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Abstract

:

Global aerosol models often underestimate the mass concentration of aerosols in the remote troposphere, as evidenced by aircraft measurements. This study leveraged data from the NASA Atmospheric Tomography Mission (ATom), which provides remote aerosol concentrations, to refine algorithms for simulating these concentrations. Using the GEOS-Chem model, we simulate five fine aerosol types and enhance the simulation results using five machine-learning algorithms: Random Forest, XGBoost, SVM, KNN, and LightGBM, and compare the performance of these algorithms. Additionally, we evaluate the refinement effect of algorithms based on decision trees on a validation dataset. The results demonstrate that GEOS-Chem generally underestimated aerosol mass concentration. Among the tested algorithms, algorithms based on decision trees, particularly the Random Forest algorithm and the LightGBM algorithm, exhibited a superior performance, significantly improving prediction accuracy and computational efficiency in both the training and testing phases, as well as on the validation dataset.
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1. Introduction


Aerosols play a multifaceted role in the Earth’s climate system, affecting it through direct radiative forcing [1,2,3,4,5], semidirect cloud effects [6], and indirect cloud effects [7]. They modify cloud properties in the remote troposphere, which refers to the regions of the atmosphere that are located far from major landmasses and human activities [8] and contribute significantly to climate change dynamics. Key constituents of aerosols, such as nitrate, ammonium, and sulfate, primarily originate from gas-phase precursors and significantly impact radiative forcing, particularly over urban and agricultural regions [9,10]. Carbonaceous aerosols, including organic aerosols (OA) and black carbon (BC), are critical due to their substantial climate impact [11], with OA as a major component of continental aerosols [12] and BC as a principal element of light-absorbing aerosols [13].



Despite their importance, several studies have highlighted discrepancies in aerosol concentrations simulated by different scale models compared to observations. Often, different scale models overpredict aerosol concentrations over land areas [14,15]. Mortier et al. [16] assessed the skills of six Aerosol Comparisons between Observations and Models (AeroCom) phase III models, four Coupled Model Intercomparison Project 6 (CMIP6) models, and the Copernicus Atmosphere Monitoring Service (CAMS) reanalysis dataset in simulating aerosols and found that all of the models overestimated the mass concentration of aerosols in Europe. Jiao et al. [17] applied aerosol deposition fields from 25 models contributing to two phases of the AeroCom project to simulate and evaluate aerosol concentrations and radiative effects in the Arctic. They found that the models generally underestimated aerosol concentrations in northern Russia and Norway while overestimating concentrations elsewhere in the Arctic. Bian et al. [18] assessed nine models that participated in AeroCom phase III and found that all of the models underestimated aerosol concentrations with only a few exceptions when compared against aircraft measurements. They also pointed out that this problem was more evident in regions impacted by long-range transport, which includes remote oceans, than those closer to sources. Efforts to refine these models include Luo et al.‘s [19,20] introduction of an updated wet-scavenging scheme in GEOS-Chem, which significantly improved the simulation of nitrate, ammonium, sulfate, BC, and OA concentrations. Subsequently, Gao et al. [21] found an improved model performance of fine aerosols with the updated wet-scavenging scheme in the remote troposphere as well.



Our study builds on these findings, employing the GEOS-Chem model with the corrected wet-scavenging scheme to simulate remote aerosol concentrations. However, we observe that this model tends to underestimate aerosol mass concentrations when compared to aircraft measurements from the NASA Atmospheric Tomography Mission (ATom) in spring, which is consistent with Gao et al. [21]. Recognizing the nonlinear relationship between the aerosol tracer concentration and the aerosol mass concentration, contrary to the linear assumption in the GEOS-Chem model, we propose that advanced machine-learning techniques could offer a solution. Previous research has successfully integrated machine learning with different scale models to address various challenges in aerosol simulation, demonstrating the potential for these techniques to refine aerosol concentration predictions. Zheng et al. [22] integrated XGBoost and particle-resolved model PartMC-MOSAIC to estimate aerosol mixing state indices, which lowered computational costs. Li et al. [23] applied K-means to the climatological data of seven aerosol properties from a global aerosol simulation using EMAC-MADE3, thereby quantitatively defining global aerosol regimes and their characteristics, distribution, and extent. Yu et al. [24] leveraged the Random Forest algorithm, trained on long-term simulation data, to predict particle number concentrations, significantly decreasing the prediction error. Furthermore, Ma et al. [25] employed four machine-learning algorithms to find the most appropriate method for predicting the vertical distribution of aerosols and found the Random Forest algorithm to be the most suitable. Mirroring Ma et al. [25], our study implements five machine-learning algorithms to pinpoint the optimal technique for correcting the simulation of remote aerosol concentrations.



