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Abstract: Snow avalanches, one of the most severe natural hazards in mountainous regions, pose
significant risks to human lives, infrastructure, and ecosystems. As climate change accelerates
shifts in snowfall and temperature patterns, it is increasingly important to improve our ability to
monitor and predict avalanches. This review explores the use of remote sensing technologies in
understanding key geomorphological, geobotanical, and meteorological factors that contribute to
avalanche formation. The primary objective is to assess how remote sensing can enhance avalanche
risk assessment and monitoring systems. A systematic literature review was conducted, focusing
on studies published between 2010 and 2025. The analysis involved screening relevant studies on
remote sensing, avalanche dynamics, and data processing techniques. Key data sources included
satellite platforms such as Sentinel-1, Sentinel-2, TerraSAR-X, and Landsat-8, combined with machine
learning, data fusion, and change detection algorithms to process and interpret the data. The review
found that remote sensing significantly improves avalanche monitoring by providing continuous,
large-scale coverage of snowpack stability and terrain features. Optical and radar imagery enable the
detection of crucial parameters like snow cover, slope, and vegetation that influence avalanche risks.
However, challenges such as limitations in spatial and temporal resolution and real-time monitoring
were identified. Emerging technologies, including microsatellites and hyperspectral imaging, offer
potential solutions to these issues. The practical implications of these findings underscore the
importance of integrating remote sensing data with ground-based observations for more robust
avalanche forecasting. Enhanced real-time monitoring and data fusion techniques will improve
disaster management, allowing for quicker response times and more effective policymaking to
mitigate risks in avalanche-prone regions.

Keywords: snow avalanche; remote sensing; formation factors; hazard monitoring systems

1. Introduction

In recent years, human activities have exacerbated global warming, leading to more
frequent and severe weather-related calamities, including unusual patterns of temperature
and precipitation, specifically rainfall and snowfall, which can escalate into serious natural
catastrophes [1]. Avalanches are catastrophic natural phenomena characterized by the
sudden release of snow, ice, and sometimes rocks, soil, and vegetation from mountain
slopes [2]. Avalanches occur predominantly in mountainous areas with steep terrains
and are triggered by a complex interplay of meteorological conditions, terrain features,
and snowpack characteristics [3]. Typically, they form during or after heavy snowfall
when new snow layers accumulate, adding significant weight to the existing snowpack.
This accumulation destabilizes the snowpack, causing a large mass of snow to break
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away and slide down the slope, sweeping along additional snow and debris in its path [4].
Despite the low frequency of occurrence, avalanches are catastrophic natural events that can
significantly affect lives, infrastructure, and ecosystems [3]. Therefore, studying avalanches
is a form of risk research aimed at reducing their impact by examining how they form in
relation to meteorological conditions and snowpack triggers.

Conventionally, researchers have investigated avalanche formation by field testing
snow properties, on-site assessments of avalanche activities and dynamics, and modeling
these factors [5]. Field-based methods for studying avalanches face limitations due to
high risks and observational biases toward objects that are easily seen in accessible areas
under favorable weather conditions and snow stability [6,7]. Many avalanche and snow
parameters are measured on-site following industry standards set by organizations like the
American Avalanche Association, the Canadian Avalanche Association, and the European
Avalanche Warning Services [8,9]. This results in significant uncertainties and gaps in both
time and space regarding the mapping of avalanche activity, which obstructs effective data
analysis, risk assessments, and detailed comparisons with meteorological triggers [5]. Em-
ploying ground-based, aerial, and satellite remote sensing could address these deficiencies,
offering more precise measurements of avalanche activity and dynamics.

The adoption of remote sensing (RS) technologies not only enhances avalanche moni-
toring but also offers insights into the broader geological environment through advanced
imaging and analysis techniques—often termed “remote sensing of the geological environ-
ment” (GERS). This approach utilizes sophisticated image processing to identify geological
features that might influence avalanche behavior, such as terrain structure, fault lines, and
underlying rock formations. These capabilities are crucial in both GERS and avalanche
monitoring for understanding the surface characteristics that predispose certain areas to
avalanches [10,11].

RS technologies enable comprehensive coverage across vast and often unreachable
areas. Traditionally, high-resolution optical data from aircraft and satellites have been uti-
lized to identify avalanche debris in clear conditions [12,13]. The continuous advancements
in remote sensing technologies, including high-resolution, multi-source RS images from
satellites like Landsat, Worldview, and Gaofen, have significantly bolstered our ability to
conduct extensive geological surveys. These surveys are instrumental in mapping areas
prone to natural disasters, including avalanches, thereby facilitating more effective disaster
management and environmental protection efforts. However, the availability of these data
is typically restricted to specific areas, and obtaining them promptly can be challenging.
Recent advancements have seen Unmanned Aerial Systems (UAS) documenting specific
avalanche incidents, although their regional coverage is limited by legal and operational
constraints [14].

Radar satellite technology addresses some limitations of optical data by acquiring
images through clouds and without the need for daylight, enhancing the mapping of
avalanche areas [15]. Nevertheless, the coarser resolution of radar data (3–30 m) and
complications such as radar shadow and layover restrict its effectiveness, especially for
detecting smaller avalanches or those involving dry snow. These factors are crucial for the
accurate statistical analysis of avalanche occurrences [5]. Efforts are ongoing to integrate
various remote sensing tools to improve avalanche detection. For example, Sentinel-2 satel-
lites provide high temporal resolution with lower spatial detail under open data policies
and are being explored to augment avalanche detection capabilities, complementing other
tools like Sentinel-1 [13]. The integration of diverse remote sensing technologies holds the
promise of advancing our capacity to map avalanches consistently and extensively, thereby
enhancing both immediate response strategies and foundational avalanche research.

This review aims to systematically assess how remote sensing techniques can be ap-
plied to understand the formation factors of avalanches and enhance hazard monitoring
systems. We have explored a variety of remote sensing technologies, including satellite
imagery and advanced data analysis methods, to examine the geomorphological, geob-
otanical, and meteorological factors that influence avalanche risks. Our analysis covers
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different geographic regions, focusing on how variations in terrain and atmospheric con-
ditions can be discerned through remote sensing data to predict avalanche occurrences.
The primary objectives of this review are to elucidate the capabilities and limitations of
current remote sensing technologies in capturing essential data on avalanche formation
factors and to explore how these technologies can be integrated to improve avalanche risk
assessments. We have also addressed the technical challenges and research gaps within
the field, suggesting potential future advancements in remote sensing that could further
enhance our ability to monitor and predict avalanches effectively. This review culminates
in a comprehensive discussion of the key findings and their implications for disaster man-
agement and policymaking, offering recommendations for future research directions in this
critical area of geoscience.

