Challenges and Potentials: Environmental Assessment of Particulate Matter in Spaces Under Highway Viaducts
Abstract
:1. Introduction
1.1. Air Pollution Has Become an Important Threat to Human Health
1.2. Air Pollution Is an Important Mode of Transportation Pollution
1.3. Air Pollution Problems Worse in the UVS (But Under-Researched)
Research Object | Monitoring Methods | Instrument | Results | Sources | |
---|---|---|---|---|---|
Road | Highway | Mobile monitoring | Laser Photometer-TSI Sidepak AM510 (TSI Incorporated, Shoreview, MN, USA) | Within 200 m, PM2.5 concentrations usually increase closer to the highway. PM2.5 increases with the onset of peak hours and is strongly influenced by temperature changes in colder months. | Patton et al., 2014 [32] |
Tufts Air Pollution Monitoring Laboratory (Tufts University, Boston, MA, USA) | PM2.5 levels were highest in winter and lowest in summer and fall, higher on weekdays and Saturdays compared with Sundays, and higher during morning rush hour compared with later in the day. | Padró-Martínez et al., 2012 [41] | |||
Fixed monitoring | Continuous Dichotomous Ambient Air Monitor (Thermo Fisher Scientific, Waltham, MA, USA); 1405-DF Tapered Element Oscillating Microbalance (Thermo Fisher Scientific, Waltham, MA, USA) | The reduction in urban traffic helps to reduce the concentration of particulate matter pollution. | Azhari et al., 2021 [42] | ||
R&P Sequential Air Samplers (Thermo Fisher Scientific, Waltham, MA, USA) | Particulate concentrations decay exponentially with increasing distance within 100–150 m from the road and return to background levels within a few hundred meters from the road. | Clements et al., 2009 [33] | |||
Continuous Dichotomous Ambient Air Monitor (Thermo Fisher Scientific, Waltham, MA, USA); 1400AB Tapered Element Oscillating Microbalance (Thermo Fisher Scientific, Waltham, MA, USA) | Wind speed, prevailing wind direction, daily cycle of the atmospheric boundary layer, and traffic density are the main influencing factors. | Charron & Harrison, 2005 [43] | |||
On-Road and Roadside | Fixed monitoring | Continuous Dichotomous Ambient Air Monitor (Thermo Fisher Scientific, Waltham, MA, USA); Tapered Element Oscillating Microbalance (Thermo Fisher Scientific, Waltham, MA, USA) | Higher PM2.5 concentrations were observed in Madrid during the cold season. | Kassomenos et al., 2014 [44] | |
Mobile and fixed-site monitoring | Desert Research Institute (DRI, Reno, NV, USA) portable samplers (Desert Research Institute, Reno, NV, USA); Laser DUSTTRAK 8530 Spectrometers (TSI Incorporated) (TSI Incorporated, Shoreview, MN, USA) | PM2.5 concentrations on the road are highly correlated with nearby roadside PM2.5 concentrations in winter and summer. Seasonal effects must be considered, and short-term exceedances of particulate matter concentrations may occur in early spring. | Cheng et al., 2010 [45]; Lozhkina et al., 2016 [46] | ||
Fixed monitoring | EPA Air Quality System (AQS) (United States Environmental Protection Agency, Washington, DC, USA) | There was an overall decreasing trend in PM2.5 concentrations with increasing distance from the roadside. The incremental PM2.5 decreased by 75% between 5 m and 30 m from the road. | Mukherjee et al., 2020 [47] | ||
Intersection | Mobile monitoring (high-flow gravimetric personal samplers) | High-Flow Personal Sampler (HFPS) (SKC Inc., Eighty Four, PA, USA) | PM2.5 concentrations are higher in the morning, decrease at noon, rise in the early afternoon, and are even higher in the evening. This phenomenon is related to traffic activity in the surrounding area. | Kaur et al., 2005 [34] | |