In the absence of changes in aerosol precursor emissions, climate changes alone will influence future aerosol levels. For example, alterations in wind speed, precipitation, and boundary layer height can translate into changes in stagnation and ventilation which would affect aerosols [26]. Bian et al. [27] demonstrated that perturbations to present-day temperature, wind speed, absolute humidity, mixing height, and precipitation can all significantly affect the concentration of aerosols. Hence, we take meteorological elements into account when selecting features for training algorithms. We utilize the observed aerosol concentrations as the target for training our machine-learning algorithms, with data from ATom. The ATom mission includes comprehensive flights from the Earth’s surface to the upper troposphere and lower stratosphere in the remote ocean, providing a pristine dataset with minimal anthropogenic influences. The concentration of aerosol tracers and meteorological elements are selected as features. After selecting the best algorithm, we test the algorithm’s effect on the testing dataset and validation dataset, respectively. Our goal is to improve the GEOS-Chem model output by providing a machine-learning algorithm for better subsequent studies of remote aerosols.




2. Materials and Methods


2.1. Datasets


2.1.1. ATom Observation


The NASA Atmospheric Tomography Mission (Atom [28]) is an observation mission that covers four series of flights over the Pacific and Atlantic Oceans. This mission aims to improve our understanding of the composition of the remote troposphere in four seasons: August to September 2016 (ATom-1), January to February 2017 (ATom-2), September to October 2017 (ATom-3), and April to May 2018 (ATom-4). The aircraft carried out continuous flights at altitudes ranging from 0.2 to 1.2 km. Figure 1 shows the flight paths of ATom-1~4. The aerosols of interest in this study include ammonium, nitrate, BC, OA, and sulfate, which were measured from ATom directly. The mass concentrations of OA, sulfate, nitrate, and ammonium were measured by the Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (AMS [29,30,31]). BC was measured using the Single Particle Soot Photometer (SP2 [32]). The AMS and SP2 data were merged to form a 10 s mean. We only use data below the dynamic tropopause height and filter out concentrations above the 97th percentile from every species in the dataset to eliminate the impact of any plumes that cannot be captured by Eulerian models [33].




2.1.2. Model Introduction and Datasets


This study utilized the GEOS-Chem (version 12.1.1) model that includes wet-scavenging updates as described and used by Luo et al. [20] and Gao et al. [21]. The horizontal resolution of GEOS-Chem is 2° × 2.5°, and the vertical levels are 47 from the surface to the lower stratosphere. The spin-up time is 6 months, with a chemical time step of 20 min and a transport timestep of 10 min, which is recommended by Philip et al. [34]. The meteorology is driven by data from the Modern-Era Retrospective Analysis for Research and Applications (MERRA), as provided by the NASA Goddard Space Flight Center’s Global Modeling and Assimilation Office [35]. Multiple aerosol tracers regarding chemistry are configured in this study, including hydrophilic and hydrophobic black carbon (BCPI and BCPO, respectively) and oxygenated organic aerosol. Organic aerosol is emitted with allocation factors of 1.4 for fresh EPOA (EPOA, hydrophobic OA) and 2.1 for aged OPOA (OPOA, hydrophilic OA). We opted for the complex Secondary Organic Aerosol (SOA) scheme, which includes anthropogenic SOA from light aromatic oxidation (ASOA), terpene SOA from monoterpene and sesquiterpene oxidation (TSOA), isoprene SOA (ISOA), isoprene epoxy-diols (IEPOX), C4 epoxides, methylglyoxal, and low-volatility non-IEPOX products of isoprene hydroxy hydroperoxide oxidation, as well as various products from the oxidation pathways of isoprene and monoterpene organo-nitrates (OrgNit).



Compared to the standard version, the wet-scavenging scheme used by Luo et al. [20] and Gao et al. [21] updated the parameterization for rainout loss fraction as follows:


  F =      P   r     k × I C C W    ( 1 −   e   − k Δ t   ) =      f   c   ×   P   r     k   L C W + I C W +   P   r   × Δ t      ( 1 −   e   −   E   r   × k × Δ t   )  








where   F   is the fraction of a water-soluble tracer in the grid box scavenged by rainout,   Δ t   is the model integration time step, and   k   is the first-order rainout loss rate [36].   I C C W   is the condensed water content within the precipitating cloud.     P   r     is the rate of new precipitation formation in the corresponding grid box. The new scheme replaced the previously assumed constant   I C C W   and considers     P   r     not as a grid-box mean value. In the final term of the equation,     f   c     is the grid-box mean cloud fraction,   L C W   is the liquid-phase cloud water content,   I C W   is the ice-phase cloud water content, and     E   r     is the rainout efficiency for corresponding species.