2. Scientometric Review of Remote Sensing in Snow Avalanche Research

The objective of this systematic review was to assess the application of remote sensing
techniques in the monitoring and formation of avalanches with the literature sourced from
studies published between 2010 and 2024. We adopted a structured approach to the liter-
ature search, selection, and synthesis guided by the PRISMA (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses) framework (Figure 1) to ensure thoroughness
and reproducibility. The literature search was conducted using the Scopus database, em-
ploying a defined set of keywords to ensure comprehensive coverage of relevant topics.
The keywords used included “snow”, “avalanche”, “avalanches”, “monitoring”, “forma-
tion”, “mapping”, “remote sensing”, and “GIS”. These keywords were combined using
“AND” and “OR” operators in the following manner to optimize the search: (“snow”)
AND (“avalanche” OR “avalanches”) AND (“monitoring” OR “formation” OR “mapping”)
AND (“remote sensing” OR “GIS”).
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The search initially yielded a total of 132 articles. To refine the search results, titles and
abstracts were screened for relevance to the topics of avalanche monitoring and formation
using remote sensing. Articles were also checked for duplicates during this phase. This
initial screening process resulted in the exclusion of 54 articles, leaving 78 articles for
more detailed review. The selected articles underwent a thorough review based on their
abstracts, titles, and keywords to further assess their suitability for inclusion in the study.
This review was complemented by an additional screening of references from these articles,
identifying 17 more articles potentially relevant to the research questions. A total of
95 articles, including those identified through reference checking, were subjected to a
full-text review to determine their direct relevance to the scope of this review. This stage
assessed each article’s content in depth to ensure that it provided significant insights into
the use of remote sensing in avalanche research. Articles that did not meet the specific
criteria for relevance and scientific rigor were excluded from the review. This process
resulted in the exclusion of 17 articles, culminating in 78 articles being included in the
final analysis.

The geographical distribution of the relevant literature (Figure 2) on remote sensing
in snow avalanche studies was mapped using QGIS, employing a classification approach
based on natural Jenks symbology. This classification highlighted five distinct classes of
publication frequency across various countries: 0, 0–2, 2–4, 4–13, and 13–18 publications.
The geographical analysis of the relevant literature reveals a broad global engagement
in avalanche research using remote sensing technologies, with Switzerland, China, and
India leading in contributions. These countries show a higher concentration of studies,
indicating established research communities and ongoing projects. Norway also contributes
significantly, reflecting robust research activities. Countries such as Canada and Turkey
demonstrate steady involvement, while Austria, the United States, France, Iran, Kazakhstan,
Pakistan, and Romania show lighter yet meaningful participation. Further, nations like
the Czech Republic, Germany, Denmark, Finland, Kyrgyzstan, and Serbia are identified as
having emerging interests in this field, each contributing foundational studies that may
pave the way for increased research efforts.
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For this review, we selected publications from 2010 to 2024, a period marked by signif-
icant advancements in remote sensing technology and a growing focus on climate-related
phenomena. This timeframe aligns with rapid developments in remote sensing applica-
tions for snow avalanche monitoring and mapping. A bar graph (Figure 3) displaying
the annual number of publications reveals a clear upward trend, illustrating increasing
research activity. This growth reflects enhancements in sensor accuracy and data processing
capabilities, which have bolstered the use of remote sensing in avalanche studies. The
increasing volume of publications underscores the expanding reliance on these technologies
for effective risk assessment and improved understanding of avalanche dynamics under
changing climatic conditions. Furthermore, to analyze the frequency of specific terms used
in research publications over several years, we employed a structured approach using
Python for data extraction, processing, and analysis. Our results (Table 1) highlight notable
trends and shifts in research focus. The emergence of terms like “remote”, “sensing”, and
“data” across several years points to an increasing reliance on technological advancements
and data-driven methodologies in conducting research.
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Table 1. Frequency of key terms in compiled publications annually.

Year Terms (Frequency)

2010 [(“snow”, 12), (“density”, 6), (“data”, 5), (“using”, 3), (“polarization”, 3), (“algorithm”, 3), (“hh”, 3),
(“radar”, 2), (“estimating”, 2), (“scattering”, 2)]

2011 [(“avalanche”, 20), (“la”, 15), (“de”, 14), (“des”, 12), (“snow”, 11), (“à”, 10), (“les”, 7), (“pour”, 7),
(“using”, 6), (“model”, 6)]

2012 [(“avalanche”, 22), (“snow”, 15), (“avalanches”, 10), (“curvature”, 9), (“risk”, 8), (“wet”, 8), (“high”,
6), (“slush”, 6), (“including”, 5), (“based”, 5)]

2013 [(“avalanche”, 31), (“snow”, 30), (“triggering”, 12), (“high”, 11), (“using”, 10), (“release”, 8), (“areas”,
8), (“cover”, 8), (“remote”, 8), (“avalanches”, 7)]

2014 [(“snow”, 5), (“terrestrial”, 4), (“potential”, 4), (“avalanche”, 3), (“changes”, 3), (“local”, 3),
(“monitoring”, 2), (“automated”, 2), (“laser”, 2), (“scanner”, 2)]

2015 [(“snow”, 45), (“avalanche”, 29), (“depth”, 11), (“instability”, 9), (“using”, 7), (“use”, 7), (“field”, 6),
(“data”, 6), (“resolution”, 6), (“sar”, 5)]
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Table 1. Cont.

Year Terms (Frequency)

2016 [(“snow”, 18), (“avalanche”, 17), (“depth”, 11), (“data”, 8), (“remote”, 8), (“avalanches”, 7),
(“sensing”, 7), (“spatial”, 6), (“detection”, 6), (“high”, 5)]

2017 [(“avalanche”, 47), (“snow”, 26), (“using”, 13), (“avalanches”, 11), (“data”, 9), (“detection”, 9),
(“used”, 8), (“method”, 7), (“remote”, 7), (“climate”, 6)]

2018 [(“avalanche”, 28), (“snow”, 22), (“data”, 12), (“mapping”, 10), (“potential”, 10), (“recurrence”, 7),
(“cover”, 6), (“avalanches”, 6), (“based”, 6), (“image”, 6)]

2019 [(“avalanche”, 46), (“snow”, 34), (“using”, 11), (“data”, 11), (“study”, 9), (“remote”, 9), (“sensing”, 9),
(“cover”, 9), (“livelihood”, 8), (“monitoring”, 8)]

2020 [(“avalanche”, 53), (“snow”, 21), (“avalanches”, 18), (“forest”, 17), (“using”, 10), (“mapping”, 10),
(“model”, 10), (“remote”, 9), (“sensing”, 9), (“results”, 9)]

2021 [(“snow”, 64), (“avalanche”, 57), (“low”, 15), (“avalanches”, 14), (“spectral”, 14), (“double”, 13),
(“results”, 13), (“density”, 12), (“using”, 10), (“snowpack”, 10)]

2022 [(“avalanche”, 99), (“snow”, 82), (“avalanches”, 39), (“results”, 24), (“method”, 23), (“susceptibility”,
20), (“data”, 20), (“model”, 19), (“high”, 19), (“using”, 18)]

2023 [(“avalanche”, 72), (“snow”, 59), (“avalanches”, 31), (“data”, 25), (“study”, 15), (“mapping”, 13),
(“remote”, 12), (“high”, 12), (“models”, 12), (“sensing”, 11)]

2024 [(“avalanche”, 61), (“snow”, 25), (“using”, 16), (“model”, 15), (“avalanches”, 9), (“vegetation”, 9),
(“density”, 8), (“coupled”, 8), (“data”, 7), (“detection”, 7)]

In our systematic review focusing on the application of remote sensing techniques in
avalanche monitoring, the use of a word cloud provides an intuitive and visual summary of
the thematic focus within the compiled literature. This word cloud (Figure 4) was developed
using Python 3.9.0 libraries (Rispy and Word Cloud). It was specifically generated from
terms extracted from the titles of the reviewed articles, with the font size of each term in the
cloud corresponding to its frequency of occurrence. This visual representation allows for the
immediate recognition of the most emphasized topics within the field. In the word cloud,
the term “snow avalanche” appears as the most frequently used, prominently displayed
due to its larger font size. This highlights the central focus of the collected literature,
underscoring the primary subject of study. Following closely are “remote sensing” and
“mapping”, which also appear in larger fonts, reflecting their significant roles in the research
landscape. These terms, along with others in the word cloud, outline the key methodologies
and areas of interest that researchers have focused on over the selected period.