Fixed monitoring | Laser Photometer-TSI SidePak AM510 (TSI Incorporated, Shoreview, USA); Portable Air Sampling Instruments (BGI, Boston, MA, USA) | Roadside concentrations were higher than those simultaneously monitored at urban sites away from the road. Average particulate matter concentrations at downwind roadside stations are higher than at background stations. PM2.5 concentrations during peak traffic hours are higher than during off-peak hours. | Wang et al., 2018 [37]; Kinney et al., 2011 [48] | ||
Arterial | Fixed monitoring (near-road continuous air monitoring station [CAMS]) | Data from Near-Road Continuous Air Monitoring Station (CAMS) (TCEQ, Austin, TX, USA) | PM2.5 concentrations are usually elevated close to roads. Traffic-related PM2.5 concentrations are usually highest at night, followed by the morning peak, evening peak, and midday, respectively. | Askariyeh et al., 2020 [49] | |
Laser Photometer-TSI DRX DustTrak monitor | PM2.5 quality is more related to regional sources and meteorological conditions, with a limited role in traffic volume. | Kendrick et al., 2015 [50] | |||
Street canyon | Mobile monitoring | Light-Scattering Laser Nephelometer (TSI Incorporated, Shoreview, MN, USA); ES-642, Metone Inc. (Met One Instruments Inc., Grants Pass, OR, USA) | Street canyons have a significant impact on the accumulation of PM2.5 concentrations on Hong Kong’s roads. | Rakowska et al., 2014 [51] | |
Fixed monitoring (three heights: 0.20m, 1.0m and 2.60m) | Particle Spectrometer (DMS500) (Cambustion Ltd., Cambridge, UK) | The concentration decreases exponentially with increasing canyon height. | Kumar et al., 2008 [52] | ||
Viaduct | Street canyon | Fixed monitoring | Laser DustTrak (TSI Incorporated, Shoreview, MN, USA) | Particle mass concentrations in street canyons are negatively correlated with height, and particle mass concentrations in street canyons are negatively correlated with temperature. | Feng et al., 2015 [38] |
Portable Laser Aerosol Spectrometer Dust Monitor(Model Grimm 11-A) (GRIMM Aerosol Technik, Ainring, Germany) | Viaducts increase PM2.5 concentrations in street canyons and significantly affect airflow fields. | Zhi et al., 2020 [39] | |||
UVS | Mobile monitoring | Portable Laser Aerosol Spectrometer Dust Monitor(Model Grimm 11-A) (GRIMM Aerosol Technik, Ainring, Germany) | PM2.5 concentrations decay exponentially near the viaduct without any obstacles. | Li et al., 2021 [40] | |
Mobile and fixed-site monitoring | Laser Photometer-TSI Sidepak AM520 (TSI Incorporated, Shoreview, MN, USA) | PM2.5 concentrations in the UVS are lower in summer than in the adjacent road environment but higher in winter. Meteorological factors, green structure, viaduct structure, and surrounding built environment have a significant impact on PM2.5 concentrations. | Yin et al., 2021 [28] |
1.4. Review of Monitoring and Analysis Methods
2. Data and Methodology
2.1. Study Area
2.2. Data Preparation
2.2.1. Mobile Site Measurements
- (1)
- Since the site had different built environments in the north–south and east–west directions, the monitoring points were set up homogeneously in the UVS and in the road space around the viaduct, respectively, to measure distribution characteristics.
- (2)
- The viaduct had differences in the morphology of its eastern and western branches, so double rows of monitoring points were set up in the UVS to evenly reflect the particulate matter distribution and the various influencing factors in different spatial patterns. It was confirmed in advance that no industrial sources were adjacent to the study area.
