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Abstract: The unequivocal understanding of the planetary-global climate change has rendered the
apportionment of sources and sinks of greenhouse gases in the terrestrial domain, an urgent priority.
In the present study, the micrometeorological method of “dynamic gradient fluxes” coupled with
the Monin–Obukhov similarity theory, was utilised for the determination of net ecosystem exchange
of carbon dioxide (CO2) from a kiwi plantation. This annual net exchange, in conjunction with the
energy and fertiliser equivalent CO2 used, established the CO2 footprint of the produce. For the year
2023, the CO2 Net Ecosystem Exchange (NEE) is −16.20 tonnes per hectare per year (CO2 uptake
by the plantation). The cultivation processes used throughout the year consumed +2.96 tonnes per
hectare per year, and after deduction of this value from the NEE, the result is in a net CO2 sink for the
kiwi plantation of −13.24 tonnes per hectare per year. It is hence obvious that, under these conditions,
the kiwi plantations in Greece can be net CO2 sinks. This result is of increasing importance since the
country is the fourth largest producer of kiwi globally, with production increasing in later years.

Keywords: CO2 footprint; net ecosystem exchange; dynamic gradient method; kiwi plantation;
CO2 fluxes

1. Introduction

Climate change was predicted in the 19th century, but it was brought to public at-
tention around 50 years ago [1]. Global warming, which effects it is confirmed by data
series from a large number of terrestrial and ocean meteorological stations [2]. Also, we
confirmed the warming in our area based on data from the past 50 years [3].The long-living
atmospheric gases and aerosol that are responsible for the greenhouse effect and hence
global warming are named greenhouse gases (GHGs). The global average concentration of
the most prominent of these gases, carbon dioxide (hereafter denoted as CO2), methane
(hereafter denoted as CH4) and nitrous oxide (hereafter denoted as N2O), has increased,
non-linearly, since the onset of the Industrial Revolution. Concerning the increase in the
global concentration of CO2, this is apportioned between anthropogenic activities and
natural environment sources and sinks. The European Union Regulation 2018/841 [4]
sets out the ways to calculate greenhouse gas emissions and sinks from land use, land
use change, and forestry (LULUCF), along with Council Decision (EU) 2016/1841 of the 5
October 2016 on the conclusion of the Paris Agreement, adopted under the United Nations
Framework Convention on Climate Change, and the IPCC 2021, Report on Climate Change
“The Scientific Evidence” [5,6]. The regulation specifically states in Article 7 that there
should be an “Accounting of managed arable land, managed grassland, and managed wetlands”,
where: “Each Member State shall account for greenhouse gas emissions and removals from man-
aged crop land as emissions and removals in the periods from 2021 to 2025 and from 2026 to 2030,
minus the value obtained by multiplying by five, the Member State’s average annual emissions and
removals resulting from managed crop land in the base period from 2005 to 2009”. In addition
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to the regulatory obligations of the state, above, there is also the commercial side of the
issue where the knowledge of the net carbon balance (emissions minus absorptions or vice
versa) may increase the market value of a product. Furthermore, the production process
may, “in principle”, give an incentive to the producer to reduce the effects of climate
change. In a growing season, the net carbon balance for a product is determined by the
micrometeorological method’s measurements of carbon emission and absorption from the
plants (as CO2), and the calculations of carbon emissions from the use of fuels, fertilizers,
and insecticides/herbicides for the period. This is how the carbon footprint of the product
is calculated after year/s long data acquisition and processing. The difficulty in these calcu-
lations is the accurate measurement of the CO2 mass balance (absorption versus emission)
in the cultivation of the product, for which precise and accurate measuring instrumentation
and proper management of the results are needed. However, an accurate determination is
not possible in most countries due to a lack of data, resulting in calculating such balances
with algorithms. Besides, the guiding methodology is provided by the ISO 14067 [7]. For
example, paragraph 6.3.5 notes 2 of ISO 14067: “Crop-specific data refer to greenhouse gas
emissions (GHGs) determined through direct monitoring, stoichiometry, mass balance, or similar
methods, and activity data i.e., inputs and outputs of cultivation processes resulting in emissions or
subtractions of GHGs, or emission factors. Data for a particular crop can be collected from that crop’s
cultivation field or can be averaged from all crops (in the same area) that follow procedures common
to all of them”. The appropriate measuring tools in this case are the micrometeorological
methods of eddy covariance or dynamic gradient fluxes. The flux calculations with either
of these methods, and by following the guidelines of ISO 14067, the carbon footprint of
the products can be accurately and consistently calculated. The long-term monitoring of
production processes will pave the way for the issue of ISO 14067 thereby increasing the
commercial value of the producer’s product. We have long-term field experience with both
micrometeorological methods and, more specifically, the dynamic gradient fluxes method
(hereafter denoted as DGF) [8,9]. The net ecosystem exchange (NEE) of CO2 and water
vapour (hereafter denoted as H2O) of an agricultural cultivation may be determined via
the calculation of ecosystem emissions due to respiration processes, i.e., Gross Ecosystem
Exchange (ECORESP) minus its Gross Primary Productivity (GROSSPP), both necessitating
a diverse suite of instrumentation. It is also scientifically proven that the direct determi-
nation of fluxes of energies from or to a cultivated land proves the accuracy of the DGF
method in determining the NEE of the CO2 [10–13].