In the context of our systematic review of remote sensing techniques for avalanche
monitoring, the clustered co-occurrence map (Figure 5) serves as a pivotal analytical tool,
providing a visual representation of the relationships and thematic concentrations within
the collected literature. The map was developed using VOSviewer version 1.6.20, which
is an open-source software used for bibliometric analysis. This map is constructed using
terms extracted from the titles, abstracts, and keywords of the compiled articles, revealing
the intricate network of topics that form the foundation of the current research in this field.
Node size in this map corresponds to the frequency of term occurrence across the literature,
highlighting the most prominent topics discussed within the field. Each node represents
a unique term, with its size reflecting how often the term appears, thus indicating its
relevance and popularity in avalanche-related studies. Edges between nodes depict the
co-occurrence of terms within the same papers, providing insights into how concepts are
interconnected. The physical proximity of nodes on the map, determined by the strength of
term associations, illustrates the closeness of the relationship between different research
themes. Significantly, the map is organized into seven distinct clusters, each representing
a cohesive theme within avalanche research as informed by remote sensing techniques.
The blue and green clusters are particularly notable, emerging as the largest clusters with
“remote sensing” positioned as a central hub. This central positioning underscores the
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critical role of remote sensing as a nexus in avalanche research, linking various subfields
and methodologies. The prominence of these clusters reflects the extensive application
and integration of remote sensing technologies in understanding and addressing the
complexities of avalanche phenomena. The visualization provided by this co-occurrence
map is invaluable in our review. It not only clarifies the current landscape of research but
also aids in identifying gaps and emerging trends. By analyzing the density and spread of
topics, researchers can better understand the evolution of the field, assess the impact of new
technologies, and guide future studies toward areas that promise significant advancements
in avalanche prediction and monitoring. This strategic insight empowers researchers to
build on the existing body of knowledge, pushing the boundaries of what remote sensing
can achieve in the context of avalanche safety and management.
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This review adopts a narrative synthesis approach, systematically organizing and
integrating the findings based on the type of remote sensing technology used and its appli-
cation in understanding avalanche dynamics and monitoring. This approach allows for a
nuanced discussion of remote sensing tools’ effectiveness and technological advancements
in avalanche research. By adhering to this structured approach, this review aims to pro-
vide a comprehensive overview of how remote sensing has been applied to enhance our
understanding and monitoring of avalanches. It focuses on summarizing technological
advancements, assessing the effectiveness of different remote sensing tools, and identifying
areas for further research within this crucial area of geoscience.

3. Major Factors Influencing Avalanche Formation
3.1. Geomorphological Factors

The geomorphological characteristics of a landscape play a pivotal role in influenc-
ing the stability of snowpacks and the initiation of avalanches. The interplay of several
key terrain features such as slope, elevation, aspect, curvature, and terrain roughness
determine the conditions under which avalanches are most likely to occur. In this sub-
section, we discussed the importance of the formerly mentioned factors in influencing
avalanche formation.

3.1.1. Slope and Its Influence

The slope of the terrain is one of the most significant geomorphological factors con-
sidered in snow and avalanche studies. The inclination of a slope critically influences
avalanche dynamics. Avalanches are predominantly triggered on slopes angled between
25◦ to 50◦, where the gravitational pull on the snowpack exceeds the frictional resistance of
the snow layer [16,17]. As slope gradients increase, particularly beyond 36◦, the likelihood
of avalanches escalates due to altered force distributions within the snow layer and varia-
tions in snowpack thickness. This alteration not only impacts the stability by increasing
the shear stress but also by varying the depth and density of the snowpack due to uneven
snow deposition [18]. This is corroborated by extensive studies indicating that slopes
between 28◦ and 60◦ are particularly prone to avalanches, as steeper slopes may not allow
for sufficient snow accumulation, while gentler slopes below 10◦ typically do not support
enough snow load for avalanche occurrence [19–21]. Several research studies highlight that
under certain conditions, particularly with wetter snow or during rapid temperature rises,
even slight changes in slope can drastically increase avalanche probability [22,23].

3.1.2. Elevation and Avalanche Activity

Elevation serves as a critical modifier of environmental conditions that dictate snow-
pack characteristics essential for avalanche activity [19]. It affects avalanche formation by
influencing climatic conditions like snowfall, wind, and temperature. Generally, higher
elevations are associated with greater snowfall and prolonged snow cover, increasing the
likelihood of avalanches during the winter season [2]. However, at elevations below 1000 m,
the warmer conditions often lead to less cohesive snow layers, reducing the frequency and
intensity of avalanches [3]. The variability in climatic conditions at different elevations
directly influences the spatial distribution of avalanche occurrences, making elevation a
key factor in avalanche risk assessment [24].

3.1.3. Aspect and Snowpack Stability

Aspect, or the directional orientation of a slope, significantly impacts snowpack
conditions and avalanche potential. Aspect determines the amount of sunlight a slope
receives, profoundly affecting the snowpack’s thermal regime [3]. North-facing slopes in
the Northern Hemisphere, for example, typically exhibit stronger temperature gradients
due to reduced sunlight exposure, fostering the formation of weak snow layers. This can
lead to the development of weak, faceted snow crystals beneath the surface, which are
structurally poor at bonding and contribute to slab avalanches [7,25]. In contrast, south-
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facing slopes might experience more melt–freeze cycles, leading to firmer and often more
stable snowpacks. Recognizing this aspect is crucial in predicting the areas that are most
likely to accumulate unstable snow layers and thus where avalanche mitigation efforts
should be concentrated [26].

3.1.4. Curvature and Its Effects on Snow Movement

The curvature of the slope influences how snow accumulates and how it is released
once an avalanche is triggered [27]. Concave slopes tend to gather more snow, creating
deeper and potentially more unstable snowpacks, while convex slopes promote the shed-
ding of snow, reducing load but also potentially triggering avalanches by overloading
downslope areas [28]. The interaction between slope curvature and snow distribution plays
a vital role in determining the initiation zones of avalanches and the pathways they will
follow [29].

3.1.5. Terrain Roughness and Avalanche Dynamics

The physical texture of the terrain, or terrain roughness, significantly affects the
mechanical stability of the snowpack. It encompasses the irregularity and variability of
the surface and affects the formation of cohesive weak layers within the snowpack. Rough
surfaces with irregular features such as rocks, gullies, or outcrops can anchor the snowpack,
preventing widespread slab release [21]. They interrupt the continuity of the snow layer,
thereby reducing the likelihood of large-scale slab avalanches. However, in scenarios where
the snow is deep and smooths over rough terrain, these features can contribute to instability
by creating stress concentrations that facilitate cracking and sliding [7]. Understanding the
role of terrain roughness in avalanche formation is essential for predicting potential release
areas and for designing effective avalanche control measures.

3.2. Land Cover and Vegetation

Land or ground cover and vegetation cover significantly influence avalanche dynamics
by altering snow deposition and the mechanical stability of snowpacks [30]. This section
explores the multifaceted roles of land cover and vegetation in avalanche formation and
the interactions between avalanches and vegetation.