2.2.2. Data Collection
2.3. Data Preprocessing and Analysis Methods
2.3.1. Data Preprocessing
2.3.2. Analysis Method
3. Results
3.1. Results of PM2.5 Concentrations in the Under-Viaduct Space
3.1.1. Statistical Analysis of PM2.5 Concentrations in the Under-Viaduct Space
3.1.2. Spatiotemporal Map
3.1.3. Results of Influencing Factors
3.2. Exposure Analysis of Human Activities
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bi, H.; Li, A.; Hua, M.; Zhu, H.; Ye, Z. Examining the varying influences of built environment on bike-sharing commuting: Empirical evidence from Shanghai. Transp. Policy 2022, 129, 51–65. [Google Scholar] [CrossRef]
- Xing, Q.; Sun, M. Characteristics of PM2.5 and PM10 Spatio-Temporal Distribution and Influencing Meteorological Conditions in Beijing. Atmosphere 2022, 13, 1120. [Google Scholar] [CrossRef]
- Li, B.; Li, J.; Lu, J.; Xu, Z. Spatiotemporal Distribution Characteristics and Inventory Analysis of Near-Road Traffic Pollution in Urban Areas. Atmosphere 2024, 15, 417. [Google Scholar] [CrossRef]
- Peng, Y.; Liang, J.; Mao, Z. Research on the space form and intervention strategy under the bridge—Take Kunming as an example. Urban. Archit. 2021, 18, 30–32. [Google Scholar] [CrossRef]
- He, L.; Hang, J.; Wang, X.; Lin, B.; Li, X.; Lan, G. Numerical investigations of flow and passive pollutant exposure in high-rise deep street canyons with various street aspect ratios and viaduct settings. Sci. Total Environ. 2017, 584–585, 189–206. [Google Scholar] [CrossRef]
- GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef]
- Hänninen, O.; Knol, A.B.; Jantunen, M.; Lim, T.-A.; Conrad, A.; Rappolder, M.; Carrer, P.; Fanetti, A.-C.; Kim, R.; Buekers, J.; et al. Environmental burden of disease in Europe: Assessing nine risk factors in six countries. Environ. Health Perspect. 2014, 122, 439. [Google Scholar] [CrossRef]
- The European Environment Agency (EEA). Air Quality in Europe-2015 Report. Available online: https://www.eea.europa.eu/publications/air-quality-in-europe-2015. (accessed on 12 November 2015).
- Grahame, T.J.; Schlesinger, R.B. Cardiovascular health and particulate vehicular emissions: A critical evaluation of the evidence. Air Qual. Atmos. Health 2010, 3, 3–27. [Google Scholar] [CrossRef]
- Martins, N.R.; da Graça, G.C. Impact of PM2.5 in indoor urban environments: A review. Sustain. Cities Soc. 2018, 42, 259–275. [Google Scholar] [CrossRef]
- Pope, C.A.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung Cancer, Cardiopulmonary Mortality, and Long-Term Exposure to Fine Particulate Air Pollution. JAMA 2002, 287, 1132–1141. [Google Scholar] [CrossRef]
- Dockery, D.W. Health Effects of Particulate Air Pollution. Ann. Epidemiol. 2009, 19, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Perez, L.; Medina-Ramón, M.; Künzli, N.; Alastuey, A.; Pey, J.; Pérez, N.; Garcia, R.; Tobias, A.; Querol, X.; Sunyer, J. Size Fractionate Particulate Matter, Vehicle Traffic, and Case-Specific Daily Mortality in Barcelona, Spain. Environ. Sci. Technol. 2009, 43, 4707–4714. [Google Scholar] [CrossRef] [PubMed]
- Hao, G.; Zuo, L.; Xiong, P.; Chen, L.; Liang, X.; Jing, C. Associations of PM2.5 and road traffic noise with mental health: Evidence from UK Biobank. Environ. Res. 2022, 207, 112221. [Google Scholar] [CrossRef] [PubMed]
- Guha, A.K.; Gokhale, S. Urban workers’ cardiovascular health due to exposure to traffic-originated PM2. 5 and noise pollution in different microenvironments. Sci. Total Environ. 2023, 859, 160268. [Google Scholar] [CrossRef] [PubMed]
- The European Environment Agency (EEA). Noise. Available online: https://www.eea.europa.eu/en/topics/in-depth/noise?activeAccordion=4268d9b2-6e3b-409b-8b2a-b624c120090d. (accessed on 28 August 2024).