For washout by precipitation, the aerosol washout fraction is calculated by


    F   w a s h   =   f   r   ( 1 −   e   −   k   w a s h   Δ t   )  








where     f   r     is the horizontal fraction of the precipitating area in the grid box, and     k   w a s h     is the washout rate, which is calculated by


    k   w a s h   = Λ   (      P   r       f   r      )   b    








where   Λ   is the washout scavenging coefficient and b is an exponential coefficient. The values of   Λ   and   b   can be found in Table 1 by Luo et al. [20].





2.2. Methods


2.2.1. Machine-Learning


The ATom dataset consists of time-series data where the geographical coordinates of observations continuously change over time. Tree-based models are effective at capturing trends within time-series data, forming the foundation for our regression models. Therefore, we employed three tree-based models (Random Forest, XGBoost, and LightGBM) in our study. In addition to the tree-based models, we selected two other algorithms based on a review of the relevant literature. Ma et al. [25] applied four machine-learning methods (Random Forest, XGBoost, KNN, and SVM) to model the vertical distribution of PM2.5. Similarly, we applied these four machine-learning algorithms in our study. Additionally, to improve computational efficiency, we included LightGBM as an alternative to XGBoost due to the latter’s lower computational efficiency.



Random Forest:



Random Forest belongs to the family of ensemble learning methods, which was first proposed by Breiman [37]. Random Forest is widely used in atmospheric remote sensing to address nonlinear fitting problems [38]. Random Forest regression constructs multiple decision trees and integrates their prediction. To train the Random Forest algorithm, both training and testing datasets are needed. The training dataset is used to train the algorithm, and the test dataset is used to evaluate the algorithm’s performance. The algorithm needs parameters such as the number of decision trees, the pruning strategy of the decision trees, etc. The algorithm constructs a multi-class decision tree based on the samples in the training dataset and the target variables. Feature selection and division are performed on each tree. Finally, the trained algorithm is used to predict the samples in the test dataset. The algorithm then weighs the average prediction results of each decision tree to obtain the final prediction results.



Extreme Gradient Boosting (XGBoost):



XGBoost is an additive algorithm that minimizes the objective function value by gradually adding decision trees [39]. It includes three elements of boosting: the loss function, weak evaluators, and integrated results. XGBoost calculates the loss function based on the result of the previous weak evaluator and adaptively influences the construction of the next weak evaluator using the loss function. The output of XGBoost is influenced by all of the the weak evaluators. XGBoost balances accuracy and complexity. It adds a structural risk term to the loss function, forming the objective function and using a new impurity measure to incorporate complexity into the branching rules. It also uses estimation greedy algorithms, parallel learning, quantile sketches, and other methods to reduce model complexity and improve operational efficiency. To train the XGBoost algorithm, the algorithm constructs the first decision tree to fit the data and then calculates the residuals. The algorithm then adds new trees to fit these residuals. Each new tree is added to improve the prediction of the previous tree. This process continues until a preset number of trees or other stopping criteria is reached. Finally, the samples in the test dataset are predicted using the trained algorithm. XGBoost weighs and sums the predictions from all the trees to obtain the final regression prediction.



Support Vector Machine (SVM):



Support Vector Machine (SVM) is a two-class classification algorithm first proposed by Cortes and Vapnik [40]. After determining the training and test dataset, the algorithm needs to configure the parameters, including the type of kernel function, the penalty parameter C, and   ε   which is used to define the tolerance band in regression. The algorithm tries to find a hyperplane that minimizes the difference between the actual and predicted values while ensuring that the complexity of the algorithm stays within reasonable limits. The algorithm completes the regression task by predicting the output values of the new samples from the best hyperplane.



K Nearest Neighbor (KNN):



KNN is based on neighboring samples and it predicts the output of a new sample by finding the K closest neighbors to the new sample in the training dataset and predicting the output of the new sample based on the known outputs of these neighbors [41,42]. KNN needs key parameters, mainly the number of neighbors “K”. In KNN, training is the process of storing data, and the algorithm keeps all of the training data. When a new sample is to be predicted, the algorithm finds the K closest neighbors to the new sample in the training dataset based on a dataset distance metric. The algorithm then uses the output values of these K neighbors to predict the output of the new sample.