3.2.1. Influence of Land Cover and Vegetation on Avalanche Formation

Vegetation significantly impacts avalanche dynamics, acting both as a mitigative
barrier and as a factor that can potentially increase avalanche susceptibility [31]. The
role of vegetation in avalanche formation is complex and multifaceted, influenced by
the type of vegetation, its density, and the structure of the land cover. Dense forests, for
example, provide a substantial defense against avalanche initiation by intercepting snowfall,
reducing ground snow accumulation, and thereby diminishing avalanche potential [3,32].
The irregular snow deposition under forest canopies results in a more stable snowpack.
Conversely, sparse or bare areas allow for uniform snow accumulation, increasing the risk
of forming unstable snowpacks and facilitating avalanche occurrences [7].

The structure and density of forest vegetation directly influence the dynamics of
avalanches [24]. Heterogeneous forests, characterized by a mix of species and tree struc-
tures, disrupt the continuity of the snowpack, preventing the formation of weak layers
critical for slab avalanches. On the other hand, open areas with smooth and low vegetation
facilitate the creation of a compact and homogeneous snow layer, which can be more
susceptible to releasing in glide snow avalanches. Such environments provide less natural
resistance to avalanche initiation and progression [33].

Forests not only reduce the amount of snow that settles on the terrain but also impact
the internal energy dynamics of the snowpack [31]. By limiting the direct energy input from
the environment, such as sunlight and wind, forests foster smoother variations in snow
characteristics, leading to more homogeneous and stable snow conditions. This stability is



Atmosphere 2024, 15, 1343 10 of 24

crucial in preventing the sudden release of avalanches, especially in regions where snowfall
is heavy and frequent [27,34].

3.2.2. Mutual Relationship Between Avalanches and Vegetation

The interaction between avalanches and vegetation dynamically influences both land-
scape ecology and avalanche behavior [35,36]. Avalanches shape vegetation distribution
and structure, with frequent events fostering resilient floristic communities such as shrubs
and early successional species, while large, infrequent avalanches can drastically change
forest structures, significantly altering ecological dynamics [31,37]. Over time, as the fre-
quency of avalanches decreases, these areas can evolve from being dominated by shrubs to
hosting mature forest ecosystems. This progression illustrates the powerful role avalanches
play in ecological succession and landscape shaping [32].

Conversely, dense forests can mitigate avalanche runouts, especially in small-to-
medium events, by acting as physical barriers that decrease the momentum of moving
snow. While the impact on large avalanches is less significant, forest structure still helps
reduce travel distance and influences snow deposition and weak layer formation within
the snowpack, thus affecting avalanche dynamics [7,32].

3.3. Meteorological Factors

Meteorological conditions significantly influence avalanche dynamics through a com-
plex interplay of snowfall, wind, and temperature changes [38]. Each factor has a distinct
impact on the stability of the snowpack and the likelihood of avalanche occurrences. Both
wet snow and slab avalanches are strongly connected to meteorological variables, and the
monitoring of these factors is essential for forecasting and managing avalanche risks.

3.3.1. Temperature

Temperature is a decisive factor in snowpack stability, affecting it through direct and
indirect interactions [16]. Fluctuations in temperature, particularly rapid warming, can
critically weaken the snowpack by causing meltwater to percolate through the snow layers,
lubricating and weakening the bonds between them [39]. This is most notable during late
winter and early spring, leading to an isothermal snowpack that is uniform yet fragile
and prone to sliding. Extended periods of high temperatures are known precursors to wet
avalanches, significantly weakening the snowpack structure [19,40].

Diurnal temperature variations also induce freeze–thaw cycles that compromise struc-
tural integrity, forming crust layers that become weak as new snow accumulates. These
conditions foster slab avalanches, particularly when a rapid temperature drop follows
warming, creating a brittle surface crust likely to fracture under stress [41,42].

3.3.2. Precipitation: Snowfall and Rainfall

Snowfall is one of the most direct and potent causes of avalanches [43]. Heavy snowfall
increases the load on a snowpack, directly contributing to avalanche risk by adding weight
and altering the internal stress distribution. The western Tianshan Mountains, for example,
experience a higher frequency of avalanches during periods of intense snowfall in early
February [19]. Rapid accumulation destabilizes the snowpack by altering its internal
stress distribution, where the added weight of new snow may overwhelm the snowpack’s
structural integrity, leading to fresh snow avalanches [16]. Additionally, wind redistributes
snow, creating uneven and unstable wind slabs on slopes that are prone to triggering under
minor disturbances [44,45].

Rainfall can critically destabilize snowpacks by adding weight and introducing liquid
water, which reduces friction between snow grains [22]. This is especially dangerous when
rain falls on a snowpack that is already near its melting point, as it can rapidly increase the
likelihood of snowpack failure. Rain-on-snow events are particularly associated with wet
avalanches, where the snowpack becomes saturated and heavy, leading to potentially large
and destructive avalanches [46].
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3.3.3. Wind

Wind plays a crucial role in shaping the snowpack and influencing avalanche condi-
tions [45]. It can transport snow from the windward sides of terrain features and deposit it
on the leeward sides, creating wind slabs that are often denser and more prone to sliding.
These slabs form over weaker, looser snow layers and can be triggered by further snowfall,
additional wind loading, or even temperature changes. Wind patterns that favor the accu-
mulation of snow on certain slopes significantly increase the risk of avalanches in those
areas [46].

Moreover, wind can exacerbate avalanche conditions by stripping snow from some
areas and loading others with windblown snow [22]. This process creates a heterogeneous
snowpack with varying densities and strengths, which can lead to unexpected avalanche
releases. The direction and speed of the wind are therefore critical factors in avalanche
forecasting [23].

3.3.4. Integrating Meteorological Data for Avalanche Prediction

Understanding and monitoring these meteorological factors is essential for accurate
avalanche forecasting [18]. Their complex interactions determine the stability of the snow-
pack and the subsequent risk of avalanche occurrences. As climate patterns continue to
evolve, the role of advanced monitoring and forecasting technologies becomes increasingly
important in mitigating avalanche risks and safeguarding human lives and property in vul-
nerable mountainous regions [38,47]. Remote sensing tools, including satellite imagery and
ground-based radar, allow for the continuous observation of snowpack conditions across
vast and inaccessible areas. These technologies provide data on snow depth, snow water
equivalent, and temperature profiles of the snowpack, which are integral to predicting
when and where avalanches are likely to occur [13,42].

4. Remote Sensing Techniques

Remote sensing technologies have become an invaluable tool in monitoring avalanche
formation and predicting high-risk zones. These technologies offer various platforms,
including satellites, drones, and aircraft, that provide data on snow cover, snowpack
stability, and terrain features. This section outlines the primary remote sensing techniques
used in avalanche monitoring, focusing on satellite imagery, aerial photography, and the
data analysis methods applied to these technologies.

4.1. Satellite Imagery: Overview of Satellite Technologies Used for Avalanche Monitoring

Satellites equipped with both optical and radar sensors (Table 2) have been instrumen-
tal in tracking avalanche-prone areas over large and inaccessible terrains. Their ability to
capture data consistently across different weather conditions makes them a key component
of modern avalanche forecasting.

Table 2. Overview of satellite datasets for avalanche monitoring.

