scholar] [CrossRef]
- Anunnatsiri, S.; Reungjui, S.; Thavornpitak, Y.; Pukdkeesamai, P.; Mairiang, P. Disease Patterns among Thai Adult Population: An Analysis of Data from the Hospitalization National Health Insurance System 2010. J. Med. Assoc. Thai. 2012, 95 (Suppl. S7), S74–S80. Available online: https://www.thaiscience.info/Journals/Article/JMAT/10971707.pdf (accessed on 13 March 2024).
- Punsompong, P.; Pani, S.K.; Wang, S.-H.; Pham, T.T.B. Assessment of biomass-burning types and transport over Thailand and the associated health risks. Atmospheric Environ. 2020, 247, 118176. [Google Scholar] [CrossRef]
- Mueller, W.; Loh, M.; Vardoulakis, S.; Johnston, H.J.; Steinle, S.; Precha, N.; Kliengchuay, W.; Tantrakarnapa, K.; Cherrie, J.W. Ambient particulate matter and biomass burning: An ecological time series study of respiratory and cardiovascular hospital visits in northern Thailand. Environ. Health 2020, 19, 77. [Google Scholar] [CrossRef]
- Uttajug, A.; Ueda, K.; Honda, A.; Takano, H. Estimation of hospital visits for respiratory diseases attributable to PM10 from vegetation fire smoke and health impacts of regulatory intervention in Upper Northern Thailand. Sci. Rep. 2022, 12, 18515. [Google Scholar] [CrossRef]
- United Nations. About the Sustainable Development Goals. 2019. Available online: https://www.un.org/sustainabledevelopment/health/ (accessed on 29 September 2024).
- Augusto, S.; Ratola, N.; Tarín-Carrasco, P.; Jiménez-Guerrero, P.; Turco, M.; Schuhmacher, M.; Costa, S.; Teixeira, J.; Costa, C. Population exposure to particulate-matter and related mortality due to the Portuguese wildfires in October 2017 driven by storm Ophelia. Environ. Int. 2020, 144, 106056. [Google Scholar] [CrossRef] [PubMed]
- Faustini, A.; Alessandrini, E.R.; Pey, J.; Perez, N.; Samoli, E.; Querol, X.; Cadum, E.; Perrino, C.; Ostro, B.; Ranzi, A.; et al. Short-term effects of particulate matter on mortality during forest fires in Southern Europe: Results of the MED-PARTICLES Project. Occup. Environ. Med. 2015, 72, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Kollanus, V.; Tiittanen, P.; Niemi, J.V.; Lanki, T. Effects of long-range transported air pollution from vegetation fires on daily mortality and hospital admissions in the Helsinki metropolitan area, Finland. Environ. Res. 2016, 151, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Guo, Y.; Yue, X.; Tong, S.; Gasparrini, A.; Bell, M.L.; Armstrong, B.; Schwartz, J.; Jaakkola, J.J.K.; Zanobetti, A.; et al. Mortality risk attributable to wildfire-related PM2.5 pollution: A global time series study in 749 locations. Lancet Planet. Health 2021, 5, e579–e587. [Google Scholar] [CrossRef] [PubMed]
Physical Parametrisation | Namelist Variable | Option | Model/Scheme |
---|---|---|---|
Microphysics | mp_physics | 3 | WRF Single Moment |
Land surface | sf_surface_physics | 2 | Noah Land-Surface Model |
Surface layer physics | sf_sfclay_physics | 1 | Monin-Obukhov similarity |
Planetary Boundary Layer | bl_pbl_physics | 1 | YSU scheme |
Shortwave radiation | ra_sw_physics | 4 | Rapid Radiative Transfer Model (RRTMG) |
Long wave radiation | ra_lw_physics | 4 | Rapid Radiative Transfer Model (RRTMG) |