Light Gradient Boosting Machine (LightGBM):



LightGBM is an ensemble algorithm based on gradient-boosting trees. It draws on many ideas from XGBoost. Improving on XGBoost, LightGBM significantly increases computational efficiency while achieving nearly the same level of accuracy. LightGBM uses a leaf-wise growth strategy and a histogram optimization algorithm. It selects the leaf with the highest gain of splitting and efficiently represents the core information of data nodes before and after each split through the form of a histogram. When employing LightGBM, we use an equal-width binning method to bin continuous variables in the beginning. Then, the inverse process of one-hot encoding is employed to perform dimensionality reduction with minimal information loss. Finally, we mainly select samples with larger gradients for training, which preserves a significant amount of the original information [43].




2.2.2. Bayesian Optimization


Usually, the hyperparameters of machine-learning algorithms are estimated using a simple grid search with n-fold cross-validation. Grid search, which uses an exhaustive search strategy for hyperparameter tuning, can become computationally expensive as the dimensionality of the hyperparameter space increases. Bayesian optimization, on the other hand, builds a surrogate model that evaluates the performance of different parameters based on the results already computed, selecting parameters more likely to enhance model performance. This approach significantly reduces unnecessary searches, making it more efficient than a simple grid search, particularly in cases where tuning involves multiple hyperparameters [44]. Hence, we use Bayesian Optimization to identify the hyperparameters. The steps for the parameter selection for Bayesian Optimization include the following:



Define the objective function: The objective function measures the machine-learning algorithm’s performance. In this study, we use Root Mean Squared Error (RMSE) for 10-fold cross-validation to measure the performance of the machine-learning algorithm. Firstly, we randomly split the data into ten equal-sized subsets. Then, we select one subset as the validation dataset and combine the remaining nine subsets as the training dataset in each iteration, training the algorithm on the training dataset, and making predictions on the validation dataset. Finally, we compute the average of the RMSEs from all ten iterations to obtain an overall assessment of the algorithm’s performance.



Choose a surrogate model: Bayesian Optimization typically employs Gaussian Processes (GPs) as a surrogate model to approximate the objective function. The GP model predicts both the expected outcome and the uncertainty of that outcome for untested hyperparameters.



Select an acquisition function: This function determines the next hyperparameters to evaluate. It balances between choosing hyperparameters that improve model performance and exploring new areas of the parameter space.



Initialization phase: This phase begins with a few random evaluations of the objective function to provide initial data for the surrogate model. Figure 2 illustrates the steps of the iteration optimization. There are 5 iterative optimization steps: (1) Update the surrogate model: With the data collected from previous evaluations, update the surrogate model; (2) Use the acquisition function: Based on the updated model, use the acquisition function to select the next dataset of hyperparameters to evaluate; (3) Evaluate the objective function: Train and validate the model using the selected hyperparameters and obtain the performance metric; (4) Update the data: Add the new result (hyperparameters and the corresponding performance metric) to the dataset (return to step (1) to update the surrogate model with the expanded dataset); (5) Export hyperparameters: Continue this process for a predefined number of iterations or until the improvement falls below a certain threshold.



Choosing the best parameters: After the final iteration, the best parameters are chosen by selecting the dataset of hyperparameters that yields the best performance on the objective function. Table 1 shows the tuning parameters and their dynamic ranges for the five machine-learning algorithms assessed in this study.




2.2.3. Model Performance Metrics


Three model performance metrics are used in the subsequent assessment of model performance as follows.



Root Mean Square Error (RMSE): RMSE represents the square root of the mean of the squared errors, which is calculated as the average of the differences between the simulated and observed values. The lower the RMSE value, the better the model’s fit.


  R M S E =     1   n      ∑  i = 1   n      (   y   i   −     y  ^    i   )   2       











Mean Absolute Error (MAE): MAE is calculated as the average of the absolute differences between the observed and predicted values. A lower MAE value indicates a better fit of the model.


  M A E =    1   n      ∑  i = 1   n        y   i   −     y  ^    i        











Explained Variance (EV): EV measures the degree to which a model accounts for the variation (dispersion) in the observed data. A higher EV score indicates a better model. Outliers have less influence on EV, as it is based on the proportion of variance explained.


