Assessment of the Drought Risk in Constanta County, Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Series
2.3. Methodology
- Apply the Thiessen Polygon Method (TPM) to determine the area associated with each station and compute the regional temperature and precipitation.
- 2.
- Compute the SPI [45] for a certain period using the precipitation series as input.
- Flexibility: It can be calculated for various time intervals.
- Early warning: The index availability for shorter periods (e.g., one to three months) can help detect drought early and evaluate its severity.
- Cross-location comparison: It allows comparing different locations with varying climates.
- Probabilistic analysis: The index’s probabilistic nature enables the analysis of past events, making it suitable for decision-making.
- Reliance on rainfall records: The index is solely based on rainfall data.
- Lack of soil water ratio component: It does not account for evapotranspiration/potential evapotranspiration (ET/PET) ratios [51].
- 3.
- Compute the Drought Hazard Index (DHI) in the following steps [55]:
- Determine the Drought Hazard Score (DHS) for each station, i, with the formula
- Compute the Drought Hazard Index (DHI) by
- Normalize the DHI using Formula (5), presented below in a general context.
- 4.
- Compute the Drought Vulnerability Index (DVI).
- 5.
- Compute the Drought Risk Index (DRI).
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heim, R.R., Jr.; Bathke, D.; Bonsal, B.; Cooper, E.W.T.; Hadwen, T.; Kodama, K.; McEvoy, D.; Muth, M.; Nielsen-Gammon, J.W.; Prendeville, H.R.; et al. A Review of User Perceptions of Drought Indices and Indicators Used in the Diverse Climates of North America. Atmosphere 2023, 14, 1794. [Google Scholar] [CrossRef]
- Safdar, M.; Shahid, M.A.; Zaman, M.; Rasul, F.; Muzammal, H.; Raza, A.; Sabir, R.M.; Zafar, U. Drought Monitoring with Multiple Indices and Management through Various Techniques: A Review. Eng. Proc. 2023, 56, 307. [Google Scholar] [CrossRef]
- Zargar, A.; Sadiq, R.; Naser, B.; Khan, F.I. A Review of Drought Indices. Environ. Rev. 2011, 19, 333–349. [Google Scholar] [CrossRef]
- Zarafshani, K.; Sharafi, L.; Azadi, H.; Van Passel, S. Vulnerability assessment models to drought: Toward a conceptual framework. Sustainability 2016, 8, 588. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Araneda-Cabrera, R.J.; Bermúdez, M.; Puertas, J. Benchmarking of drought and climate indices for agricultural drought monitoring in Argentina. Sci. Total Environ. 2021, 790, 148090. [Google Scholar] [CrossRef]
- Wang, L.; Yu, H.; Yang, M.; Yang, R.; Gao, R.; Wang, Y. A Drought Index: The Standardized Precipitation Evapotranspiration Runo Ff Index. J. Hydrol. 2019, 571, 651–668. [Google Scholar] [CrossRef]
- Maftei, C.; Muntean, R.; Vaseashta, A. Monitoring and Modelling of Extreme Hydrometeorological Events. In Modeling and Monitoring Extreme Hydrometeorological Events; Maftei, C., Muntean, R., Vaseashta, A., Eds.; IGI Global: Hershey, PA, USA, 2024; Volume 3, pp. 1–21. [Google Scholar]
- Communication from the Commission to the European Parliament and the Council—Addressing the Challenge of Water Scarcity and Droughts in the European Union, {SEC(2007) 993}, {SEC(2007) 996}. Available online: https://www.eea.europa.eu/policy-documents/addressing-the-challenge-of-water (accessed on 27 July 2024).
- Guidelines for Preparation of the Drought Management Plans: Development and Implementation of Risk-Based Drought Management Plans in the Context of the EU Water Framework Directive. Available online: https://www.gwp.org/globalassets/global/gwp-cee_files/idmp-cee/idmp-guidelines-hi4web-final.pdf (accessed on 27 July 2024).