Concerning the CO2 uptake or emission from kiwi plantations, the specifics of the
fluxes from enclosed orchards used in New Zealand, do not apply to the open plantation
arrangements of Southern Europe [10,14]. For Southern European plantations, the climate,
irrigation, and the energy use conditions differ from country to country and from year to
year [15–17]. In the present study, the DGF method was used to directly determine the
exchanges of energy and mass of CO2 between the kiwi plantation and the atmosphere. The
positive NEE values represent net CO2 emissions to the atmosphere and the negative values
represent the CO2 amount sequestered from the atmosphere, according to the atmospheric
science convention. The present experimental work is the first that will provide a CO2
footprint for kiwi fruits in Eastern Mediterranean countries like Greece, based on actual
micrometeorological measurements and not on “life cycle assessment” modelling. The data
were collected for nine months and linearly interpolated to a year.

2. Materials and Methods
2.1. Site Description

Measurements were carried out in a typical Mediterranean kiwi orchard at Chrysoupo-
lis (40◦56′53.26′′ N, 24◦40′42.75′′ E, approximately 11 m a.s.l.) during the 2023 growing
season. The sampling site is in the northeastern part of Greece and is about 8 km from the
coast. The area has a minor influence from anthropogenic sources, since the nearest town of
8885 inhabitants is 3.5 km away. The neighbouring delta of the Nestos River is 6 km away,
and in the surrounding area of the sampling site, there are only agricultural activities. The
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rows are oriented in the northeast direction with 4 m between plants and 3.7 m between
rows. It is irrigated during the dry season through a flooding system. The flux footprint
for the duration of the experimental season was constantly calculated using the method of
Cormann and Meixner [18].

2.2. Experimental Setup

The instrumentation was installed on a 5 m micrometeorological tower at three dif-
ferent heights above the ground (2.5 m, 3.7 m, and 4.6 m). This system consisted of
instruments used to determine the vertical profiles of horizontal wind speed (WS, ms−1),
air temperature (T, ◦C), relative humidity (RH, %) and CO2 concentrations (CO2, ppmv).

Three 2D Ultrasonic Anemometers (model 4.3880.00.000, Thies-CLIMA, Adolf Thies
GmbH & Co. KG, 37083 Göttingen, Germany) were positioned at the same heights as
the Compact Hygro-Thermo Transmitters, model 1.1005.64.173 (ThiesCLIMA, Adolf Thies
GmbH & Co. KG, 37083 Göttingen, Germany) in their radiation shields.