Satellite Sensor Resolution Type Key Features Application

Sentinel-1
Synthetic Aperture

Radar (SAR)
(C-band)

5–20 m Radar

All-weather, day and
night imaging;
interferometric

capabilities

Snow cover mapping,
avalanche detection,

terrain mapping

TerraSAR-X SAR (X—band) 1–40 m Radar High-resolution,
all-weather imaging

Avalanche debris
detection, terrain

mapping

Sentinel-2 Multispectral
Imager (MSI) 10–60 m Optical

Multi-spectral,
frequent revisits, wide

area coverage

snow cover, avalanche
debris mapping, snow

albedo tracking,
vegetation assessment
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Table 2. Cont.

Satellite Sensor Resolution Type Key Features Application

Landsat-8

Operational Land
Imager (OLI) and
Thermal Infrared

Sensor (TIRS)

30 m Optical/Thermal

Long-term record of
Earth’s surface, ideal

for studying historical
avalanche patterns,

thermal infrared data,
long-term records

Historical snowpack
analysis, climate
change impact

analysis, vegetation
Monitoring

SPOT-6 High-Resolution
Visible (HRV) 1.5 m Optical High-resolution, fast

revisit

Avalanche path
mapping, snow cover
monitoring, land use

mapping

RADARSAT-2 SAR (C-band) 3–100 m Radar

Flexible imaging
options, fine resolution

capabilities;
all-weather, day and

night imaging

Detailed terrain
analysis, change

detection in
avalanche-prone areas,

snow depth
measurement

WorldView HRV

0.31 m
panchromatic,

1.24 m
multispectral

Optical
Very high spatial
resolution, high

Accuracy

High-precision
mapping, avalanche

risk zoning

Pleides HRV

0.5 m
panchromatic,

2 m
multispectral

Optical High-resolution
imagery, fast revisit

Snow cover mapping,
avalanche detection,

detailed terrain
analysis

Planet HRV 3–5 m Optical Daily revisit, global
coverage

Snowpack monitoring,
avalanche risk

assessment, vegetation
assessment

ALOS-
PALSAR SAR (L-band) 10–100 m Radar Penetrates vegetation,

wide-area mapping

Avalanche
susceptibility, terrain
roughness analysis

ASTER GDEM VNIR, TIR 30 m Optical Digital elevation
model (DEM)

Topography mapping,
avalanche runout

zones

ALOS World
3D SAR (L-band) 5 m SAR 3D terrain model

High-accuracy terrain
mapping, avalanche

risk

SuperView-1 HRV

0.5 m
panchromatic,

2 m
multispectral

Optical High-resolution, short
revisit time

Snow cover mapping,
avalanche detection,

detailed terrain
analysis

Rapid Eye HRV

5 m
panchromatic,

15 m
multispectral

Optical Large-area monitoring,
daily revisit

Snow and ice
monitoring, avalanche

risk

Super Dove HRV

3 m
panchromatic,

12 m
multispectral

Optical Daily global coverage,
high revisit

Snow cover tracking,
terrain mapping

Optical satellite systems, like the Sentinel-2 and Landsat-8 platforms, utilize visible
and infrared wavelengths to capture high-resolution images of snow-covered landscapes.
Sentinel-2 offers a spatial resolution ranging from 10 to 60 m, while Landsat-8 provides
a 30 m resolution for multispectral imagery. These satellites are effective in identifying
snow albedo, snow cover, and snow accumulation [48]. Optical data play a vital role in
monitoring changes in snowpack and vegetation, which is essential for understanding
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avalanche risks. For instance, Sentinel-2 provides frequent revisits and wide area coverage,
useful for monitoring snow conditions in vast mountainous areas.

However, optical imagery has inherent limitations during cloudy conditions or periods
of low visibility, which are common in winter months. Cloud cover frequently hampers
the acquisition of optical imagery, especially during winter months when avalanches are
most likely to occur [49]. Additionally, avalanches often have small spatial footprints,
sometimes only a few meters wide, which makes them difficult to detect with medium-
resolution optical satellites like Sentinel-2 and Landsat-8. While these satellites are excellent
for broader snowpack analysis, they may not provide the spatial granularity required to
detect finer-scale snow avalanches [12,44]. Avalanches may go undetected if their footprint
is smaller than the resolution of the satellite, highlighting the inadequacy of medium-
resolution products for precise avalanche detection.

In contrast, high-resolution optical sensors, such as those on SPOT-6 and WorldView,
offer much finer detail, with resolutions as high as 1.5 m and 0.31 m, respectively. These
satellites can map snow accumulation, snow cover, and avalanche paths with far greater
precision, making them ideal for areas where avalanches have smaller footprints [50]. The
high spatial resolution of WorldView and Skyview allows them to capture even small-scale
changes in the snowpack, providing a more accurate representation of avalanche-prone
areas [51]. However, like Sentinel-2, these sensors are still limited by cloud cover and the
need for daylight [52].

Radar imagery, especially from synthetic aperture radar (SAR) systems like Sentinel-1,
TerraSAR-X, RADARSAT-2, offers a complementary solution to optical data by providing
reliable all-weather, day-and-night observations [5,53,54]. SAR technology can penetrate
cloud cover and is particularly sensitive to surface roughness, enabling it to detect changes
in snowpack stability and identify avalanche deposition zones [15,53]. This also makes SAR
technology particularly useful in winter months when there is a possibility of unavailability
of optical imageries due to cloud cover. The C-band SAR used by Sentinel-1 offers a
medium resolution of 5 to 20 m, while TerraSAR-X and RADARSAT-2 (X-band and C-band,
respectively) can achieve resolutions as fine as 1 m. These radar satellites are particularly
sensitive to surface roughness, which enables them to detect changes in snowpack stability
and identify avalanche deposition zones.

While Sentinel-1 has a revisit time of six days and provides extensive coverage, its
medium resolution limits its ability to detect smaller avalanches. Small avalanches, which
may have footprints less than 10 m wide, could be missed by Sentinel-1 due to its spatial res-
olution, despite its excellent temporal coverage [50]. On the other hand, higher-resolution
radar systems like TerraSAR-X provide much better spatial detail, making them more
suitable for identifying smaller avalanches and subtle changes in snow conditions [15].
However, these high-resolution radar systems may come with higher operational costs and
limited coverage areas compared to Sentinel-1 [55,56].

Therefore, the relationship between spatial resolution and avalanche detection is
critical. Medium-resolution satellites such as Sentinel-2 and Landsat-8 are valuable for
broad-scale snow cover monitoring, but their resolutions are often too coarse for detecting
smaller avalanches. High-resolution optical and radar satellites, such as SPOT-6, World-
View, and TerraSAR-X, provide more precise data, but their utility is often constrained
by weather conditions (in the case of optical satellites) or high operational costs (in the
case of radar systems). Combining optical and radar data is essential for comprehensive
snow avalanche monitoring, especially in areas with small-scale avalanches and variable
weather conditions.

To better understand how remote sensing datasets correspond to different factors
influencing avalanche formation, it is helpful to break these down into geomorphological,
geobotanical, and meteorological factors. Each of these factors can be monitored through a
range of satellite datasets and technologies, as summarized in Table 3.
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Table 3. Remote sensing datasets for avalanche-influencing parameters.

Parameter Influence RS Dataset Available Literature

Geomorphological

Slope
Influences snow stability and
avalanche dynamics based on

steepness.

Sentinel-1, TerraSAR-X,
ALOS-DEM,

LiDAR (drones),
ASTER GDEM,

SRTM DEM

[21,28,51,57–59]

Elevation
Affects snow accumulation,
temperature gradients, and

avalanche frequency.