- Wei, W.; Wang, J.; Ma, L.; Wang, X.; Xie, B.; Zhou, J.; Zhang, H. Global Drought-Wetness Conditions Monitoring Based on Multi-Source Remote Sensing Data. Land 2024, 13, 95. [Google Scholar] [CrossRef]
- World Meteorological Organization—WMO; Global Water Partnership—GWP. Handbook of Drought Indicators and Indices. Available online: https://www.droughtmanagement.info/literature/GWP_Handbook_of_Drought_Indicators_and_Indices_2016.pdf (accessed on 27 July 2024).
- Haied, N.; Foufou, A.; Khadri, S.; Boussaid, A.; Azlaoui, M.; Bougherira, N. Spatial and Temporal Assessment of Drought Hazard, Vulnerability and Risk in Three Different Climatic Zones in Algeria Using Two Commonly Used Meteorological Indices. Sustainability 2023, 15, 7803. [Google Scholar] [CrossRef]
- Standardized Precipitation Index (SPI), European Drought Observatory. Available online: https://drought.emergency.copernicus.eu/data/factsheets/factsheet_spi.pdf (accessed on 13 September 2024).
- Espinosa, L.A.; Portela, M.M.; Rodrigues, R. Spatio-temporal variability of droughts over past 80 years in Madeira Island. J. Hydrol. Reg. Stud. 2019, 25, 100623. [Google Scholar] [CrossRef]
- Lorenzo, M.N.; Alvarez, I.; Taboada, J.J. Drought evolution in the NW Iberian Peninsula over a 60 year period (1960–2020). J. Hydrol. 2022, 610, 127923. [Google Scholar] [CrossRef]
- Malakiya, A.D.; Suryanarayana, T.M.V. Assessment of drought using standardized precipitation index (SPI) and reconnaissance drought index (RDI): A case study of Amreli District. Int. J. Sci. Res. 2016, 5, 1995–2002. [Google Scholar]
- Wang, Q.; Zhang, R.; Qi, J.; Zeng, J.; Wu, J.; Shui, W.; Wuu, X.; Li, J. An improved daily standardized precipitation index dataset for mainland China from 1961 to 2018. Sci. Data 2022, 9, 124. [Google Scholar] [CrossRef] [PubMed]
- Chou, J.; Xian, T.; Zhao, R.; Xu, Y.; Yang, F.; Sun, M. Drought Risk Assessment and Estimation in Vulnerable Eco-Regions of China: Under the Background of Climate Change. Sustainability 2019, 11, 4463. [Google Scholar] [CrossRef]
- Brooks, N. Vulnerability, Risk and Adaptation: A Conceptual Framework. Available online: https://www.researchgate.net/publication/200032746_Vulnerability_Risk_and_Adaptation_A_Conceptual_Framework#fullTextFileContent (accessed on 30 July 2024).
- Disaster Through a Different Lens. Behind Every Effect, There Is a Cause. Available online: https://www.unisdr.org/files/20108_mediabook.pdf (accessed on 30 July 2024).
- Dai, A. Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008. J. Geophys. Res. 2011, 116, D12115. [Google Scholar] [CrossRef]
- Zare, M.; Azam, S.; Sauchyn, D.; Basu, S. Assessment of Meteorological and Agricultural Drought Indices under Climate Change Scenarios in the South Saskatchewan River Basin, Canada. Sustainability 2023, 15, 5907. [Google Scholar] [CrossRef]
- Drought Monitoring in Romania. Available online: https://www.copernicus.eu/ro/node/8534 (accessed on 27 December 2023).