At each of these heights (2.5 m, 3.7 m, 4.6 m), inlets of sampling tubing were also
installed. These three tubings were connected to a valve control box (constructed in the lab-
oratory), housed in a weather-proof enclosure near the base of the mast. The valve control
box consisted of four threeway Galtek Solenoid Operated Diaphragm Valves (Entegris, Inc.,
Billerica, MA 01821, USA). The outlet of the valve control box was connected to the inlet of
an Infrared Gas Sensor, Gascard NG for CO2 (0–1000 ppmv parts per million by volume)
(Edinburgh Instruments Ltd., Livingston EH54 7DQ, UK), which used a pump (model
SP 100 SA-VD 230V/50Hz 7s09046, Schwartzer Precision GmbH, 45141 Essen, Germany)
connected to its outlet. The sampling cycle of the valve control box was synchronised to
the sampling time of the CO2 analyser. To determine the vertical profile of CO2 concentra-
tions, sequential concentration measurements between the three heights were conducted
(every 10 min). The suitability of such a system for the determination of gradient flux
measurements has been confirmed in the literature [19].

Data from all instruments were sent to two ADAM-4017 data acquisition modules
(Advantech Co., Ltd., Blue Ash, OH 45241, USA) and analysed using the DASYLAB
V13.00.0 software program (Measurement Computing Corporation, Norton, MA 02766,
USA) installed on an industrial computer (model ARK-2121LSYS, Advantech Co., Ltd.,
Blue Ash, OH 45241, USA). A RS485 to RS232 converter (ADAM 4520, Advantech Co., Ltd.,
Blue Ash, OH 45241, USA) was used to establish communication between the ADAM-4017
modules and the computer.

The main meteorological variables were measured with an Atmos-41 weather station
(METER Group GmbH, 81379 München, Germany) and logged on ZL6 data logger (METER
Group GmbH, 81379 München, Germany) every 10 min. For example, incoming solar
radiation (Q, Wm−2), air temperature (T, ◦C), wind speed (WS, ms−1), wind direction (wd,
degrees), relative humidity (RH, %), precipitation (PCP, mm), and barometric pressure (P,
kPa) were recorded. In addition, the soil moisture was monitored at −10 cm depth with an
EC-5 Soil Moisture Probe (METER Group GmbH, 81379 München, Germany).

Flux-gradient data were acquired at 1 Hz and averaged every 40 min. Real-time
monitoring of the instrumentation and daily data collection were achieved with a 4G router
(model TP-LINK Archer MR200, COSMOTE S.A., 67100 Xanthi, Greece) connected to the
remote office computer.

2.3. The Dynamic Gradient Flux Method

The method used for the determination of CO2 flux densities in the present study
has been described extensively in our previous publications [8,9] and in the free electronic
literature at the website https://docs.neanias.eu/en/latest, under the section “Atmospheric
services—A1 ATMOFLUD”, which is our contribution to the EU project “NEANIAS”
(accessed on 19 October 2024).

https://docs.neanias.eu/en/latest
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2.4. Indirect CO2 Emissions Calculations

While direct CO2 emissions were calculated as described above, this study includes
the CO2 emissions during the production of applied fertilisers and chelated calcium,
as well as the operation of machinery at the kiwi orchard. Table 1 shows the annual
direct CO2 emissions from fertilisers, chelated calcium, diesel in tractor, and electricity for
irrigation purposes.

Table 1. Direct CO2 emissions of consumables used in the kiwi orchard annually.

Consumable Direct CO2 Emissions
(kg CO2) References

Fertiliser 12-8-16 522.1 [20]

Fertiliser 8-10-34 222.7 Ditto

Chelated calcium 6.6 Ditto

Diesel and tractor use 126.3
https://www.feace.com/single-post/the-carbon-
footprint-of-diesel-generators (accessed on the
19 October 2024)

Electricity 602.3

Greece: 394 gr CO2/kWh
https://www.eea.europa.eu/data-and-maps/daviz/
co2-emission-intensity-15#tab-chart_7 (accessed on
15 October 2024)

2.5. Energy Budget

From the acquired data, sensible and latent heat fluxes were determined using the
DGF method. Hence, the energy balance closure was used to evaluate the accuracy of the
determination flux densities of CO2. In the literature, deviations of about 20–30% from
closure are commonly observed in surface energy budget measurements. This is due to the
energy storage of the ground and the foliage. The energy balance equation is as follows:

Q = QH + QE + G, (1)

where Q is the net all-wave radiation, QH and QE are the respective turbulent fluxes of
sensible and latent heat, and G is the net change in heat storage within the ground and the
foliage, down to a level where heat exchanges become negligible. An equivalent example
for cities is described in the literature [8].

