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Katarína Nevrlá 1, Melánie Barabášová 1 , Růžena Langová 1, Šárka Bernatíková 1 , Barbora Martiníková 1 ,
Michal Vašinek 3 , Adam Nevrlý 3, Milan Lazecký 4 , Jan Suchánek 2 , Hana Chaloupecká 5 , David Kiča 6
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Abstract: Air pollution monitoring in industrial regions like Moravia-Silesia faces challenges due
to complex environmental conditions. Low-cost sensors offer a promising, cost-effective alternative
for supplementing data from regulatory-grade air quality monitoring stations. This study evaluates
the accuracy and reliability of a prototype node containing low-cost sensors for carbon monoxide
(CO) and particulate matter (PM), specifically tailored for the local conditions of the Moravian-
Silesian Region during winter and spring periods. An analysis of the reference data observed
during the winter evaluation period showed a strong positive correlation between PM, CO, and
NO2 concentrations, attributable to common pollution sources under low ambient temperature
conditions and increased local heating activity. The Sensirion SPS30 sensor exhibited high linearity
during the winter period but showed a systematic positive bias in PM10 readings during Polish smog
episodes, likely due to fine particles from domestic heating. Conversely, during Saharan dust storm
episodes, the sensor showed a negative bias, underestimating PM10 levels due to the prevalence of
coarse particles. Calibration adjustments, based on the PM1/PM10 ratio derived from Alphasense
OPC-N3 data, were initially explored to reduce these biases. For the first time, this study quantifies
the influence of particle size distribution on the SPS30 sensor’s response during smog episodes of
varying origin, under the given local and seasonal conditions. In addition to sensor evaluation, we
analyzed the potential use of data from the Copernicus Atmospheric Monitoring Service (CAMS) as an
alternative to increasing sensor complexity. Our findings suggest that, with appropriate calibration,
selected low-cost sensors can provide reliable data for monitoring air pollution episodes in the
Moravian-Silesian Region and may also be used for future adjustments of CAMS model predictions.

Keywords: air quality; low-cost sensors; Polish smog; Saharan dust storm; linear regression

1. Introduction

The Moravian-Silesian Region in the Czech Republic, particularly the city of Ostrava, is
recognized as a significant air pollution hot spot in Europe. This situation arises historically
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from a combination of industrial activity, high population density, and geographical factors
that worsen air quality levels. The topography of the Moravian-Silesian Region contributes
to the accumulation of pollutants, especially during winter months when temperature
inversions are common. This leads to poor dispersion, resulting in elevated concentrations
of air pollutants. Additionally, air pollution from neighboring areas, particularly from the
Silesian Voivodeship (Poland), also plays a significant role in the given context [1–3].

Recently, “Polish smog” was proposed as a specific type of air pollution that occurs
in Poland, particularly in the winter months. It is characterized by high concentrations of
particulate matter (PM), such as PM2.5 and PM10, as well as polycyclic aromatic hydrocar-
bons like benzo(a)pyrene with adverse health effects [4]. This type of smog is particularly
prevalent in Eastern Europe, where it arises from the burning of coal and other solid fuels
for heating purposes, especially during the winter months. When compared with photo-
chemical smog found in industrialized urban areas, which is driven mainly by volatile
organic compounds (VOCs) and nitrogen oxides leading to high ozone levels, Polish smog
is more closely linked to residential heating practices and industrial emissions [5].

Yet, another type of smog event, which is further considered throughout this paper, is
caused by particulate matter originating from Sahara desert. Dust storms can transport par-
ticles over thousands of kilometers, affecting air quality far from their source. The transport
of Saharan dust poses significant challenges for air quality management and public health
in Europe. Although this phenomenon is more common in the Mediterranean region, it can
occasionally cause a significant deterioration in air quality for Central European countries.

Low-cost sensor (LCS) networks have emerged as a promising solution for monitoring
air pollution and providing smog alerts as they can supplement data from regulatory-grade
reference instruments [6]. By filling in spatial and temporal gaps in air quality monitoring,
such information can provide a more comprehensive understanding of pollution patterns
both at local and regional level. Citizen science projects involving the public in sensor
deployment can further expand the reach of these networks [7–9]. However, the proper
calibration of LCSs is crucial to ensure data accuracy and reliability [10].

In principle, uncertainties of factory-calibrated LCS response are studied by experi-
ments in controlled (laboratory) or uncontrolled (field) ambient conditions [11–13]. Such a
calibration procedure is followed by a selection of suitable numerical correction methods
and an estimation of parameters using reference datasets for model training or testing
purposes [14]. The co-location of the LCS node with reference instruments in real outdoor
atmosphere is usually performed over a period of several weeks in order to accumulate
appropriately large datasets required for the reliable outputs of the calibration process. A
prolonged period of co-location enables us to investigate the seasonal variability of LCS
performance across a wide range of environmental conditions relevant for the target locality.