- Birsan, M.-V.; Micu, D.-M.; Niţă, I.-A.; Mateescu, E.; Szép, R.; Keresztesi, Á. Spatio-temporal changes in annual temperature extremes over Romania (1961–2013). Rom. J. Phys. 2019, 64, 816. [Google Scholar]
- Popescu, A.; Dinu, T.A.; Stoian, E.; Serban, V. Variation of the main agricultural crops yield due to drought in Romania and Dobrogea region in the period 2000–2019. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural Dev. 2020, 20, 20. [Google Scholar]
- Bărbulescu, A.; Deguenon, J. About the variations of precipitation and temperature evolution in the Romanian Black Sea Littoral. Rom. Rep. Phys. 2015, 67, 625–637. [Google Scholar]
- Dobrica, G. Assessment of the Hydrological Drought in the Nuntași-Tuzla Lake Watershed, Constanța County. Ph.D. Thesis, Ovidius University of Constanța, Constanța, Romania, 2023. (In Romanian). [Google Scholar]
- Mocanu-Vargancsik, C.A.; Barbulescu, A. Study of the Temperature’s Evolution Trend on the Black Sea Shore at Constanța, Sea-Conf 2019. IOP Conf. Ser. J. Phys. Conf. Ser. 2019, 1297, 012010. [Google Scholar] [CrossRef]
- Croitoru, A.-E.; Piticar, A.; Burada, D.C. Changes in precipitation extremes in Romania. Quatern. Int. 2015, 415, 325–335. [Google Scholar] [CrossRef]
- Bărbulescu, A.; Maftei, C.E. Evaluating the Probable Maximum Precipitation. Case study from the Dobrogea region, Romania. Rom. Rep. Phys. 2023, 75, 704. [Google Scholar] [CrossRef]
- Bărbulescu, A.; Dumitriu, C.S.; Maftei, C. On the Probable Maximum Precipitation Method. Rom. J. Phys. 2022, 67, 801. [Google Scholar]
- Aadhar, S.; Mishra, V. High-resolution near real-time drought monitoring in south Asia. Sci. Data 2017, 4, 170145. [Google Scholar] [CrossRef] [PubMed]
- The Updated Management Plan of the Danube River, Danube Delta, Hydrographic Space Dobrogea, and Coastal Waters. Available online: https://www.mmediu.ro/app/webroot/uploads/files/PMBH_Actualizat_Text_ABADL.pdf (accessed on 12 August 2024). (In Romanian).
- National Strategy for Water Management 2023–2035. Available online: https://www.mmediu.ro/categorie/strategia-nationala-pentru-gospodarirea-apelor-2023-2035/444 (accessed on 30 July 2024). (In Romanian).
- Breier, A. The Lakes from the Romanian Seaside of the Black Sea—Hydrogeographic; Editura Academiei Republicii Socialiste Romania: Bucharest, Romania, 1976. (In Romanian) [Google Scholar]
- De Martonne, E. Une nouvelle fonction climatologique: L’indice d’aridité. La Meteorol. 1926, 2, 449–458. [Google Scholar]
- Neniu, A.-I.; Vlăduț, A.Ș. The influence of climatic conditions on the forest vegetation within the Getic Subcarpatians—Oltenia sector. Univ. Craiova Ser. Geogr. 2020, 21, 5–18. [Google Scholar]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scale. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–184. [Google Scholar]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Hazard Definition and Classification Review: Technical Report. Available online: https://www.undrr.org/publication/hazard-definition-and-classification-review-technical-report (accessed on 13 September 2024).
- Saliba, Y.; Bărbulescu, A. A comparative evaluation of spatial interpolation techniques for maximum temperature series in the Montreal region. Rom. Rep. Phys. 2024, 76, 701. [Google Scholar]
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists; Wiley: Chichester, NH, USA, 2007. [Google Scholar]
- Edwards, D.C.; McKee, T.B. Characteristics of 20th Century Drought in the United States at Multiple Times Scales. Atmos. Sci. Pap. 1997, 634, 1–30. [Google Scholar]
- Guttman, N.B. Comparing the Palmer Drought Index and the Standardized Precipitation Index. JAWRA 1998, 34, 113–121. [Google Scholar] [CrossRef]
- Guttman, N.B. Accepting the Standardized Precipitation Index: A Calculation Algorithm. JAWRA 1999, 35, 311–322. [Google Scholar] [CrossRef]
- Wu, H.; Hayes, M.J.; Wilhite, D.A.; Svoboda, M.D. The effect of the length of record on the Standardized Precipitation Index calculation. Int. J. Clim. 2005, 25, 505–520. [Google Scholar] [CrossRef]
- Koudahe, K.; Kayode, A.; Samson, A.; Adebola, A.; Djaman, K. Trend Analysis in Standardized Precipitation Index and Standardized Anomaly Index in the Context of Climate Change in Southern Togo. Atmos. Clim. Sci. 2017, 7, 401–423. [Google Scholar] [CrossRef]
- Ortiz-Gómez, R.; Flowers-Cano, R.S.; Medina-García, G. Sensitivity of the RDI and SPEI Drought Indices to Different Models for Estimating Evapotranspiration Potential in Semiarid Regions. Water Resour. Manag. 2022, 36, 2471–2492. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- SPI Program. Available online: https://drought.unl.edu/Monitoring/SPI/SPIProgram.aspx (accessed on 10 July 2024).