Sentinel-1,
ALOS-DEM,

ASTER GDEM,
RADARSAT-2

[2,19,59,60]

Aspect
Determines snow stability

through exposure to sunlight,
influencing melt.

Sentinel-1,
ALOS-DEM,

ASTER GDEM,
SRTM DEM

[3,7,25,28,59]

Curvature
Influences snow accumulation
and release; convex/concave

slopes.

Sentinel-1, TerraSAR-X,
ALOS-DEM,

ASTER GDEM
[27–29,58]

Terrain Roughness
Affects snow cohesion and

avalanche release by interrupting
snow layers.

Sentinel -1,
ALOS-DEM,

ASTER GDEM,
SRTM DEM,

TerraSAR-X, LiDAR (drones)

[7,21]

Geobotanical

Land Cover
Influences snow deposition and
stability by interrupting snow

accumulation.

Sentinel -1, Sentinel-2, Landsat-8,
WorldView, Planet, RapidEye [30,34,58,59]

Vegetation
Reduces or exacerbates avalanche

risk through interception or
windbreaks.

Sentinel-1, SPOT-6, LiDAR,
Landsat-8, WorldView, Planet,

RapidEye
[7,31,61]

Meteorological

Precipitation Directly increases snowpack load,
influencing avalanche likelihood.

Weather Radar,
GPM (Global Precipitation

Measurement), TRMM, MODIS
[16,22,51]

Wind Speed and Direction Redistributes snow, forming
dangerous wind slabs.

Weather Radar, Wind LiDAR,
ESA’s Aeolus [44,46]

Temperature Affects snowmelt and refreeze
cycles, destabilizing snowpack.

Weather Radar, Sentinel-3,
Landsat-8,

MODIS
[23,41,42,62]

Major snow avalanche factors have been highlighted in bold.

Table 3 provides an overview of the key parameters influencing avalanche formation
and the remote sensing (RS) datasets available to monitor them. By using the appropriate
RS datasets, researchers can monitor these parameters with varying levels of spatial and
temporal resolution [34,35,56,63,64].

Geomorphological factors include slope, elevation, and aspects that influence the
mechanical behavior of the snowpack. Slope directly affects snow stability and avalanche
behavior, as steeper slopes tend to be more unstable, especially when subjected to rapid
snow accumulation or warming. Remote sensing datasets such as Sentinel-1, TerraSAR-X,
ALOS-DEM, LiDAR, ASTER GDEM, and SRTM DEM are instrumental in providing de-
tailed slope analysis through elevation data and SAR technologies. Meanwhile, datasets
such as Sentinel-1, ALOS-DEM, ASTER GDEM, and RADARSAT-2 are valuable for captur-
ing elevation data and have been used extensively in studies such as those by Refs. [2,60]
to model snowpack and avalanche risk. Aspect, or the orientation of the slope, is another
critical factor, as it determines snow stability through its exposure to sunlight, influencing
snowmelt and freeze cycles. Remote sensing datasets such as Sentinel-1, ALOS-DEM,
ASTER GDEM, and SRTM DEM are used to monitor snowpack dynamics based on aspect.
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Curvature—whether a slope is convex or concave—also influences snow accumulation
and release. Convex slopes are more prone to avalanche triggering, while concave slopes
tend to retain snow. Sentinel-1, TerraSAR-X, ALOS-DEM, and ASTER GDEM datasets
provide valuable data for analyzing curvature [27,29]. Lastly, terrain roughness affects
snow cohesion and avalanche release by interrupting snow layers. Rough terrain may
prevent snow from forming stable layers, thereby increasing avalanche risk. Datasets such
as Sentinel-1, ALOS-DEM, ASTER GDEM, SRTM DEM, TerraSAR-X, and LiDAR provide
essential data for analyzing terrain roughness. The studies by Refs. [12,21] show the critical
role that terrain roughness plays in influencing avalanche behavior.

Geobotanical factors such as land cover and vegetation can stabilize or destabilize
snowpacks. Land cover, such as forests and shrubs, can interrupt snow accumulation,
while barren or sparsely vegetated areas may allow snow to accumulate more uniformly,
increasing avalanche risk. Remote sensing datasets like Sentinel-2, Landsat-8, WorldView,
Planet, and RapidEye have proven useful in monitoring these land cover changes. For
instance, Refs. [30,34,58] have effectively used these datasets to study the influence of
land cover on avalanche susceptibility. Vegetation can also either reduce or exacerbate
avalanche risk by intercepting snow or creating windbreaks that affect snow distribution.
Datasets such as Sentinel-1, SPOT-6, LiDAR, Landsat-8, WorldView, Planet, and RapidEye
provide insights into the role of vegetation in stabilizing or destabilizing snowpacks, as
demonstrated by studies such as those by Refs. [7,31].

Meteorological factors include precipitation, wind, and temperature—all critical el-
ements in determining snowpack stability and avalanche risk [22,65–67]. Weather radar,
GPM (Global Precipitation Measurement), TRMM, and MODIS datasets are widely used
to track precipitation and snowpack load. Wind speed and direction redistribute snow,
forming dangerous wind slabs that can trigger avalanches. Remote sensing datasets such as
weather radar, Wind LiDAR, and ESA’s Aeolus have been employed to monitor wind effects
on snow stability. Temperature affects snowmelt and refreeze cycles, which can destabilize
snowpacks. Remote sensing datasets such as weather radar, Sentinel-3, Landsat-8, and
MODIS are essential in tracking temperature variations and their impact on snow stability.

In conclusion, by utilizing the appropriate RS datasets for each parameter, researchers
can effectively monitor snowpack dynamics and better understand avalanche risks. Sentinel-
1, for example, provides radar imagery that is particularly useful for detecting avalanche
deposits even in cloudy conditions, while Sentinel-2 offers detailed optical imagery of
snow cover, which is vital for tracking snow distribution across various elevations [68].
The combination of these datasets ensures a comprehensive approach to snow avalanche
monitoring and risk assessment.

4.2. Aerial Photography and Drones: Use of High-Resolution Imagery from Drones and Aircraft

Beyond satellite-based observation, aerial photography and drones offer higher-
resolution imagery for avalanche monitoring, particularly in small-scale, high-risk ar-
eas [14]. Aerial surveys conducted by manned aircraft remain a conventional method
for obtaining high-resolution images of snow-covered terrains [69,70]. These surveys are
beneficial in capturing large areas quickly and are particularly useful for post-avalanche
assessment [71]. However, adverse weather conditions and high operational costs limit
their frequent use [15].

Drones have increasingly become a vital tool for avalanche monitoring due to their
ability to navigate difficult terrains, low operational costs, and the flexibility of acquiring
real-time data [47]. Drones equipped with cameras, multispectral sensors, and LiDAR
(Light Detection and Ranging) can gather high-resolution data on snow depth, snow
distribution, and terrain roughness [30,72]. Drones allow for detailed avalanche mapping
at a local scale, offering insights into the snowpack’s behavior in real-time [22]. These
instruments enable drones to collect granular data on snow depth, snow distribution, and
the roughness of the terrain, providing researchers and responders with detailed, real-time
maps of avalanche sites. This capability is pivotal for conducting localized avalanche
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risk assessments and understanding dynamic changes within the snowpack just before an
avalanche occurs [73].