In the given context, our study focuses on three key objectives related to the perfor-
mance and application of an LCS network in the Moravian-Silesian Region:

Aim 1 is to evaluate the accuracy and reliability of a prototype sensor node specifically
designed for local conditions in the region, focusing on the winter and spring periods.
This study analyzes the data obtained from low-cost sensors, particularly the Sensirion
SPS30 and Alphasense CO-B4 sensors, and compares them with data from regulatory AQM
stations to evaluate sensor accuracy in detecting PM and CO during air pollution episodes.
Aim 2 is to investigate whether and how the reliability of the SPS30 sensor can be enhanced
under local conditions. While the SPS30 sensor has shown promise in monitoring partic-
ulate matter, it also presents limitations, particularly in its ability to accurately measure
larger particles, such as PM10. This study explores potential calibration improvements,
including corrections based on particle size distribution, to address the observed biases in
PM10 measurements.
Aim 3 is to analyze the potential use of data from the Copernicus Atmospheric Monitoring
Service (CAMS) as an alternative to increasing the complexity of the LCS node. The CAMS
provides regional air quality forecasts, including PM10 and CO concentrations, which
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could potentially complement or replace the need for additional sensors in the low-cost
monitoring framework.

Overall, the goal of our research is to develop a new framework for data analysis and
practical guidance for the calibration of low-cost sensors in urban air pollution environ-
ments by combining observations from AQM stations and CAMS model predictions. In
particular, we aim to provide new insights into the reliability of the SPS30 sensor for further
use in citizen science-based air quality monitoring initiatives, which has been critically
discussed in the recent literature, e.g., [15].

2. Materials and Methods

Our prototype LCS sensor node (more details are described in Appendix A) was
mounted on the roof of the AQM station (see Figure 1). This setup allows for a direct com-
parison between the outputs of the LCS node and data from reference-grade instruments.

Figure 1. LCS sensor node placed on the roof of the reference air quality monitoring station of the
health institute in Ostrava located in the Mariánské Hory district.

2.1. Selection of Low-Cost Sensors

Following our goals, the LCS node is equipped with a set of low-cost sensors suitable
for the monitoring of primary air pollutants for the specific area, which are particulate
matter (PM) and carbon monoxide (CO). The selection of the gas and PM sensors was
mainly based on the extensive literature survey and experience of previous investigators.
The availability of the sensors (their distribution in the EU) was also taken into account as
well as the affordability of the entire LCS node setup and level of complexity relevant to
the requirements for its integration and further development.

For the particulate matter (PM) measurement, the node utilizes a pair of commercially
available sensors: Sensirion SPS30 and Alphasense OPC-N3. The SPS30 is a laser-based
optical sensor well suited for measuring fine particulate matter (especially PM1) mass
concentration based on the principle of light scattering. The OPC-N3 also uses optical
particle counting when detecting a wider range of particle sizes, from 0.35 µm to 40 µm,
across 24 size bins, enabling particle size distribution to be determined, which is critical
for understanding the composition of atmospheric aerosols and the determination of their
origin in relation to source apportionment.

For carbon monoxide monitoring, the LCS node incorporates the Alphasense CO-B4
electrochemical sensor. This sensor can detect CO concentrations between 0 and 1000 ppm,
with a resolution of 0.1 ppm. Its sensitivity ranges from 55 to 85 nA/ppm, providing an
accurate detection of small changes in CO levels.
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Knowledge of ambient temperature and relative humidity (RH) is essential when
aiming at corrections of LCS response in various ambient conditions. For this purpose, a
digital module including the Bosch Sensortech BME280 sensor was integrated into the LCS
node. This sensor operates with a temperature accuracy of ±1 ◦C and a humidity accuracy
of ±3% RH.

2.2. Co-Location Site and Reference Instruments

The co-location measurements of the LCS node were conducted at an air quality
monitoring (AQM) station of the health institute located in the municipal area of the city of
Ostrava, which is close to various industrial sites (e.g., metallurgical, chemical, etc.). The
AQM station provides information on meteorological conditions, such as wind speed and
direction, as well as reference air quality data in hourly intervals. Atmospheric pressure,
temperature, and humidity are measured using the COMET T3113D sensor for temperature
and humidity, and the NXP Semiconductor MPX4115A for pressure. For CO measurements,
an HORIBA APMA-370 analyzer is used. The station also monitors nitrogen dioxide
(NO2) with the HORIBA APNA-370 analyzer and ozone (O3) with the HORIBA APOA-370
analyzer. A TEOM 1400 analyzer was used as a reference for PM10 during the entire winter
evaluation period, including the S1 episode. At the end of March 2024, the TEOM 1400 was
replaced by a Palas FIDAS 200 analyzer, which provides continuous real-time reference
measurements of size distribution, allowing the quantification of PM1, PM2.5, and PM10.
Detection principles for each measurement are detailed in Table 1.

Table 1. Reference methods and detection limits of the instrumentation available at the AQM station.