- DrinC (Drought Indices Calculator). Available online: https://drought-software.com/ (accessed on 10 July 2024).
- Tigkas, D.; Vangelis, H.; Tsakiris, G. The Drought Indices Calculator (DrinC). Available online: https://www.researchgate.net/publication/245542402_The_Drought_Indices_Calculator_DrinC#fullTextFileContent (accessed on 12 July 2024).
- Dabanli, I. Drought Risk Assessment by Using Drought Hazard and Vulnerability Indexes. Available online: https://www.researchgate.net/publication/325697272_Drought_Risk_Assessment_by_Using_Drought_Hazard_and_Vulnerability_Indexes#fullTextFileContent (accessed on 12 December 2023).
- Fontaine, M.M.; Steinemann, A.C. Assessing Vulnerability to Natural Hazards: Impact-Based Method and Application to Drought in Washington State. Nat. Hazard. Rev. 2009, 10, 11. [Google Scholar] [CrossRef]
- Jameel, M.; Hameed, S.; Shemal, K.; Al-Ansari, N.; Abed, S. Spatial and Temporal Assessment of Drought in the Northern Prone of Iraq Using Standardized Precipitation Index. Engineering 2023, 15, 691–708. [Google Scholar] [CrossRef]
- Naumann, G.; Barbosa, P.; Garrote, L.; Iglesias, A.; Vogt, J. Exploring drought vulnerability in Africa: An indicator based analysis to be used in early warning systems. Hydrol. Earth Syst. Sci. 2014, 18, 1591–1604. [Google Scholar] [CrossRef]
- Sun, J.; Bi, S.; Bashir, B.; Ge, Z.; Wu, K.; Alsalman, A.; Ayugi, B.O.; Alsafadi, K. Historical Trends and Characteristics of Meteorological Drought Based on Standardized Precipitation Index and Standardized Precipitation Evapotranspiration Index over the Past 70 Years in China (1951–2020). Sustainability 2023, 15, 10875. [Google Scholar] [CrossRef]
- Hepites, Ș.C. Distribution of rain by districts and basins in Romania. Bull. Polytech. Soc. 1896, 350–353, (In Romanian: Repartițiunea ploaiei pe districte și pe basinuri în România. Buletinul Societații Politehnice). [Google Scholar]
- Otetelișanu, E.; Elefteriu, G.D. Map of atmospheric precipitation in Romania—Average annual distribution from 1891–1915, Bull. Royal Soc. Rom. 1920, 209–222, (In Romanian: Harta precipitațiunilor atmosferice din România—Repartițiunea mijlocie anuală din perioada 1891–1915, Buletinul Societății Regale din România). [Google Scholar]
- Angearu, C.-V.; Ontel, I.; Boldeanu, G.; Mihailescu, D.; Nertan, A.; Craciunescu, V.; Catana, S.; Irimescu, A. Multi-Temporal Analysis and Trends of the Drought Based on MODIS Data in Agricultural Areas, Romania. Remote Sens. 2020, 12, 3940. [Google Scholar] [CrossRef]