  E V = 1 −    V a r ( y −   y  ^  )   V a r ( y )     














3. Results


3.1. Algorithm Selection


In this study, our focus is on the simulation effect of five algorithms. When training the model, we set the observed data from ATom-1~3 as the target. The aerosol tracers and meteorological elements from GEOS-Chem were set as features. The meteorological elements included temperature (T), pressure (P), relative humidity (RH), and wind speed (U, V, W). We assumed that changes in meteorological elements could represent seasonal changes. The OA tracers include OPOA (oxygenated organic aerosol), EPOA (emitted organic aerosol), ASOA (the anthropogenic SOA from light aromatic oxidation), TSOA (the terpene SOA from monoterpene and sesquiterpenes oxidation), ISOA (isoprene SOA), and OrgNit (various products from isoprene and monoterpene organo-nitrates oxidation pathways). The BC tracers include BCPO (hydrophilic black carbon) and BCPI (hydrophobic black carbon). The sulfate tracers include SO4 (sulfuric acid compounds) and SO4s (sulfates). The nitrate tracers include NIT (nitrogen compounds), NITs (nitrates), and OrgNit. The ammonium tracers include NH4 (ammonium compounds). We divide the data into a test dataset and a training dataset in the ratio of 2:8. We then use five machine-learning algorithms (Random Forest, XGBoost, SVM, KNN, and LightGBM) to train the data and apply Bayesian Optimization to find the best algorithm. Table 2 shows the effects of the five machine-learning algorithms on the test dataset. It turns out that algorithms based on decision trees outperformed other algorithms, which is consistent with the findings of Keller and Evans [45] that the tree algorithm is more effective in modeling atmospheric aerosol. Among algorithms based on decision trees, Random Forest outperformed XGBoost and LightGBM in terms of the simulation effect; however, LightGBM was far superior to other models when considering the model training time. After balancing the accuracy and the computational efficiency, we finally chose Random Forest as the algorithm for correcting ammonium and nitrate and LightGBM as the algorithm for correcting OA, BC, and sulfate. Table 3 shows the main parameters of the algorithms based on decision trees, and Figure 3 shows the training effect of algorithms on the training dataset, showcasing the linear relationship between the mass concentrations observed in ATom and those of the targeted aerosols. It is shown that the points along the diagonal have the highest density, indicating that the results simulated by Random Forest and LightGBM closely matched the observations. The linear fit coefficient is close to 1 suggesting that the simulation results effectively captured trends in mass concentration. However, the linear fit coefficients for the five aerosols of interest were less than 1, indicating that the employed algorithms tended to underestimate the mass concentration to some extent.




3.2. GEOS-Chem Simulation Results


The mass concentration distribution of OA, BC, sulfate, nitrate, and ammonium with height is illustrated in Figure 4. GEOS-Chem generally underestimated the aerosol mass concentration in most scenarios. During the ATom-1 period (Northern Hemisphere summer), the mass concentration of BC and ammonium simulated by GEOS-Chem was relatively accurate. In the upper layers (>4000 m), GEOS-Chem underestimated OA, sulfate, and nitrate compared to ATom observations. In contrast, in the middle and lower layers (<4000 m), the BC, sulfate, and ammonium simulated by GEOS-Chem were close to observations, although the model underestimated the mass concentration of OA and nitrate. During the ATom-2 period (Northern Hemisphere winter), GEOS-Chem accurately simulated BC and sulfate; compared to observations, GEOS-Chem overestimated OA, nitrate, and ammonium in the lower layers (<2000 m). Except for accurately simulating the mass concentration of ammonium, GEOS-Chem underestimated the mass concentrations of OA, BC, sulfate, and nitrate in the middle and upper layers (>2000 m). During ATom-3 (Northern Hemisphere fall), in the lower and middle layers (<4000 m), GEOS-Chem’s performance in simulating BC was superior compared to its simulation of the other aerosols concerned. The simulations for the other four aerosols by GEOS-Chem all underestimated the mass concentration to some degree. In the upper layers (>4000 m), GEOS-Chem underestimated the mass concentrations of all five aerosols.



According to Figure 4, we find that the peaks of OA and BC are concentrated at 1–3 km. The peak near 1 km is related to the boundary layer. During the daytime, aerosols from ground sources, such as vehicle emissions, industrial activities, and biomass burning, accumulate at this height. Due to strong turbulence and mixing within the boundary layer, aerosols are transported and concentrated around this altitude, forming a noticeable peak.