Measurement Target Principle Limit of Detection

Carbon monoxide (CO) Non-Dispersive IR Spectrometry 200 µg/m³

Ozone (O3) UV Photometry 10 µg/m³

Nitrogen dioxide (NO2) Chemiluminescence 8 µg/m³

Particulate matter (TEOM) Oscillating Microbalance 5 µg/m³

Particulate matter (FIDAS) Optical Scattering 1 µg/m³

Ambient temperature On-Chip Electronics ±1 °C

Relative humidity On-Chip Electronics ±3%

Atmospheric pressure On-Chip Electronics ±1 hPa

2.3. Overview of Co-Location Measurement

Low-cost sensors are often collocated with reference instruments in laboratory or field
conditions for a period of several weeks in order to improve their performance. In our
case, an evaluation measurement campaign lasting for three months (from mid-November
2023 to mid-February 2024) was initially planned to be carried out in order to verify and
validate the performance of individual LCSs and their variation for seasonal meteorological
conditions typical in the Moravian-Silesian Region.

Additionally, smog alert events, which occurred in Ostrava during December 2023
and April 2024, were also recorded during an extended period of co-location. These
datasets enabled us to focus our attention on the performance of LCS and CAMS data
versus reference measurements during the episodes of serious air quality deterioration (see
Table 2).
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Table 2. Smog episodes with relative humidity, temperature and pressure characterized by their
mean and standard deviation values (in brackets).

Period Start End Hum. (%) Temp. (°C) Pres. (hPa)

S1 5 December 2023 9 December 2023 98(±2) −2(±2) 1016(±3)

S2 29 March 2024 2 April 2024 45(±15) 15(±10) 1004(±4)

In general, the differences in meteorological conditions between S1 and S2 are mostly
due to the distinct seasonal conditions of Central Europe. Specifically, S1 is associated with
high atmospheric stability and the inflow of cold and wet air masses typical for continental
weather during the winter season, while S2 is characterized by a long-range (i.e., inter-
continental) transport of dry and warm air from the south via the so-called “Moravian
Gate”, associated with relatively higher wind speeds.

It is worth noting that atmospheric conditions for the S1 episode are typical for the
above-mentioned “Polish smog”. In the given case the highest concentrations of particulate
matter are generally recorded at low temperatures, specifically between −10 °C and 0 °C.
Additionally, higher atmospheric pressure correlates with increased PM concentrations,
as stable air masses inhibit vertical mixing and allow pollutants to accumulate near the
surface [5]. The evolution of the above-described meteorological situation can be identified
from Figure 2 based on reference data from the AQM station.

Different atmospheric conditions for the S2 episode corresponds to the seasonal Sa-
haran dust storm over Central Europe (for more detailed information on the given topic,
see (accessed on 1 September 2024) the following text available online: https://atmosphere.
copernicus.eu/climate-atmosphere-podcast-understanding-impact-saharan-dust-storms).
A moderate speed of the wind blowing from the south-west direction can be clearly identi-
fied during PM10 maxima from Figure 2.

2.4. Datasets and Preparatory Analysis

Following the aims of this study, we utilized three sets of time series to evaluate the
LCS measurements and analyze the data, whose contents and temporal resolution are
illustrated in Figure 3. These data (including the interactive Python notebooks), enabling
their processing and analysis, are fully available from the public repository mentioned in
the Data Availability Statement.

Datasets extracted from the LCS node were converted into hourly time series using
the pandas (Python library) resample method and ordered with the reference and CAMS
model data according to relevant GMT timestamps.

Reference AQM data were extracted from datasets provided by the health institute (the
AQM station) after their verification involving the replacement of values of measurements
below the limit of detection (LoD, see Table 1) by the value equal to LoD/2.

Site-specific time series of concentrations for the selected pollutant (CO, O3, NO2,
PM10, PM2.5 and Dust) based on the forcast of the CAMS ENSAMBLE model [16] with
11 km spatial resolution were downloaded in the form of comma-separated value (CSV)
files from the Open Meteo (https://open-meteo.com/) webpage.

The CAMS ENSAMBLE model provides daily high-resolution air quality analyses
and forecasts for Europe. It utilizes an ensemble of eleven air quality forecasting systems,
generating a median ensemble from individual model outputs to enhance predictive per-
formance. This approach allows for better uncertainty estimation based on the variability
among the models. Data assimilation techniques integrate model outputs with observations
from the European Environment Agency (EEA), creating a comprehensive dataset. Fore-
casts are produced daily for the next four days, available at hourly intervals and multiple
vertical levels. Practical implementation on the CAMS for urban air quality monitoring and
more detailed information concerning the model predictions are described, e.g., in [17].

https://atmosphere.copernicus.eu/climate-atmosphere-podcast-understanding-impact-saharan-dust-storms
https://atmosphere.copernicus.eu/climate-atmosphere-podcast-understanding-impact-saharan-dust-storms
https://open-meteo.com/
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 2. Temporal evolution of wind speed, wind direction, and reference particulate matter
[PM10]REF concentrations during S1 (a–c) and S2 (d–f) episodes, respectively. Wind direction in
degrees indicates the origin of the wind (0◦ = 360◦ = north, 90◦ = east, 180◦ = south, 270◦ = west).
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Figure 3. Schematic representation of datasets and quantities used for exploratory and regression data
analyses (in bold) with corresponding temporal resolution. These datasets as well as data processing
tools (including interactive Python notebooks) are available at the Zenodo repository (see the Data
Availability Statement).