- Maftei, C.; Dobrica, G.; Cerneaga, C.; Buzgaru, N. Drought Land Degradation and Desertification—Case Study of Nuntasi-Tuzla Lake in Romania. In Water Safety, Security and Sustainability: Threat Detection and Mitigation; Vaseashta, A., Maftei, C., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 583–597. [Google Scholar]
- Poljanšek, K.; Marín Ferrer, V.; De Groeve, N.; Clark, I. Science for Disaster Risk Management. In Knowing Better and Losing Less; Publications Office of the European: Reims, Luxembourg, 2017. [Google Scholar]
- Stahl, K.; Tallaksen, L.M.; Hannaford, J.; van Lanen, H.A.J. Filling the White Space on Maps of European Runoff Trends: Estimates from a Multi-Model Ensemble. Hydrol. Earth Syst. Sci. 2012, 16, 2035–2047. [Google Scholar] [CrossRef]
- Gudmundsson, L.; Seneviratne, S.I. Observation-Based Gridded Runoff Estimates for Europe (E-RUN Version 1.1). Earth Syst. Sci. Data 2016, 8, 279–295. [Google Scholar] [CrossRef]
- Danilovich, I.S.; Loginov, V.F.; Groisman, P.Y. Changes of Hydrological Extremes in the Center of Eastern Europe and Their Plausible Causes. Water 2023, 15, 2992. [Google Scholar] [CrossRef]
- Ionita, M.; Nagavciuc, V. Changes in drought features at the European level over the last 120 years. Nat. Hazards Earth Syst. Sci. 2021, 21, 1685–1701. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Domínguez-Castro, F.; Murphy, C.; Hannaford, J.; Reig, F.; Peña-Angulo, D.; Tramblay, Y.; Trigo, R.M.; Mac Donald, N.; Luna, M.Y.; et al. Long-term variability and trends in meteorological droughts in Western Europe (1851–2018). Int. J. Climatol. 2021, 41, E690–E717. [Google Scholar] [CrossRef]
- Tsakiris, G.; Vangelis, H. Establishing a drought index incorporating evapotranspiration. Eur. Water 2005, 9, 3–11. [Google Scholar]
- Vicente-Serrano, S.M.; Lopez-Moreno, J.I.; Beguería, S.; Lorenzo-Lacruz, J.; Sanchez-Lorenzo, A.; García-Ruiz, J.M.; Azorin-Molina, C.; Morán-Tejeda, E.; Revuelto, J.; Trigo, R.; et al. Evidence of increasing drought severity caused by temperature rise in southern Europe. Environ. Res. Lett. 2014, 9, 044001. [Google Scholar] [CrossRef]
- Hänsel, S.; Hoy, A.; Brendel, C.; Maugeri, M. Record summers in Europe: Variations in drought and heavy precipitation during 1901–2018. Int. J. Clim. 2022, 42, 6235–6257. [Google Scholar] [CrossRef]
Station | Altitude (m) | Temperature (°C) | Precipitation (mm) |
---|---|---|---|
Adamclisi | 159 | 11.1 | 501 |
Cernavodă | 87 | 11.4 | 487 |
Medgidia | 72 | 11.2 | 456 |
Hârșova | 38 | 11.2 | 435 |
Constanța | 14 | 12.1 | 453 |
Mangalia | 9 | 11.7 | 446 |
Interval | Cernavodă | Medgidia | Hârșova | Constanța | Mangalia | Class | W |
---|---|---|---|---|---|---|---|
<−2 | 2 | 3 | 1 | 1 | 2 | Extreme | 4 |
[−2.0, −1.5) | 1 | 2 | 4 | 2 | 1 | Severe | 3 |