Complementing aerial techniques, ground-based time-lapse cameras and seismic
sensors offer additional layers of monitoring that enhance the understanding of avalanche
dynamics. Time-lapse cameras installed at strategic locations continuously record the
evolving conditions of snowpacks, capturing incremental changes that might not be evident
from periodic observations [74]. These continuous visual data are crucial for identifying
subtle precursors to avalanche events, such as snowpack settling or cracking [11,75]. Seismic
sensors, strategically placed around avalanche-prone slopes, monitor ground vibrations
indicative of avalanche movements [76]. These sensors are sensitive to the initial rumblings
that precede an avalanche, providing early warning signals that can be crucial for activating
emergency response plans [77]. Furthermore, seismic data help in quantifying the force
and frequency of avalanches, contributing significantly to long-term avalanche prediction
models and safety measures.

Together, these ground-based technologies synergize with aerial data, offering a
comprehensive toolkit for avalanche monitoring. By integrating data from multiple remote
sensing technologies, researchers can achieve a more nuanced understanding of avalanche
triggers and develop more effective strategies for risk mitigation and disaster response.

4.3. Data Analysis Methods: Processing and Analyzing Remote Sensing Data

Remote sensing generates vast amounts of data, necessitating advanced processing
and analysis techniques. These methods include the use of machine learning algorithms,
data fusion techniques, and change detection algorithms, all of which significantly im-
prove the detection, classification, and prediction of avalanche risks [78,79]. Modern
developments in artificial intelligence (AI) and big data analytics have further accelerated
these capabilities, enabling the integration of multi-sensor data for a more holistic view of
snowpack conditions.

4.3.1. Machine Learning Techniques

Machine learning (ML), and more specifically deep learning, plays an essential role in
processing the complex datasets produced by remote sensing technologies [74,80]. Deep
learning models, such as convolutional neural networks (CNNs), have been particularly
effective in identifying patterns in snow cover and terrain features that are not easily de-
tectable by traditional methods [61]. These models are capable of classifying snow types
and predicting avalanche risks by analyzing patterns in the data that are invisible to the
human eye [81,82]. For example, SAR data from Sentinel-1 has been used to automatically
detect snow avalanche deposits using machine learning techniques, improving both detec-
tion accuracy and processing speed [57,60]. The types of machine learning models used in
avalanche monitoring are shown in Table 4.

Table 4. Types of machine learning models used in avalanche monitoring.

Machine Learning Model Application in Avalanche
Monitoring Key Advantages References

Support Vector Machines
(SVMs)

Classifying snow types and
avalanche risks

High accuracy, works well with
limited data [17,83]

Convolutional Neural
Networks (CNNs)

Detecting avalanche deposits in
SAR data

Superior in feature extraction,
deep layers for complex data [61,74]

Random Forests Predicting high-risk avalanche
zones

Handles large datasets, robust to
overfitting [81,84,85]

Object-Based Image Analysis
(OBIA)

Segmenting snow-covered areas
in satellite imagery Good for high-resolution imagery [71,86]
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Machine learning algorithms can classify various snow types based on remote sensing
data, including optical and radar imagery. For example, Sentinel-1 SAR data has been used
extensively to detect snow avalanche deposits through machine learning techniques that
automatically classify disturbed and undisturbed snow areas [55]. By analyzing backscatter
variations in radar images, these algorithms can discern the structural differences in snow
layers, improving both detection accuracy and processing speed. This approach reduces
the need for human intervention, making the entire process more efficient [12,15].

Machine learning models are also crucial in predicting avalanche risks by identifying
key snowpack and terrain parameters [11,26]. For instance, models trained on historical
datasets can forecast high-risk zones by analyzing the interplay of geomorphological
factors such as slope and curvature and meteorological conditions such as temperature
and precipitation [17,87]. The integration of support vector machines (SVMs) and random
forests has further enhanced prediction capabilities, as these models can process large
datasets from multiple sensors, detecting even subtle changes in snow stability [83].

Another important application of machine learning is object-based image analysis
(OBIA), where machine learning techniques segment satellite images into meaningful
objects (e.g., snow-covered vs. non-snow-covered regions) [71]. This approach has been
effective in detecting snow avalanches from optical satellite imagery and aerial images by
identifying abrupt changes in surface characteristics [88]. For instance, optical data from
QuickBird can be segmented into different snow types, and any anomalies (e.g., disturbed
snow following an avalanche) can be flagged for further analysis [89].

4.3.2. Data Fusion

With advancements in remote sensing, data fusion has become an essential tool for
enhancing the spatial and temporal resolution of avalanche monitoring [62]. By combining
datasets from different remote sensing platforms, analysts can obtain more accurate and
reliable insights into snowpack stability.

One of the main challenges in avalanche monitoring is the variability in data avail-
ability due to weather conditions. For example, optical satellite imagery (such as from
Sentinel-2) is limited during cloudy conditions, whereas SAR data from Sentinel-1 can
provide all-weather coverage [12]. Data fusion techniques combine these datasets to fill in
gaps, enabling continuous monitoring of snowpack conditions. By integrating both optical
and radar data, researchers can generate more detailed snowpack models that account for
factors such as snow depth, density, and spatial distribution [59].

The fusion of datasets from various platforms also helps overcome the limitations of
temporal and spatial resolution. For instance, high-resolution data from TerraSAR-X can be
combined with the frequent revisit capabilities of Sentinel-1 to monitor rapid snowpack
changes and predict avalanches more accurately [15]. This combination provides a more
complete picture of the snowpack’s behavior, allowing for more timely risk assessments.

Data fusion is also used to integrate remote sensing data with ground-based measure-
ments, such as those from weather stations and snow pits, to enhance terrain and snowpack
models [13,46,47]. This fusion allows for a more accurate simulation of snow distribution
and stability, improving the prediction of avalanche risks in real-time. Machine learning
algorithms can further analyze these fused data to detect patterns that indicate impending
snow instability.

Table 5 provides a quick overview of the different types of remote sensing data fusion
used for avalanche monitoring and highlights their specific applications. For example,
multi-sensor fusion combines radar and optical imagery to overcome weather limitations,
while temporal–spatial fusion leverages the frequent revisits of one satellite with the high
resolution of another to provide continuous snow monitoring.
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Table 5. Types of remote sensing data fusion for avalanche monitoring.

Remote Sensing Data Fusion
Type Sensors Combined Application Example of Use Case

Multi-Sensor Fusion Sentinel-1 (SAR) + Sentinel-2
(Optical)

Continuously monitor snow
cover in variable weather

conditions

Monitoring snow cover in
cloudy conditions with

Sentinel-1 and Sentinel-2 for
clear days

Temporal–spatial Fusion TerraSAR-X + Sentinel-1 Enhanced temporal resolution
for rapid snow changes

Sentinel-1’s frequent revisits
combined with TerraSAR-X’s

high resolution for precise
detection

Ground-Based and Satellite
Fusion Weather stations + SAR data

Enhanced snowpack models
by combining in situ

measurements and satellite
data

Integrating SAR data with
snow pit observations for

real-time avalanche
predictions

4.3.3. Change Detection Algorithms

Change detection algorithms play a critical role in identifying snowpack changes that
may signal avalanche activity. These algorithms analyze differences in remote sensing
data collected over time, making it possible to detect events such as snow accumulation,
snowmelt, or snow disturbances caused by avalanches [90].