The multilinear fitting (MLR) values of the carbon monoxide LCS voltage were con-
verted into concentration using linear model form scikit-learn (Python library). The
entire dataset of winter measurements, i.e., from November 2023 to February 2024, was
assumed as a representative for the given step. Temperature readings from the LCS node
were converted into Kelvins in order to avoid numerical issues relevant to negative values.
The entire dataset was split into training and testing subsets, with 1232 and 2392 data
points, respectively. Finally, the MLR model, with a high coefficient of determination,
i.e., R2 = 0.89, and acceptable mean average error (MAE < 50 µg/m3) for the predicted
CO concentration was estimated assuming only T[K] and CO-B4 sensor voltage values as
predictors with the presumed parametrization of Equation (1)

[CO]LCS(τ) = c1 × [UWE(τ)− UAE(τ)] + c2 × T(τ) + c3 (1)

where UWE(τ) is a working electrode voltage [V], UAE(τ) is an auxillary electrode volt-
age [V] at given Greenwich (i.e., GMT) time τ and case-specific values of relevant MLR
coefficients are as follows: c1 = 4394 and c2 = −0.693, c3 = 0.

An exploratory data analysis including Correlation Matrix and Kernel Density Estima-
tion (KDE) of dataset pairs was performed using seaborn (Python library). Subsequently,
simple linear regression (SLR) and plots of diurnal variations in air pollutant concentrations
were performed employing the relevant methods implemented in atmospy (Python library).
Particle size distribution measured by the Alphasense OPC-N3 sensor was analyzed using
the smps-py (Python library).
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3. Results
3.1. Key Findings from Winter Evaluation Period

In winter, the time series for key air pollutants were expected to be significantly
correlated, which was confirmed from the analysis of the reference data (PM10, CO, NO2,
and O3). The correlation between the given variables was quantified using the Pearson
correlation coefficient, which measures the strength of a linear relationship between two
variables, x and y. This coefficient (r) was calculated using Equation (2):

r = ∑(xi − x̄)(yi − ȳ)√
∑(xi − x̄)2 ∑(yi − ȳ)2

, (2)

where index i represents the i-th data point in the reference dataset. Carbon monoxide
shows a strong positive correlation with PM10, with a Pearson coefficient value of r = 0.85,
as shown in Figure 4, which can be attributed to a similar source of these pollutants or to a
related mechanism, e.g., atmospheric dispersion.

Figure 4. The correlation matrix with scatter plots, linear regression and probability density functions
(PDFs) for reference pollutant concentrations from the winter evaluation period. The diagonal
subplots displaying the PDFs of the variables are depicted on a relative scale. Note that the area
under each PDF curve equals 1, indicating the total probability. All scales for non-diagonal subplots
are depicted in [µg/m3] units. Pearson correlation coefficients r and relevant linear regression lines
are depicted in red.
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At the same time, the NO2 concentration values are also correlated with CO and PM10.
This observation is in line with an assumption that the incomplete combustion of fossil
fuels, and subsequent atmospheric dispersion of smoke plumes, is a dominant contributor
to winter air pollution in the given location. As can be expected, due to the lower solar
(UV) radiation intensity, ozone concentrations only rarely reached elevated values (above
75 µg/m3) during this period. The negative correlation of O3 with concentrations of other
pollutants can be explained by a combination of meteorological factors, i.e., higher atmo-
spheric stability, which prevents the vertical dispersion of ozone in winter, and reduced
ozone formation reaction rates due to lower ambient temperature and reduced photochem-
ical activity. Other factors mentioned in the literature [18] are the reduced intensity of solar
radiation over the ground in the presence of high particle concentrations, as well as the
shift in the chemical equilibrium towards ozone consumption at high levels of NO2 in
the atmosphere.

The most prominent qualitative features of the LCS response and selected CAMS
model predictions can be recognised from the plots of the selected hourly data (Figure 5),
when compared to the reference measurements. Firstly, we can spot the excellent fit
of [CO]LCS to [CO]REF, together with the systematic shift of [CO]CAMS data towards
slightly higher values. On the contrary, the PM10 response provided by the SPS30 sensor
is considerably overestimated (especially for PM10 > 50 µg/m3) compared to the PM10
prediction by the CAMS model, which is very close to the reference data.

Figure 5. Comparison of the selected hourly data series from winter evaluation period.

A significant correlation of the main pollutants with reduced ambient temperature is
confirmed by negative Pearson coefficients for PM10 (r = −0.42), CO (r = −0.56) as well as
NO2 (r = −0.51). Numerous spikes in CO and PM10 time series follow a sharp decrease
in ambient temperature (mostly below 0 ◦C). We can also discern the excellent agreement
of temperature from the LCS node with the reference data, which is important due to the
requirement of correcting the CO-B4 sensor according to Equation (1).
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The overall quality of the LCS node data and the qualitative indicators of the CAMS
model compared to the reference measurements are also illustrated by the plots shown in
Figure 6. The average reference CO concentration over the evaluation period shows the
same trend of diurnal variation as PM10.