Cumulus cloud | cu_physics | 1 | Kain-Fritsch scheme |
Gas/aerosol Chemistry | chem_opt | 112 | MOZART/GOCART |
Biomass burning option | biomass_burn_opt | 2 | Emission and plume rise for MOZCART |
Sea salt emission | seas_opt | 1 | GOCART sea salt emission scheme |
Photolysis | phot_opt | 3 | Madronich F-TUV photolysis |
Dust scheme | dust_opt | 3 | GOCART-AFWA scheme |
Aerosol extinction coefficient approximation | aer_opt_opt | 2 | Maxwell-Garnett approximation |
Aerosol radiative feedback | aer_ra_feedback | 1 | Turn on aerosol radiative feedback with RRTMG model |
Date | Vietnam Daily PM2.5 Pop-Weighted Concentration | Vietnam Mortality (Persons) | Thailand Daily PM2.5 Pop-Weighted Concentration | Thailand Mortality (Persons) | Laos Daily PM2.5 Pop-Weighted Concentration | Laos Mortality (Persons) | Cambodia Daily PM2.5 Pop-Weighted Concentration | Cambodia Mortality (Persons) |
---|---|---|---|---|---|---|---|---|
13 March 2019 | 1.85 | 20 | 12.92 | 134 | 59.16 | 32 | 9.94 | 21 |
14 March 2019 | 2.32 | 30 | 22.53 | 193 | 118.10 | 36 | 13.46 | 35 |
15 March 2019 | 2.20 | 34 | 25.98 | 245 | 73.16 | 31 | 16.27 | 45 |
16 March 2019 | 4.79 | 61 | 29.75 | 338 | 101.41 | 34 | 22.14 | 56 |
17 March 2019 | 5.08 | 56 | 40.38 | 342 | 95.29 | 36 | 24.78 | 58 |
18 March 2019 | 6.75 | 73 | 46.86 | 337 | 124.56 | 36 | 22.78 | 47 |
19 March 2019 | 11.98 | 129 | 40.27 | 311 | 129.68 | 36 | 16.03 | 38 |
20 March 2019 | 20.16 | 162 | 33.75 | 270 | 106.57 | 36 | 5.4 | 15 |
Total mortality (persons) | 565 | 2170 | 277 | 315 |
Vietnam | Thailand | Cambodia | Laos | Total for SEA | |
---|---|---|---|---|---|
Population (2019) | 96,372,928 | 70,111,586 | 16,603,117 | 7,158,249 | 190,245,880 |
2019 incidence mortality rate (%) | 0.65 | 0.71 | 0.67 | 0.62 | |
Premature deaths (mean) due to biomass burnings 2019 (2019)—IER | 565 | 2170 | 315 | 277 | 3327 |
Proportion of effected population (mortality) 2019—IER | 0.00059% | 0.0031% | 0.0019% | 0.0039% | 0.0017% |
Cardiovascular diseases (CVD) hospitalisation (cases) | 108 | 384 | 59 | 56 | 607 |
Respiratory diseases hospitalisation (cases) | 2120 | 7572 | 1158 | 1106 | 11,956 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, H.D.; Bang, H.Q.; Quan, N.H.; Quang, N.X.; Duong, T.A. Effect of Biomass Burnings on Population Exposure and Health Impact at the End of 2019 Dry Season in Southeast Asia. Atmosphere 2024, 15, 1280. https://doi.org/10.3390/atmos15111280
Nguyen HD, Bang HQ, Quan NH, Quang NX, Duong TA. Effect of Biomass Burnings on Population Exposure and Health Impact at the End of 2019 Dry Season in Southeast Asia. Atmosphere. 2024; 15(11):1280. https://doi.org/10.3390/atmos15111280
Chicago/Turabian StyleNguyen, Hiep Duc, Ho Quoc Bang, Nguyen Hong Quan, Ngo Xuan Quang, and Tran Anh Duong. 2024. "Effect of Biomass Burnings on Population Exposure and Health Impact at the End of 2019 Dry Season in Southeast Asia" Atmosphere 15, no. 11: 1280. https://doi.org/10.3390/atmos15111280
APA StyleNguyen, H. D., Bang, H. Q., Quan, N. H., Quang, N. X., & Duong, T. A. (2024). Effect of Biomass Burnings on Population Exposure and Health Impact at the End of 2019 Dry Season in Southeast Asia. Atmosphere, 15(11), 1280. https://doi.org/10.3390/atmos15111280