- Demir, T.; Karakaş, D.; Yenisoy-Karakaş, S. Source identification of exhaust and non-exhaust traffic emissions through the elemental carbon fractions and Positive Matrix Factorization method. Environ. Res. 2022, 204, 112399. [Google Scholar] [CrossRef]
- Ranpise, R.B.; Tandel, B. Assessment and appraisal of morning peak time urban road traffic noise at selected locations of major arterial roads of Surat City, India. Asian J. Water Environ. Pollut. 2022, 19, 81–86. [Google Scholar] [CrossRef]
- UN-Habitat. Planning and Design for Sustainable Urban Mobility: Global Report on Human Settlements 2013; UN-Habitat: Nairobi, Kenya, 2013. [Google Scholar]
- Zhang, Q.; Du, X.; Li, H.; Jiang, Y.; Zhu, X.; Zhang, Y.; Niu, Y.; Liu, C.; Ji, J.; Chillrud, S.N.; et al. Cardiovascular effects of traffic-related air pollution: A multi-omics analysis from a randomized, crossover trial. J. Hazard. Mater. 2022, 435, 129031. [Google Scholar] [CrossRef]
- Guo, W.; Tan, Y.; Yin, X.; Sun, Z. Impact of PM2.5 on Second Birth Intentions of China’s Floating Population in a Low Fertility Context. Int. J. Environ. Res. Public Health 2019, 16, 4293. [Google Scholar] [CrossRef]
- Chan, Y.; Simpson, R.; Mctainsh, G.; Vowles, P.; Cohen, D.; Bailey, G. Source apportionment of PM2.5 and PM10 aerosols in Brisbane (Australia) by receptor modelling. Atmos. Environ. 1999, 33, 3251–3268. [Google Scholar] [CrossRef]
- Lee, P.K.H.; Brook, J.R.; Dabek-Zlotorzynska, E.; Mabury, S.A. Identification of the Major Sources Contributing to PM2.5 Observed in Toronto. Environ. Sci. Technol. 2003, 37, 4831–4840. [Google Scholar] [CrossRef]
- Abu-Allaban, M.; Gillies, J.A.; Gertler, A.W.; Clayton, R.; Proffitt, D. Motor Vehicle Contributions to Ambient PM10 and PM2.5 at Selected Urban Areas in the USA. Environ. Monit. Assess. 2006, 132, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Sokhi, R.S.; Kukkonen, J. PM2.5 concentrations in London for 2008–A modeling analysis of contributions from road traffic, Journal of the Air & Waste Management Association. J. Air Waste Manag. Assoc. 2013, 64, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Walsh, M.P. PM2.5: Global progress in controlling the motor vehicle contribution. Front. Environ. Sci. Eng. 2014, 8, 1–17. [Google Scholar] [CrossRef]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef]
- Yin, L.; Hang, T.; Qin, F.; Lin, X.; Han, Y. Measuring and Quantifying Impacts of Environmental Parameters on Airborne Particulate Matter in Under-Viaducts Spaces in Wuhan, China. Int. J. Environ. Res. Public Health 2021, 18, 5197. [Google Scholar] [CrossRef]
- Janssen, N.A.; Van Mansom, D.F.; Van Der Jagt, K.; Harssema, H.; Hoek, G. Mass concentration and elemental composition of airborne particulate matter at street and background locations. Atmos. Environ. 1997, 31, 1185–1193. [Google Scholar] [CrossRef]
- Tiitta, P.; Raunemaa, T.; Tissari, J.; Yli-Tuomi, T.; Leskinen, A.; Kukkonen, J.; Härkönen, J.; Karppinen, A. Measurements and modelling of PM2.5 concentrations near a major road in Kuopio, Finland. Atmos. Environ. 2002, 36, 4057–4068. [Google Scholar] [CrossRef]
- Lee, C. How do built environments measured at two scales influence PM2.5 concentrations? Transp. Res. Part D Transp. Environ. 2021, 99, 103014. [Google Scholar] [CrossRef]
- Patton, A.P.; Perkins, J.; Zamore, W.; Levy, J.I.; Brugge, D.; Durant, J.L. Spatial and temporal differences in traffic-related air pollution in three urban neighborhoods near an interstate highway. Atmos. Environ. 2014, 99, 309–321. [Google Scholar] [CrossRef]