In the case of carbon monoxide, the LCS data show a nearly perfect correlation with
the reference diurnal trend. There is obvious increase in CO and PM10 during morning rush
hours (at about 8 A.M.) and a second peak around 8 P.M. Conversely, for the morning peak,
the [PM10]CAMS value (predicted by the CAMS) coincides with the reference measurement
of PM10 ([PM10]REF).

The peak PM10 concentration predicted in the late evening hours by the CAMS model
is significantly overestimated in a similar way to that observed in the diurnal plot for CO.
This may be related to the uncertainty in the CAMS model input data regarding emission
factors from industrial sources or domestic heating. For example, the Czech Republic is
currently undergoing technological improvements based on government support for the
replacement of domestic heating systems, which may have already been effective but has
not yet been reflected in the model inputs. The plot of the diurnal SPS30 response, i.e.,
[PM10]LCS, shows a large overestimation with a more pronounced deviation during the
night hours.

In the following sections of this paper, we anticipate that this change is due to a
combination of the specific sensitivity of the SPS30 sensor and the changing ratio of fine to
coarse particles in the air over the course of the day and year due to different intensities of
domestic and industrial combustion and smoke dispersion (see Section 4).

Prior to the start of this study, we assumed that the Alphasense OPC-N3 sensor
integrated in the LCS node would be used to accurately determine PM concentrations as
a complementary measurement to the TEOM reference. However, it has been found that
the OPC-N3 response does not show adequate agreement with the reference instrument
(R2 < 0.3 for PM10 for the evaluation period). Nevertheless, the particle size distribution
was continuously measured by this sensor throughout the co-location period. Thus we used
these data to determine the particle size-resolved spectra. Particle volume concentrations
for each of the 24 bins were determined from measured values (i.e., the number of particles
counted per sensor bin) and their daily mean values were recalculated.

In the next step, we expressed monthly averaged values for each bin to examine
whether our data showed a seasonal trend. As can be seen in Figure 7, where the normalized
particle size distributions are plotted, there is a clear predominance of submicron particles
during the so-called heating season, which is less pronounced in February, as this month is
exceptionally warm in the corresponding year compared to previous temperature records.
Thus, the PM1/PM10 ratio equal to 0.26 is consistent with a lower heating intensity and
suggests that our assumptions regarding the influence of local combustion processes on
the particle size distribution are correct.

3.2. LCS Performance During Polish Smog

Figure 8 shows a highly linear response of the CO-B4 sensor during the S1 episode. The
slope parameter is nearly equal to its value obtained for the entire evaluation period. This
fact can be expected due to the large span of data points from low to high CO concentration
values recorded during the smog episode. However, we can find a close agreement of
the data with the initial [CO]LCS calibration according to Equation (1). Note that the data
points recorded, when the values measured by the reference instrument were below the
detection limit (i.e., [CO]REF < 200 µg/m3), were removed before the SLR analysis.
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(a)

(b)

Figure 6. Plot of diurnal variations in CO concentration (a) and PM10 (b) during winter evaluation
period, extracted from reference instrument (solid line), LCS node (dotted line) and CAMS model
(dash-dotted line) data, with mean value (thick lines) and the interquartile range (shaded regions).
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Figure 7. The seasonal variation in size distribution depicted as the normalized particle volume by
bin of the Alphasense OPC-N3 sensor. The value of mass-weighted PM1/PM10 ratio was estimated
for each co-location month, based on the median value of the relevant 24 h averages.

Systematically, an over-predicted PM10 response was obtained from the SPS30 sensor
compared to the TEOM reference instrument during the S1 episode. Nevertheless, a
similar value of slope parameter a was obtained from the SLR fit (where a is the slope
of the y = ax + b regression line) for the entire winter evaluation period (see Figure 9).
These results indicate the consistency of datasets obtained from the SPS30 sensor response,
together with a relatively high coefficient of determination (R2 > 0.8) for PM10 over the
entire co-location period.
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(a) (b)

Figure 8. Simple linear regression of Alphasense CO-B4 sensor response versus reference instrument
(HORIBA) for “Polish smog” episode S1 (a) compared with data for winter evaluation period (b).
Histograms displayed adjacent to axes illustrate normalized frequency of measured concentration
ranges within respective dataset.

(a) (b)

Figure 9. Simple linear regression of Sensirion SPS30 sensor response versus reference instrument
(TEOM) for “Polish smog” episode S1 (a) compared with data for winter evaluation period (b).
Histograms displayed adjacent to axes illustrate normalized frequency of measured concentration
ranges within respective dataset.

3.3. LCS Performance During Saharan Dust Storm

During episode S2, a dramatic change in the response of SPS30 to dust particles was
observed. In contrast to the winter evaluation period (with a positive bias of PM10 readings),
in the case of Saharan smog, PM10 readings were negatively biased against the reference
values. However, a nearly perfect agreement of the SPS30 response was found for PM1
(see Figure 10). It is worth noting that the concentrations of carbon monoxide during
the S2 episode were steadily below the limit of detection for the reference instrument
([CO]REF < 200 µg/m3).
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(a) (b)

Figure 10. Simple linear regression of Sensirion SPS30 sensor response versus reference instrument
(FIDAS) during spring “Saharan dust storm” episode S2. Performance shown for PM10 (a) and PM1

(b). Histograms displayed adjacent to axes illustrate normalized frequency of measured concentration
ranges within respective dataset.