3. Results
3.1. Meteorological Conditions

Figure 1a depicts the mean RH and air temperature, and Figure 1b the respective
values of precipitation for each month during 2023.
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Figure 1. Mean monthly RH and T at 2.5 m (a); mean monthly precipitation (b).

https://www.feace.com/single-post/the-carbon-footprint-of-diesel-generators
https://www.feace.com/single-post/the-carbon-footprint-of-diesel-generators
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Year 2023 was a dry year, as Figure 2b confirms. The annual rainfall level for the
area during 1971–2000 was 513.61 mm (http://climatlas.hnms.gr/sdi/; accessed on the
1 October 2024). For the year 2023, the same region had a rainfall level of 442.4 mm
(http://emy.gr/emy/en/climatology; accessed on the 1 October 2024). However, irrigation
was affected by flood irrigation with water extracted from a nearby gravity-fed channel
with water originating from the nearby river Nestos.
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Figure 2. Average monthly diurnal variation of energy and CO2 fluxes (a) and RH. T, WS (b).

3.2. Energy Fluxes and CO2 Flux (FCO2)

QH, QE, and FCO2 were determined by the above-mentioned micrometeorological
method. The diurnal variation of all calculated fluxes during the two months (one in winter
time and one in the summertime) are compared in Figure 2a, along with the respective RH,
T and WS in Figure 2b.

The scatterplot in Figure 3 presents the relationship of the sum of the heat fluxes
QH + QE with the net all wave radiation Q, all experimentally observed in the field. The
slope of the driven linear regression line reveals that 30% of Q is the energy storage of the
ground and the foliage.

http://climatlas.hnms.gr/sdi/
http://emy.gr/emy/en/climatology


Atmosphere 2024, 15, 1355 6 of 9

Atmosphere 2024, 15, x FOR PEER REVIEW  6  of  9 
 

 

3.2. Energy Fluxes and CO2 Flux (FCO2)   

QH, QE, and FCO2 were determined by the above-mentioned micrometeorological 

method. The diurnal variation of all calculated fluxes during the two months (one in win-

ter time and one in the summertime) are compared in Figure 2a, along with the respective 

RH, T and WS in Figure 2b.   

The scatterplot in Figure 3 presents the relationship of the sum of the heat fluxes QH 

+ QE with the net all wave radiation Q, all experimentally observed in the field. The slope 

of  the driven  linear  regression  line  reveals  that 30% of Q  is  the  energy  storage of  the 

ground and the foliage.   

 

Figure  3. Heat flux densities’  relationship with net-all wave  radiation  in  the  kiwi plantation  at 

Chrysoupolis—GR (2023). 

Figure 4 presents the monthly average FCO2 experimentally determined in situ plus 

the estimated flux for the months of January, November, and December 2023. The final 

CO2 uptake necessitated the linear interpolation method for our data to a full year, as de-

scribed and used for “FLUXNET” and other literature methods [21–25]. 

 

Figure 3. Heat flux densities’ relationship with net-all wave radiation in the kiwi plantation at
Chrysoupolis—GR (2023).

Figure 4 presents the monthly average FCO2 experimentally determined in situ plus
the estimated flux for the months of January, November, and December 2023. The final CO2
uptake necessitated the linear interpolation method for our data to a full year, as described
and used for “FLUXNET” and other literature methods [21–25].
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The annual sum of the NEE for the plantation is−16.20 tonnes of CO2, uptake/assimilation
per hectare or 8.10 tonnes of CO2 for the 0.5 hectare of the plantation size.