- Clements, A.L.; Jia, Y.; Denbleyker, A.; McDonald-Buller, E.; Fraser, M.P.; Allen, D.T.; Collins, D.R.; Michel, E.; Pudota, J.; Sullivan, D.; et al. Air pollutant concentrations near three Texas roadways, part II: Chemical characterization and transformation of pollutants. Atmos. Environ. 2009, 43, 4523–4534. [Google Scholar] [CrossRef]
- Kaur, S.; Nieuwenhuijsen, M.; Colvile, R. Personal exposure of street canyon intersection users to PM2.5, ultrafine particle counts and carbon monoxide in Central London, UK. Atmos. Environ. 2005, 39, 3629–3641. [Google Scholar] [CrossRef]
- Wang, Z.; Zhong, S.; He, H.-D.; Peng, Z.-R.; Cai, M. Fine-scale variations in PM2.5 and black carbon concentrations and corresponding influential factors at an urban road intersection. Build. Environ. 2018, 141, 215–225. [Google Scholar] [CrossRef]
- Zhu, Y.; Hinds, W.C.; Kim, S.; Shen, S.; Sioutas, C. Study of ultrafine particles near a major highway with heavy-duty diesel traffic. Atmos. Environ. 2002, 36, 4323–4335. [Google Scholar] [CrossRef]
- Baldauf, R.; Thoma, E.; Hays, M.; Shores, R.; Kinsey, J.; Gullett, B.; Kimbrough, S.; Isakov, V.; Long, T.; Snow, R.; et al. Traffic and Meteorological Impacts on Near-Road Air Quality: Summary of Methods and Trends from the Raleigh Near-Road Study. J. Air Waste Manag. Assoc. 2008, 58, 865–878. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Zhao, J.; Li, Z. Experimental study on the diffusion of respirable particulate matter in street valley under elevated roads. In Proceedings of the 2015 2nd International Conference on Machinery, Materials Engineering, Chemical Engineering and Biotechnology, Chongqing, China, 28–29 November 2015. [Google Scholar] [CrossRef]
- Zhi, H.; Qiu, Z.; Wang, W.; Wang, G.; Hao, Y.; Liu, Y. The influence of a viaduct on PM dispersion in a typical street: Field experiment and numerical simulations. Atmos. Pollut. Res. 2020, 11, 815–824. [Google Scholar] [CrossRef]
- Li, B.; Qiu, Z.; Zheng, J. Impacts of noise barriers on near-viaduct air quality in a city: A case study in Xi’an. Build. Environ. 2021, 196, 107751. [Google Scholar] [CrossRef]
- Padró-Martínez, L.T.; Patton, A.P.; Trull, J.B.; Zamore, W.; Brugge, D.; Durant, J.L. Mobile monitoring of particle number concentration and other traffic-related air pollutants in a near-highway neighborhood over the course of a year. Atmos. Environ. 2012, 61, 253–264. [Google Scholar] [CrossRef]
- Azhari, A.; Halim, N.D.A.; Mohtar, A.A.A.; Aiyub, K.; Latif, M.T.; Ketzel, M. Evaluation and Prediction of PM10 and PM2.5 from Road Source Emissions in Kuala Lumpur City Centre. Sustainability 2021, 13, 5402. [Google Scholar] [CrossRef]
- Charron, A.; Harrison, R.M. Fine (PM2.5) and Coarse (PM2.5-10) Particulate Matter on A Heavily Trafficked London Highway: Sources and Processes. Environ. Sci. Technol. 2005, 39, 7768–7776. [Google Scholar] [CrossRef]
- Kassomenos, P.; Vardoulakis, S.; Chaloulakou, A.; Paschalidou, A.; Grivas, G.; Borge, R.; Lumbreras, J. Study of PM10 and PM2.5 levels in three European cities: Analysis of intra and inter urban variations. Atmos. Environ. 2014, 87, 153–163. [Google Scholar] [CrossRef]
- Cheng, Y.; Lee, S.; Ho, K.; Chow, J.; Watson, J.; Louie, P.; Cao, J.; Hai, X. Chemically-speciated on-road PM2.5 motor vehicle emission factors in Hong Kong. Sci. Total Environ. 2010, 408, 1621–1627. [Google Scholar] [CrossRef] [PubMed]
- Lozhkina, O.; Lozhkin, V.; Nevmerzhitsky, N.; Tarkhov, D.; Vasilyev, A. Motor transport related harmful PM2.5 and PM10: From onroad measurements to the modelling of air pollution by neural network approach on street and urban level. J. Phys. Conf. Ser. 2016, 772, 012031. [Google Scholar] [CrossRef]