4. Discussion

We first discuss our results regarding the response of the CO-B4 sensor and compare
them with the observations of previous researchers. In the work of Camprodon et al. [9], a
very high correlation (R2 > 0.8) and low error (RMSE < 0.1 ppm) of CO measurements
were observed during more than two months of CO-B4 sensor deployment. The sensor
was found to behave linearly with respect to the CO concentrations and its decrease during
the co-location period was negligible, which is quite consistent with our measurements.
Our data obtained during the winter evaluation period (3 months) show a slightly higher
coefficient of determination R2 ≈ 0.9 when re-calibration according to the Equation (1) is
evaluated and compared with the reference data. A similar performance of this sensor is
reported in Han et al. [12], evaluating an almost identical season with similar ranges of air
pollutants, but with temperatures in the range 0–20◦C. Our co-location was carried out at
much lower temperatures, while temperature correction following Equation (1) seemed
to be less effective at extremely low ambient temperatures (below −10 ◦C) and high CO
levels (see Figure 11). Conversely, slightly overestimated values of [CO]LCS were observed
during the warmer days (with t > 5 ◦C). In the given case, we can attribute biased [CO]LCS
values to a direct temperature effect on the sensing mechanism, i.e., a reduced rate of
(electro-)chemical reactions, and the corresponding non-linearities.

On the other hand, as far as the influence of temperature on the response of the SPS30
sensor in our local conditions is concerned, we anticipate rather an indirect effect consisting
in the change in particle size distribution due to the increased need for domestic and
industrial heating at lower ambient temperatures.

This hypothesis is consistent with a number of previous publications, e.g., [19,20],
mentioning in particular the work of Zareba et al. [20], who show a negative correlation
between ambient temperature and the air pollution in an area close to our co-location site.
Their study confirms that in moderate climate zones with coal burning as the primary
source of air pollution, temperature is the most significant factor influencing monthly
average PM10 concentrations.
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Figure 11. Correlation of reference measurements and LCS response during the winter evaluation
period and the effect of ambient temperature on sensor performance (shown by the color of the
data point).

As in the case of our co-location site, many AQM stations in the region covered by this
paper are not yet equipped with reference instruments for measuring fine PM fractions.
Moreover, the air quality criteria recommended by the WHO, EU, or local authorities for
declaring a smog alert situation usually take into account PM10 concentrations or rarely
PM2.5. Therefore, our main motivation was to find a solution to reliably determine PM10
values based on LCS data.

Below, we briefly summarize some of the findings from previous studies on the
performance of SPS30 sensors, in particular on their reliability in measuring fine and coarse
PM concentration.

In a study by Roberts et al. [21], co-locating SPS30 with regulatory methods, they
achieved an average bias adjusted R2 = 0.75 for 24 h averages and 0.57 for 1 h averages,
suggesting reasonable accuracy in real-time monitoring. The mean bias error was minimal,
indicating that the SPS30 provided reliable data for PM2.5 levels.

According to Kuula et al. [22], the SPS30 sensor is suitable to be used for measuring
PM1 particles when R2 = 0.91, indicating high accuracy and consistency. Whereas for PM2.5
particles, this value was 0.83, for PM10 particles, it was 0.12, indicating low measurement
reliability and that sensor is not suitable for larger particle sizes.

Vogt et al. [23] also confirm that the SPS30 sensor is mostly accurate and reliable for
PM1 particles with R2 = 0.94. For PM2.5 particles, the R2 value was around 0.73. The
results for PM10 particles indicate a higher value (R2 = 0.46) compared to the results of
Kuula et al. [22], yet the sensor is still not suitable for practical AQM applications.

Molino Ruada et al. [15] confirmed the trend of the SPS30 sensor being able to measure
PM1 particles with a high accuracy of R2 = 0.93. As the particle size increases, the accuracy
of the sensor decreases, yielding R2 = 0.72 for PM2.5 and R2 = 0.23 for PM10, respectively.

The physical explanation for the unreliable measurement of larger particles is related
to the design of optically based LCSs and the principle of their operation (i.e., light scat-
tering). Above all, shortened viewing angles, losses occurring during particle intake and
also differences in particle shape and refractive index need to be taken into account as
well as the effect of humidity and sensor aging when these LCSs are exposed to realistic
outdoor conditions.
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Considering these findings together with the results of our LCS node measurements
against the reference data, we can conclude that the SPS30 provides a reliable response to
fine dust particles, especially PM1, even under Saharan dust storm conditions. The PM10
readings from the SPS30 sensor according to its original calibration (i.e., factory setting)
are burdened with a systematic bias, whose trend (negative or positive) depends on the
type of smog situation. Therefore, to conclude this discussion, let us take a closer look at
the size-resolved histogram of the PM volume concentration distribution obtained from
the OPC-N3 sensor on days with maximum PM10 concentration in the case of S1 and S2
episodes (see Figure 12). The difference in particle size resolution is noticeable, with both
data showing significant bimodality. In the case of the Polish smog (S1), the total volume is
clearly dominated by PM1. On the other hand, in the case of the Saharan dust storm (S2),
particles with aerodynamic diameter Dp ≈ 4 µm have the highest volume concentration
from the total PM10 found in the size-resolved distribution.