4. Discussion

The energy balance closure reveals that the energy storage was, on average, 30% of
the net all wave radiation, thus the accuracy of the determination flux densities of CO2
through the DGF method was validated. Without foliage and fruits, positive FCO2 was
observed, but during the growing season, negative fluxes were observed.
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The subtraction of indirectly emitted CO2 (e.g., use of diesel for field work, transport,
and fertiliser production and application) from the NEE-summed annual CO2 values,
yields the CO2 balance for the annual production of kiwi, thus determining the footprint
for the production of a kilogram or tonne of kiwi (see Table 1 for indirectly accounted CO2
emissions) [20].

In the present study, net CO2 emissions/uptake amount to −16.20 tonnes per hectare,
or −8.10 tonnes for the plantation (at the 95% confidence limit). The plantation produced
17.50 tonnes of kiwi fruit in the 2023 growing season. This translates to the assimilation of
0.463 kg of CO2 per kg of produced kiwi fruit. The sum of required CO2 for cultivation
processes, as calculated in Table 1, is 0.084 kg CO2 per kg of produced kiwi fruit. Subtracting
this later value from the 0.463 kg of assimilated CO2, we have a result of a total of 0.379 kg
assimilated CO2 per kg of produced kiwi fruit. In simpler words, each kg of produced kiwi
has a negative footprint of 0.379 kg CO2. On the plantation scale, the net CO2 uptake was
(−) 6.63 tonnes for the 2023 growing season or (−) 13.24 tonnes per hectare. Comparison
with the literature findings is tabulated in Table 2.

Table 2. CO2 assimilation data for kiwi orchards.

Plantation and
Variety of Kiwi Fruit

CO2 NEE
Tonnes per Hectare

Method Used
(Year of Determination) Reference

North Italy (ca. 47◦ North). Actinidia
deliciosa var. “Howard” −11.33 Eddy Covariance (2007) [16]

North Italy Actinidia deliciosa
var. “Howard” −14.44 Eddy Covariance (2012) [17]

New Zealand Actinidia deliciosa
var. “Howard” −2.40 Life Cycle Assessment (2010) [20]

Southern Italy (ca. 40◦ North)
Actinidia deliciosa var. “Howard”

−17.5 ton of CO2 eq
per hectare

20 year mean
17.5 × 0.9072 = 15.87

Hence
−15.87 tonnes CO2/hectare

per annum.

Life Cycle Assessment (2022) [15]

North East Greece (ca. 40◦ North).
Actinidia deliciosa var. “Howard” −13.24 Dynamic Gradient flux (2023) Present work

It can be seen that our data agree with the data from kiwi orchards in similar Southern
Mediterranean climates (albeit determined using LCA and based on 20 year averages). It is
also apparent that even data obtained with the eddy covariance method are not distinctly
different from the data of our present work.

5. Conclusions

We used the DGF micro-meteorological method for the annual observation and deter-
mination of CO2 and H2O fluxes over a kiwi orchard in northeast Greece. The sequential
sampling of the conservative CO2 at three different heights and the simultaneous sampling
of H2O resulted in robust data (at the 95% confidence interval) as proved by the energy
balance method. This proves the validity of the “old” method, which, for the average planta-
tion manager, is financially viable to use at a cost of less than EUR 10,000. The year 2023 was
a relatively dry year, but the plantation was flood-irrigated. After subtracting the CO2 emis-
sions for the cultivation management processes from the NEE of the CO2 assimilation by
the plantation, one reaches a negative footprint of 0.379 kg of CO2 per kg of produced kiwi
fruit. This value, of course, is plantation- and year-specific, but it is indicative of the rest of
the plantations in the area as a directly determined footprint estimation. The results are im-
portant for Greek kiwi producers, since this cultivation is constantly increases in numbers
and tonnage (https://www.zim.com/fr/zim-blog/the-greek-kiwifruit-harvest-kicks-off;
accessed on 15 October 2024). However, the two caveats concerning the endeavour of
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these field determinations are as follows: firstly, the specialised personnel necessary to
set up, record, and process the data acquired; secondly, the perennial problem of dealing
with missing data during the year. On a positive note, specialised personnel are seriously
needed in the new era of the production of agricultural products for the food industry.
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