- Mukherjee, A.; McCarthy, M.C.; Brown, S.G.; Huang, S.; Landsberg, K.; Eisinger, D.S. Influence of roadway emissions on near-road PM2.5: Monitoring data analysis and implications. Transp. Res. Part D Transp. Environ. 2020, 86, 102442. [Google Scholar] [CrossRef]
- Kinney, P.L.; Gichuru, M.G.; Volavka-Close, N.; Ngo, N.; Ndiba, P.K.; Law, A.; Gachanja, A.; Gaita, S.M.; Chillrud, S.N.; Sclar, E. Traffic impacts on PM2.5 air quality in Nairobi, Kenya. Environ. Sci. Policy 2011, 14, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Askariyeh, M.H.; Venugopal, M.; Khreis, H.; Birt, A.; Zietsman, J. Near-Road Traffic-Related Air Pollution: Resuspended PM2.5 from Highways and Arterials. Int. J. Environ. Res. Public Heath 2020, 17, 2851. [Google Scholar] [CrossRef] [PubMed]
- Kendrick, C.M.; Koonce, P.; George, L.A. Diurnal and seasonal variations of NO, NO2 and PM2.5 mass as a function of traffic volumes alongside an urban arterial. Atmos. Environ. 2015, 122, 133–141. [Google Scholar] [CrossRef]
- Rakowska, A.; Wong, K.C.; Townsend, T.; Chan, K.L.; Westerdahl, D.; Ng, S.; Močnik, G.; Drinovec, L.; Ning, Z. Impact of traffic volume and composition on the air quality and pedestrian exposure in urban street canyon. Atmos. Environ. 2014, 98, 260–270. [Google Scholar] [CrossRef]
- Kumar, P.; Fennell, P.; Britter, R. Measurements of particles in the 5–1000 nm range close to road level in an urban street canyon. Sci. Total Environ. 2008, 390, 437–447. [Google Scholar] [CrossRef]
- Apte, J.S.; Messier, K.P.; Gani, S.; Brauer, M.; Kirchstetter, T.W.; Lunden, M.M.; Marshall, J.D.; Portier, C.J.; Vermeulen, R.C.; Hamburg, S.P. High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data. Environ. Sci. Technol. 2017, 51, 6999–7008. [Google Scholar] [CrossRef]
- Santiago, J.L.; Martín, F.; Martilli, A. A computational fluid dynamic modelling approach to assess the representativeness of urban monitoring stations. Sci. Total Environ. 2013, 454–455, 61–72. [Google Scholar] [CrossRef]
- Li, Z.; Fung, J.C.; Lau, A.K. High spatiotemporal characterization of on-road PM2.5 concentrations in high-density urban areas using mobile monitoring. Build. Environ. 2018, 143, 196–205. [Google Scholar] [CrossRef]
- Shi, Y.; Lau, K.K.-L.; Ng, E. Developing Street-Level PM2.5 and PM10 Land Use Regression Models in High-Density Hong Kong with Urban Morphological Factors. Environ. Sci. Technol. 2016, 50, 8178–8187. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Xie, X.; Fung, J.C.-H.; Ng, E. Identifying critical building morphological design factors of street-level air pollution dispersion in high-density built environment using mobile monitoring. Build. Environ. 2018, 128, 248–259. [Google Scholar] [CrossRef]
- Can, A.; Dekoninck, L.; Botteldooren, D. Measurement network for urban noise assessment: Comparison of mobile measurements and spatial interpolation approaches. Appl. Acoust. 2014, 83, 32–39. [Google Scholar] [CrossRef]
- Shakya, K.M.; Kremer, P.; Henderson, K.; McMahon, M.; Peltier, R.E.; Bromberg, S.; Stewart, J. Mobile monitoring of air and noise pollution in Philadelphia neighborhoods during summer 2017. Environ. Pollut. 2019, 255, 113195. [Google Scholar] [CrossRef]
- Gillespie, J.; Masey, N.; Heal, M.R.; Hamilton, S.; Beverland, I.J. Estimation of spatial patterns of urban air pollution over a 4-week period from repeated 5-min measurements. Atmos. Environ. 2017, 150, 295–302. [Google Scholar] [CrossRef]
- Zwack, L.M.; Paciorek, C.J.; Spengler, J.D.; Levy, J.I. Characterizing local traffic contributions to particulate air pollution in street canyons using mobile monitoring techniques. Atmos. Environ. 2011, 45, 2507–2514. [Google Scholar] [CrossRef]