(a)

(b)

Figure 12. Size distribution of the normalized particle volume by bin of the Alphasense OPC-N3
sensor. The value of mass-weighted PM1/PM10 ratio estimated from 24 h average on selected days
during S1 (a) and S2 (b) episodes.

In an analogy to the recent work by Kaur and Kelly [24], we propose a strategy to
derive PM10 concentrations from the biased PM-LCS response based on correction factors
obtained from the OPC-N3 sensor working in concert. Further, we use Equations (3) and
(4), which can be used to adjust slopes aSLR,S1 and aSLR,S2, respectively, to the ideal value
aCOR ≈ 1. Then, we can use the inverse estimation in order to determine that the calibration



Atmosphere 2024, 15, 1326 17 of 22

of SPS30 is presumably carried out with the aerosol mixture having [PM1/PM10]SPS,calibr ≈
0.2 ± 0.05, which corresponds to common (traffic-related) air pollution in urban areas.

[PM1/PM10]OPC,S1

aSPS,S1
=

0.5
2.1

= 0.23 ≈ [PM1/PM10]SPS,calibr (3)

[PM1/PM10]OPC,S2

aSPS,S2
=

0.03
0.19

= 0.16 ≈ [PM1/PM10]SPS,calibr (4)

Therefore, the PM10 values measured by SPS30 are systematically biased if the actual
[PM1/PM10] values differ significantly from the [PM1/PM10]SPS,calibr. In other words,
it was proved that the biased SPS30 reading of PM10 could be roughly corrected using
[PM1/PM10]OPC divided by a factor (0.2 ± 0.05). More precise corrections will only be
possible after further analysis and experimentation.

4.1. Practical Applicability

This work represents a significant step towards strengthening the role of citizen science
and democratizing environmental data in AQM, and it demonstrates the importance of
academic support for these efforts as the current state of knowledge and technology is
still rather prohibitive to the straightforward deployment of commercially available LCS
systems in their default (factory-calibrated) setup. Therefore, a careful evaluation of LCS
performance (in the form of co-location measurements) and a consideration of specific
conditions of their deployment at local and regional levels before their practical application
are inevitable.

In the framework of this work, we were able to explain the seasonal variability of the
Sensirion SPS30 sensor response, and a correction method increasing the reliability of its
PM10 response has established. According to our findings, we can exploit the strengths of
the SPS30 sensor and overcome its previously reported limitations. A correction of its biased
response can be expressed based on the fine-to-coarse particle ratio, e.g., as PM1/PM10
evaluated from the OPC-N3 sensor. It was also found that an additional temperature
correction needs to be estimated for the CO-B4 sensor to account for a biased response at
extremely low temperatures.

Our future aim is to enhance the reliablity of the regional AQM data when combining
CAMS model predictions and LCS response by means of machine learning approaches
employing parameterized (e.g., MLR or HDMR [25]) or non-parameterized methods [26].

4.2. Limitations

This study has several limitations, mainly due to the seasonal character and the
influence of weather conditions relevant to the location and the winter season. It also
specifically focuses only on the response of selected LCS systems integrated into a prototype
node that is still under development. In our study, only individual pieces of the selected
LCSs were tested and evaluated, thus not including the influence of inter-unit variability.
Due to the duration of the co-location measurement, LCS aging factors were neglected.

5. Conclusions

This study evaluated the accuracy and reliability of a prototype low-cost sensor node
for monitoring air pollution in the Moravian-Silesian Region, focusing on carbon monoxide
(CO) and particulate matter (PM) during winter and transitional spring periods. The
findings demonstrate that the selected low-cost sensors, particularly the CO-B4 and the
SPS30 sensors, show high linearity in their readings under typical winter conditions. In
accordance with Aim 1, a prototype LCS node was successfully developed and deployed
for several months at the AQM station in Ostrava-Mariánské Hory. While searching for
a suitable calibration procedure and methods, important properties of the LCS response
during seasonal smog episodes were observed. However, systematic biases in PM10 mea-
surements were identified during specific pollution episodes. These biases highlight the
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need for improved calibration methods. Following Aim 2, this study investigated initial
calibration adjustments using a back-estimation method based on the PM1/PM10 ratio
derived from the OPC-N3 sensor and demonstrated the potential for reducing bias and
increasing sensor reliability under local conditions. Importantly, our findings reveal that,
with appropriate calibration adjustments, the SPS30 sensor shows potential for quantitative
PM10 measurement, even though previous studies, such as Molino-Ruada et al. [15], have
raised concerns about its suitability for low-cost sensor (LCS) networks. Despite these
concerns, our study suggests that by applying corrections derived from particle size distri-
butions, the SPS30 sensor can be effectively used in LCS networks for air quality monitoring
in regions with specific environmental challenges, such as the Moravian-Silesian Region. In
addition to evaluating the performance of the prototype sensor node, our findings obtained
by targeting Aim 3 offer potential for use in improving both the accuracy of LCS monitoring
and the reliability of CAMS model predictions, particularly in relation to local air pollution
episodes. Overall, this study highlights the potential of low-cost sensor networks, with
appropriate calibration, to provide reliable air quality data in industrial regions like the
Moravian-Silesian Region. Such networks could effectively supplement regulatory-grade
monitoring systems. Future research will focus on enhancing sensor recalibration methods,
particularly through the back-estimation method, and further exploring the integration of
CAMS data to optimize the accuracy of low-cost air quality monitoring systems.
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Abbreviations