[−1.5, −1.0) | 6 | 4 | 3 | 7 | 5 | Medium | 2 |
[−1.0, 1.0) | 39 | 40 | 38 | 35 | 41 | Normal | 1 |
[1.0, 1.5) | 4 | 3 | 3 | 5 | 2 | ||
[1.5, 2.0) | 1 | 1 | 5 | 3 | 1 | ||
>2 | 2 | 2 | 1 | 2 | 3 |
Interval | Cernavodă | Medgidia | Hârșova | Constanța | Mangalia | Class | W |
---|---|---|---|---|---|---|---|
<−2 | 3.64 | 5.45 | 1.82 | 1.82 | 3.64 | Extreme | 4 |
[−2.0, −1.5) | 5.45 | 9.09 | 9.09 | 5.45 | 5.45 | Severe | 3 |
[−1.5, −1.0) | 16.36 | 16.36 | 14.55 | 18.18 | 14.55 | Medium | 2 |
[−1.0, 1.0) | 87.27 | 89.09 | 83.64 | 81.82 | 89.09 | Normal | 1 |
[1.0, 1.5) | 94.55 | 94.55 | 89.09 | 90.91 | 92.73 | ||
[1.5, 2.0) | 96.36 | 96.36 | 98.18 | 96.36 | 94.55 | ||
>2 | 3.64 | 5.45 | 1.82 | 1.82 | 3.64 |
Location | Normal | Medium | Severe | Extreme | DHS | A | A (%) | DHI | DHI Normalized | Class |
---|---|---|---|---|---|---|---|---|---|---|
Medgidia | 78.20 | 3.60 | 3.60 | 3.60 | 110.60 | 1200.00 | 0.17 | 18.69 | 0.51 | High |
Adamclisi | 70.90 | 7.30 | 0.00 | 5.40 | 107.10 | 1900.00 | 0.27 | 28.66 | 0.00 | Reduced |
Cernavodă | 70.90 | 9.10 | 1.80 | 3.60 | 108.90 | 590.40 | 0.08 | 9.05 | 1.00 | Very high |
Hârșova | 67.30 | 7.30 | 5.50 | 1.80 | 105.60 | 871.92 | 0.12 | 12.97 | 0.80 | Very high |
Constanța | 65.50 | 7.30 | 3.60 | 1.80 | 98.10 | 1600.00 | 0.23 | 22.10 | 0.33 | Moderate |
Mangalia | 69.10 | 3.60 | 5.50 | 1.80 | 100.00 | 938.51 | 0.13 | 13.22 | 0.79 | Very high |
Location | DVI | DVI—Class | DRI | DRI—Class |
---|---|---|---|---|
Medgidia | 0.71 | High | 0.36 | Moderate |
Adamclisi | 0.50 | High | 0.00 | Low |
Cernavodă | 0.94 | Very high | 0.94 | Very high |
Hârșova | 0.74 | High | 0.59 | High |
Constanța | 0.40 | Moderate | 0.13 | Low |
Mangalia | 0.86 | Very high | 0.68 | High |
(a) | Start_Date | End_Date | DD | DS | DI | (b) | Start_Date | End_Date | DD | DS | DI |
---|---|---|---|---|---|---|---|---|---|---|---|
1 December 1965 | 1 September 1966 | 9 | 4.60 | 0.511 | 1 August 1971 | 1 September 1972 | 13 | 20.83 | 1.602 | ||
1 December 1967 | 1 May 1969 | 17 | 13.04 | 0.767 | 1 November 1973 | 1 November 1975 | 24 | 21.91 | 0.913 | ||
1 March 1974 | 1 June 1975 | 15 | 20.32 | 1.355 | 1 June 1976 | 1 May 1977 | 11 | 6.56 | 0.596 | ||
1 June 1976 | 1 September 1977 | 15 | 20.16 | 1.344 | 1 July 1983 | 1 April 1984 | 9 | 9.61 | 1.068 | ||
1 May 1982 | 1 March 1984 | 22 | 15.81 | 0.719 | 1 June 1986 | 1 March 1988 | 21 | 17.56 | 0.836 | ||
1 August 1984 | 1 September 1987 | 37 | 50.94 | 1.377 | 1 June 1989 | 1 July 1991 | 25 | 37.83 | 1.513 | ||
1 May 1989 | 1 August 1989 | 3 | 1.66 | 0.553 | 1 May 1992 | 1 March 1995 | 34 | 33.92 | 0.998 | ||