- Yu, C.H.; Fan, Z.; Lioy, P.J.; Baptista, A.; Greenberg, M.; Laumbach, R.J. A novel mobile monitoring approach to characterize spatial and temporal variation in traffic-related air pollutants in an urban community. Atmos. Environ. 2016, 141, 161–173. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, Z.; Liu, C.; Peng, Z.-R. Assessing neighborhood air pollution exposure and its relationship with the urban form. Build. Environ. 2019, 155, 15–24. [Google Scholar] [CrossRef]
- Tenailleau, Q.M.; Bernard, N.; Pujol, S.; Parmentier, A.-L.; Boilleaut, M.; Houot, H.; Joly, D.; Mauny, F. Do outdoor environmental noise and atmospheric NO2 levels spatially overlap in urban areas? Environ. Pollut. 2016, 214, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Hoek, G.; Meliefste, K.; Cyrys, J.; Lewné, M.; Bellander, T.; Brauer, M.; Fischer, P.; Gehring, U.; Heinrich, J.; van Vliet, P.; et al. Spatial variability of fine particle concentrations in three European areas. Atmos. Environ. 2002, 36, 4077–4088. [Google Scholar] [CrossRef]
- Jeon, J.Y.; Hong, J.Y.; Lee, P.J. Soundwalk approach to identify urban soundscapes individually. J. Acoust. Soc. Am. 2013, 134, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.-H.; Lu, K.-F.; Peng, Z.-R.; He, H.-D.; Xu, S.-Q. Spatiotemporal variations of carbon dioxide (CO2) at Urban neighborhood scale: Characterization of distribution patterns and contributions of emission sources. Sustain. Cities Soc. 2022, 78, 103646. [Google Scholar] [CrossRef]
- Hankey, S.; Marshall, J.D. Land Use Regression Models of On-Road Particulate Air Pollution (Particle Number, Black Carbon, PM2.5, Particle Size) Using Mobile Monitoring. Environ. Sci. Technol. 2015, 49, 9194–9202. [Google Scholar] [CrossRef] [PubMed]
- Krige, D.G. A statistical approach to some basic mine valuation problems on the Witwatersrand. J. S. Afr. Inst. Min. Metall. 1951, 52, 119–139. Available online: https://hdl.handle.net/10520/AJA0038223X_4792. (accessed on 1 December 2007).
- Liu, Z.; Xie, M.; Tian, K.; Gao, P. GIS-based analysis of population exposure to PM2.5 air pollution—A case study of Beijing. J. Environ. Sci. 2017, 59, 48–53. [Google Scholar] [CrossRef]
- Sofia, D.; Giuliano, A.; Gioiella, F.; Barletta, D.; Poletto, M. Modeling of an air quality monitoring network with high space-time resolution. Comput. Aided Chem. Eng. 2018, 43, 193–198. [Google Scholar] [CrossRef]
- Ismail, A.A.K.H. Prediction of global solar radiation from sunrise duration using regression functions. Kuwait J. Sci. 2022, 49, 3. [Google Scholar] [CrossRef]
- Ismail, A.H.; Dawi, E.; Almokdad, N.; Abdelkader, A.; Salem, O. Estimation and Comparison of the Clearness Index using Mathematical Models—Case study in the United Arab Emirates. Evergreen 2023, 10, 863–869. [Google Scholar] [CrossRef]
- Yahiaoui, S.; Assas, O. Comparison of solar radiation models using meteorological parameters. Energy Syst. 2023, 15, 863–897. [Google Scholar] [CrossRef]
- Van Poppel, M.; Peters, J.; Bleux, N. Methodology for setup and data processing of mobile air quality measurements to assess the spatial variability of concentrations in urban environments. Environ. Pollut. 2013, 183, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Chen, Q.; Qian, Q.; Zhou, X.; Chen, Y.; Cai, Y. Field investigation for ambient wind speed and direction effects exposure of cyclists to PM2.5 and PM10 in urban street environments. Build. Environ. 2022, 223, 109483. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, W.; Sukjairungwattana, P.; Yu, Z. Learners’ continuance intention in multimodal language learning education: An innovative multiple linear regression model. Heliyon 2024, 10, e28104. [Google Scholar] [CrossRef] [PubMed]