PM1 particulate matter with diameter ≤ 1 micrometer
PM2.5 particulate matter with diameter ≤ 2.5 micrometers
PM10 particulate matter with diameter ≤ 10 micrometers
CO carbon monoxide
CAMS Copernicus Atmospheric Monitoring Service
VOCs volatile organic compounds
O3 ozone
LCS low-cost sensor
AQM air quality monitoring
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EU European Union
RMSE root mean square error
RH relative humidity
NDIR nondispersive infrared
TEOM tapered element oscillating microbalance
LoD limit of detection
CSV comma-separated value
MLR multilinear regression
MAE mean average error
GMT Greenwich mean time
SLR simple linear pegression
atmospy Python library for atmospheric data analysis
smps-py Python library for particle size distribution analysis
NO2 nitrogen dioxide
UV ultraviolet radiation
r Pearson correlation coefficient
[CO]LCS CO concentration measured by LCS
[CO]REF reference CO concentration
[CO]CAMS CO concentration from CAMS model
[PM10]REF reference PM10 concentration
S1 smog episode 1
S2 smog episode 2
R2 coefficient of determination
ANN artificial neural network
HDMR high-dimensional model representation
LoRaWAN long-range wide-area network
ASA acrylonitrile styrene acrylate (3D printing material)
MQTT message queuing telemetry transport

Appendix A. LCS Node Design and Data Management

Appendix A.1. Hardware Description

The LCS sensor node is designed as a modular system with three interconnected
printed circuit boards (PCBs), each serving a specific function: control and communication,
sensor interface, and power management.

The Control and Communication Board houses the LilyGo TTGO LoRa32 T3 v1.6 with
868MHz microcontroller module, featuring the ESP32. This board manages data collection
and communication, utilizing Wi-Fi (employed within this work) and LoRaWAN (optional).
It operates primarily at 3.3V, with voltage regulators and DC-DC converters ensuring stable
power supply for consistent performance.

The Power Management Board distributes power across the system and supports
multiple power input options, including DC from the grid (employed within this work),
lithium-ion batteries, and 6V lead-acid batteries (optional). This board includes DC-DC
converters and voltage regulators to step down input voltages to the necessary levels. It
also integrates a slot for NEO-6M GPS module for geolocation, providing real-time position
data alongside environmental measurements.

The Sensor Interface Board integrates individual sensors, including particulate matter
(Alphasense OPC-N3 and Sensirion SPS30). It also features an Analog-to-Digital Converter
ADS1115 to process signals from analog Alphasense type B sensors. Stable voltage of 3.5V
is provided for Individual Sensor Boards as required for measurement accuracy.

The interconnection of these PCBs ensures seamless communication and power distri-
bution, contributing to the mechanical stability of the sensor node and simplifying assembly
and future modifications.
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Additionally, a custom-designed enclosure for the sensor node was developed and
manufactured using MDF 3D printing technology. The material chosen for the enclosure
is ASA (Acrylonitrile Styrene Acrylate), which offers excellent weather resistance and
durability. The enclosure not only protects the sensors from external elements but also
ensures proper airflow for accurate measurements. A 3D model of the sensor node’s
enclosure is shown in Figure A1.

Figure A1. Rendered 3D model of the LCS node enclosure.

Appendix A.2. Datalogging

As illustrated in the Figure A2 data logging from LCS node is a multistep prcess.
Sensor node is equipped with an ESP32 microcontroller, which gathers data at regular
intervals. This data is transmitted using Wi-Fi via the MQTT protocol, specifically through
the Mosquitto MQTT broker, which publishes the data to designated topics. Telegraf,
configured to listen to these MQTT topics, subscribes to the relevant data streams and
stores the incoming information in an InfluxDB database.

Figure A2. Schematic representation of the data logging framework.

To make this data accessible and interpretable, Grafana connects to the InfluxDB
database and visualizes the data on customizable dashboards. Selected datasets from
co-location measurement are resampled with 10-min temporal resolution and automatically
transferred to CSV format in monthly intervals. These data can be accessed from publicly
available web interface SOASENSE (https://soasense.vsb.cz, accessed on 1 October 2024)

https://soasense.vsb.cz
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2. Volná, V.; Hladký, D.; Seibert, R.; Krejčí, B. Transboundary Air Pollution Transport of PM10 and Benzo[a]pyrene in the

Czech–Polish Border Region. Atmosphere 2022, 13, 341. [CrossRef]
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