By comparing pre- and post-event satellite imagery, change detection algorithms can
identify areas where snow conditions have changed significantly, such as areas affected by
recent avalanches [55]. This approach has been particularly effective when applied to radar
imagery, such as data from TerraSAR-X, which can capture surface roughness and detect
disruptions caused by avalanches [15]. The integration of change detection with machine
learning models can also automate the identification process, reducing the time required
for avalanche detection [80,91].

Synthetic aperture radar (SAR) data are especially useful for monitoring snowpack
changes, as they can detect differences in snow structure by measuring backscatter intensity.
SAR-based change detection algorithms have been used successfully to monitor snow
depth variations, snow compaction, and other snowpack properties that are indicative
of avalanche risk. These algorithms are often applied to areas that experience frequent
avalanches to provide early warnings and to assess the extent of snow damage post-
event [15].

4.4. Building Hazard Monitoring Systems

The combination of advanced remote sensing technologies and data analysis methods
discussed above lays the foundation for building robust avalanche hazard monitoring
systems. These systems can integrate multi-sensor data from satellite imagery, drones,
and ground-based observations, offering real-time insights into snowpack stability and
avalanche risks. Machine learning algorithms, such as those using support vector machines
(SVMs) and convolutional neural networks (CNNs), can automate the detection of haz-
ardous snow conditions, while change detection algorithms can provide early warnings by
identifying areas of significant snowpack changes that could trigger avalanches [12,57].

Multi-sensor fusion is critical in enhancing the accuracy and reliability of hazard
monitoring systems, particularly in areas with variable weather conditions or limited
satellite coverage [68]. By integrating radar, optical, and thermal data with ground-based
measurements, these systems can deliver early warnings and real-time risk assessments,
significantly improving preparedness in avalanche-prone regions. Furthermore, the increas-
ing use of drones in capturing high-resolution local data allows for finer-scale monitoring,
ensuring even small, localized avalanches are detected promptly [92].

Implementing these hazard monitoring systems in high-risk areas can mitigate the im-
pact of avalanches by providing timely alerts to local authorities and residents, allowing for
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quick evacuation or mitigation measures. Systems like these are already being developed
and deployed in several avalanche-prone regions across the world, as demonstrated by
the work of Refs. [13,30,38]. As remote sensing technologies and machine learning models
continue to evolve, these hazard monitoring systems will become more refined, offering
enhanced precision and better predictive capabilities.

5. Challenges and Future Directions

Despite the progress made in remote sensing technologies, several technical limitations
still hinder the full potential of avalanche monitoring. One of the most prominent challenges
is the balance between spatial resolution and temporal coverage [55,93]. High-resolution
satellites like TerraSAR-X provide detailed data, but their relatively long revisit times make
it difficult to monitor rapidly changing snow conditions. In contrast, lower-resolution
satellites like Sentinel-1 offer frequent updates but at the cost of reduced spatial detail,
potentially missing smaller avalanches that can still pose significant risks [15,57]. Optical
satellite imagery, such as data from Sentinel-2, is highly dependent on weather conditions
and often becomes ineffective in cloudy or stormy weather—periods when avalanche risks
are most critical [48,68]. Although radar satellites can overcome these limitations, their
data often lack the finer resolution necessary for precise avalanche path mapping [94].
Integrating satellite data with ground-based observations (e.g., weather stations, snow pits)
presents significant challenges. Discrepancies in data resolution and format, as well as the
complexity of processing radar data, require advanced computational infrastructure and
expertise, which may not always be available in regions prone to avalanches [57]. While
remote sensing excels in detecting large avalanches, the detection of smaller avalanches,
especially in steep or heavily shadowed areas, remains a challenge [95]. Radar imagery
often fails to capture these smaller events due to resolution constraints, leading to an
incomplete assessment of avalanche risk. Although remote sensing provides valuable data
for avalanche monitoring, real-time systems remain scarce. Developing near-real-time data
processing systems capable of providing immediate analysis and alerts could significantly
improve response times and risk mitigation efforts in avalanche-prone regions [55]. Future
research should focus on integrating data from various platforms, such as ground-based
sensors, drones, and satellites. This comprehensive approach would provide a holistic view
of the snowpack, enabling better prediction and mitigation of avalanche risks.

Furthermore, the current machine learning models, while useful, struggle to process
heterogeneous datasets from multiple sources [96]. More advanced algorithms that can
handle diverse datasets, such as combining optical, radar, and ground-based data, need
to be developed for more accurate avalanche prediction [74,86]. Looking ahead, several
technological advancements hold promise for improving avalanche monitoring capabilities.
Hyperspectral imaging, which captures a wide range of wavelengths, could offer new
insights into snowpack composition and stability by providing detailed chemical and
physical data [97]. This would allow for a more granular analysis of snow conditions,
potentially improving avalanche prediction accuracy. Furthermore, improvements in
data fusion techniques, particularly in merging radar and optical data, will be critical in
overcoming the current limitations in spatial and temporal resolution. This will enable
a more detailed and frequent assessment of snowpack conditions, enhancing the overall
avalanche monitoring capabilities.

6. Conclusions

This review highlights the pivotal role that remote sensing technologies play in un-
derstanding the complex factors influencing avalanche formation and improving hazard
monitoring systems. Through a comprehensive exploration of geomorphological, geobotan-
ical, and meteorological parameters, this study has demonstrated how optical and radar
satellite imagery, combined with advanced data analysis techniques like machine learning
and data fusion, are integral in enhancing avalanche prediction and risk assessment.
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The key findings indicate that while traditional methods of avalanche monitoring,
such as field-based measurements, provide valuable localized data, they are limited by ac-
cessibility, operational costs, and temporal coverage. Remote sensing, particularly through
platforms like Sentinel-1, TerraSAR-X, and Landsat-8, offers a more scalable, cost-effective,
and continuous monitoring solution. These technologies enable detailed mapping of key
factors such as slope, aspect, curvature, and terrain roughness, all of which are critical in
assessing snowpack stability and avalanche susceptibility.

The integration of ground-based measurements with satellite data is crucial for improv-
ing real-time avalanche forecasting. Remote sensing can cover large, inaccessible areas and
provide essential data in all weather conditions, particularly through radar imaging, which
functions effectively during cloudy or low-light conditions. This integration strengthens
our ability to anticipate avalanche risks and respond quickly, thus minimizing the impacts
on human lives and infrastructure.

Despite these advancements, several persistent challenges and gaps need addressing to
further leverage remote sensing’s capabilities in avalanche research. These include the need
for higher-resolution data to detect small-scale avalanche phenomena and monitor rapid
changes in snowpack conditions that precede avalanches. The complexity of processing
and integrating data from diverse remote sensing sources remains a significant hurdle,
requiring ongoing advancements in computational methods and algorithms.

Moreover, there is a significant gap in the absence of effective real-time monitoring
systems in many avalanche-prone areas. Developing real-time systems that can process and
analyze data will enable quicker responses to emerging avalanche threats. Additionally,
enhancing the capability to integrate and synthesize data from various sources, including
hyperspectral imaging, ground sensors, and existing satellite platforms, will improve the
accuracy and reliability of avalanche forecasts.

Considering these findings, future research should focus on improving the integration
of diverse datasets, advancing real-time avalanche monitoring systems, and developing
more robust machine learning models capable of processing heterogeneous data sources.
These efforts will be instrumental in enhancing our predictive capabilities and mitigating
avalanche risks, especially as climate change continues to alter snowpack dynamics and
avalanche behavior globally.
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