- Oukawa, G.Y.; Krecl, P.; Targino, A.C. Fine-scale modeling of the urban heat island: A comparison of multiple linear regression and random forest approaches. Sci. Total Environ. 2022, 815, 152836. [Google Scholar] [CrossRef]
- Li, P.; Jones, S. Vehicle restrictions and CO2 emissions in Beijing—A simple projection using available data. Transp. Res. Part D Transp. Environ. 2015, 41, 467–476. [Google Scholar] [CrossRef]
- Ngai, K.; Ng, C. Structure-Borne Noise and Vibration of Concrete Box Structure and Rail Viaduct. J. Sound Vib. 2002, 255, 281–297. [Google Scholar] [CrossRef]
- Zhao, L.; Li, T.; Przybysz, A.; Guan, Y.; Ji, P.; Ren, B.; Zhu, C. Effect of urban lake wetlands and neighboring urban greenery on air PM10 and PM2.5 mitigation. Build. Environ. 2021, 206, 108291. [Google Scholar] [CrossRef]
- JChen, J.; Zhu, L.; Fan, P.; Tian, L.; Lafortezza, R. Do green spaces affect the spatiotemporal changes of PM2.5 in Nanjing? Ecol. Process. 2016, 5, 7. [Google Scholar] [CrossRef]
- Lee, A.C.K.; Jordan, H.C.; Horsley, J. Value of urban green spaces in promoting healthy living and wellbeing: Prospects for planning. Risk Manag. Health Policy 2015, 8, 131–137. [Google Scholar] [CrossRef]
- Kioumourtzoglou, M.-A.; Schwartz, J.; James, P.; Dominici, F.; Zanobetti, A. PM2.5 and mortality in 207 US cities: Modification by Temperature and City Characteristics. Epidemiology 2015, 27, 221–227. [Google Scholar] [CrossRef]
Type | Parameter | Description | Instrument and Model | Sampling Resolution |
---|---|---|---|---|
Geographic Information | GPS positioning data | Location of each data point (m) | Unistrong handheld GPS instrument (Unistrong, Beijing, China) | 1 s |
Particulate Matter Data | PM2.5 concentration | 20-s average data at the sample sites (μg/m3) | PM: SidePak Aerosol Monitor AM520 Air particle test instrument (TSI Incorporated, Shoreview, USA) | 1 s |
Influence Factor | Traffic volume (TV) | Traffic volume data of the overall environment (up and down the viaduct; vel/h) | Mobile phone recording 5 min of video | - |
Distance to viaduct/Distance to river (DD) | Ratio of distance to the viaduct and distance to river | Unistrong handheld GPS instrument (Unistrong, Beijing, China) | 1 s | |
Temperature (TP) | Average value of temperature (°C) | HOBO temperature and humidity recorder (Onset Computer Corporation, Bourne, MA, USA) | 1 s | |
Humidity (HM) | Average value of humidity (%ph) |
Variables | p-Value | Betab | VIF | R2 | Total (Adjusted) R2 |
---|---|---|---|---|---|
PM2.5_TV | 0.000 | 1.213 | 3.356 | 0.343 | 0.573 |
PM2.5_DD | 0.000 | 0.225 | 1.188 | 0.228 | |
PM2.5_TP | 0.013 | −0.298 | 3.689 | 0.106 | |
PM2.5_HM | 0.041 | 0.121 | 1.752 | 0.143 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Li, S.; Liu, C. Challenges and Potentials: Environmental Assessment of Particulate Matter in Spaces Under Highway Viaducts. Atmosphere 2024, 15, 1325. https://doi.org/10.3390/atmos15111325
Chen Z, Li S, Liu C. Challenges and Potentials: Environmental Assessment of Particulate Matter in Spaces Under Highway Viaducts. Atmosphere. 2024; 15(11):1325. https://doi.org/10.3390/atmos15111325
Chicago/Turabian StyleChen, Zeyin, Siying Li, and Chao Liu. 2024. "Challenges and Potentials: Environmental Assessment of Particulate Matter in Spaces Under Highway Viaducts" Atmosphere 15, no. 11: 1325. https://doi.org/10.3390/atmos15111325
APA StyleChen, Z., Li, S., & Liu, C. (2024). Challenges and Potentials: Environmental Assessment of Particulate Matter in Spaces Under Highway Viaducts. Atmosphere, 15(11), 1325. https://doi.org/10.3390/atmos15111325