1 November 1990 | 1 March 1992 | 16 | 11.56 | 0.723 | 1 July 1995 | 1 May 1996 | 10 | 5.97 | 0.597 | ||
1 October 1992 | 1 February 1995 | 28 | 15.68 | 0.560 | 1 October 2000 | 1 May 2004 | 43 | 47.91 | 1.114 | ||
1 October 2000 | 1 September 2002 | 23 | 34.35 | 1.493 | 1 April 2007 | 1 August 2007 | 4 | 3.78 | 0.945 | ||
1 July 2011 | 1 June 2014 | 35 | 32.30 | 0.923 | 1 March 2009 | 1 July 2009 | 4 | 1.75 | 0.438 | ||
max | 37 | 50.94 | 1.493 | max | 43 | 47.91 | 1.602 | ||||
min | 3 | 1.66 | 0.511 | min | 4 | 1.75 | 0.438 | ||||
(c) | Start_Date | End_Date | DD | DS | DI | (d) | Start_Date | End_Date | DD | DS | DI |
1 January 1969 | 1 April 1969 | 3 | 1.39 | 0.463 | 1 September 1968 | 1 July 1969 | 10 | 10.27 | 1.027 | ||
10 January 1973 | 1 July 1975 | 21 | 21.54 | 1.026 | 1 March 1974 | 1 October 1974 | 7 | 9.03 | 1.290 | ||
3 January 1985 | 1 March 1988 | 36 | 36.91 | 1.025 | 1 September 1975 | 1 June 1978 | 33 | 25.46 | 0.772 | ||
5 January 1989 | 1 March 1992 | 34 | 36.52 | 1.074 | 1 June 1979 | 1 July 1980 | 13 | 9.03 | 0.695 | ||
6 January 1992 | 1 September 1995 | 39 | 41.25 | 1.058 | 1 May 1982 | 1 June 1987 | 61 | 65.51 | 1.074 | ||
9 January 2000 | 1 August 2002 | 23 | 30.06 | 1.307 | 1 July 1990 | 1 August 1991 | 13 | 17.53 | 1.348 | ||
10 January 2006 | 1 March 2009 | 29 | 25.05 | 0.864 | 1 January 1994 | 1 October 1995 | 11 | 7.55 | 0.686 | ||
7 January 2011 | 1 May 2012 | 10 | 10.43 | 1.043 | 1 August 2000 | 1 August 2002 | 24 | 40.48 | 1.687 | ||
5 January 2013 | 1 August 2014 | 15 | 12.99 | 0.866 | 1 April 2007 | 1 September 2007 | 5 | 5.52 | 1.104 | ||
max | 39 | 41.25 | 1.493 | 1 January 2009 | 1 September 2009 | 8 | 9.03 | 1.129 | |||
min | 3 | 1.39 | 0.511 | 1 July 2012 | 1 August 2013 | 13 | 13.26 | 1.020 | |||
1 June 2017 | 1 December 2017 | 6 | 1.84 | 0.307 | |||||||
max | 61 | 65.51 | 1.698 | ||||||||
min | 5 | 1.84 | 0.307 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maftei, C.E.; Bărbulescu, A.; Osman, A. Assessment of the Drought Risk in Constanta County, Romania. Atmosphere 2024, 15, 1281. https://doi.org/10.3390/atmos15111281
Maftei CE, Bărbulescu A, Osman A. Assessment of the Drought Risk in Constanta County, Romania. Atmosphere. 2024; 15(11):1281. https://doi.org/10.3390/atmos15111281
Chicago/Turabian StyleMaftei, Carmen Elena, Alina Bărbulescu, and Amela Osman. 2024. "Assessment of the Drought Risk in Constanta County, Romania" Atmosphere 15, no. 11: 1281. https://doi.org/10.3390/atmos15111281
APA StyleMaftei, C. E., Bărbulescu, A., & Osman, A. (2024). Assessment of the Drought Risk in Constanta County, Romania. Atmosphere, 15(11), 1281. https://doi.org/10.3390/atmos15111281