The peak around 3 km is associated with the long-range transport of aerosols. Aerosols originating from surface sources can be lifted to higher altitudes by meteorological processes such as convection or large-scale transport. Once they reach the free troposphere, they can be transported over long distances, accumulating at higher altitudes. Additionally, the process of wet deposition due to precipitation removes aerosols at other altitudes, making the concentration peaks between 1 km and 3 km more pronounced.




3.3. Refinement Effects of Algorithms


The height distribution of aerosols in the test dataset is shown in Figure 5, where the model generally underestimated the mass concentrations of all aerosols. In particular, GEOS-Chem underestimated the mass concentration of nitrate throughout the middle and upper layers (>2000 m). Using LightGBM and Random Forest to adjust the model significantly improves its alignment with observed data, as evidenced by the metrics presented in Table 4. The adjustments led to reduced RMSE and MAE for the corrected simulations. Additionally, the improved EV suggests a better interpretation of the data variability, enabling the model to more accurately reflect the observed trends in aerosol mass concentrations, especially in the mid-to-upper atmosphere, where the algorithms effectively corrected the underestimations made by GEOS-Chem.



By comparing the metrics on the test and validation set, we find that LightGBM outperforms Random Forest on the test dataset, while Random Forest performs better on the validation set. This indicates that the LightGBM algorithm shows slight overfitting. LightGBM grows trees by leaf-wise selection, splitting the leaf with the largest error, which allows it to reduce errors faster and increase accuracy with the same tree depth. However, this approach often results in deeper trees, leading to overfitting. In contrast, Random Forest grows trees by depth, and each tree is independent. This structure maintains the model’s generalization ability, making it less prone to overfitting. Additionally, LightGBM uses a gradient boosting strategy, where each tree is built based on the residuals of the previous tree. If the number of trees or learning rate is not properly set, this can lead to significant overfitting. Random Forest, on the other hand, uses a bagging method, where each tree is trained independently, and the final prediction is determined by averaging or voting, which helps to reduce the overfitting risk.



In terms of computational efficiency, LightGBM is significantly faster than Random Forest. This is because LightGBM utilizes a histogram-based decision tree construction algorithm, which discretizes continuous feature values into a limited number of integers before choosing split points. This reduces computational overhead. Random Forest, by contrast, calculates the optimal split point for each sample, leading to higher computational costs. Moreover, LightGBM’s leaf-wise growth strategy focuses on splitting the leaf with the largest error, reducing the number of trees required. Random Forest grows all leaves at the same time (depth-wise growth), often resulting in redundant nodes, increasing both computational and memory costs.




3.4. Applicability of the Algorithms Based on Decision Trees


To assess the applicability of the algorithms based on decision trees, we employ the data during the ATom-4 period as a validation dataset to evaluate the practical application of the algorithms based on decision trees. According to the statistics presented in Table 5, the implementation of the algorithms based on decision trees resulted in a decreased RMSE and MAE, alongside an increase in EV, which indicates that the correction via the algorithms based on decision trees enhanced the alignment of GEOS-Chem’s aerosol mass concentrations with observational data. However, the corrected model’s EV was still lower, suggesting that the interpretability of the data variability remained limited.



To understand the refinement effect of the algorithm in different regions, we analyzed the enhancement of the algorithms based on decision trees by dividing the ocean basins into four regions—Northern and Southern Pacific, and Northern and Southern Atlantic—and examining their vertical profiles. Overall, the difference between the corrected simulation by algorithms based on decision trees and the observation diminished in varying degrees. Detailed analyses are as follows.



Examining the vertical profiles of ammonium, as shown in Figure 6, the algorithm’s most pronounced improvement was observed in the Northern Pacific, where the discrepancy was significantly diminished except at altitudes between 4000 m and 6000 m. In the Southern Pacific, the refinement effect was modest, with the corrected model tending to overestimate ammonium concentrations. In the Northern Atlantic, the corrected model improved the mass concentration but some low bias still remained. The Southern Atlantic saw improvements in the lower layers (<2000 m), with better simulations of ammonium in the middle and upper layers (>2000 m).



For BC, as shown in Figure 7, the Pacific Ocean benefited more from these corrections than the Atlantic; in the Northern Pacific, discrepancies were minimized except at altitudes between 2000 m and 3000 m. In the Southern Pacific, the algorithm tended to overestimate BC concentrations in the upper layers (above 8000 m) but achieved a better accuracy at other altitudes. In the Northern Atlantic, despite the algorithm’s correction of underestimation, a low bias remained in the lower and middle layers (below 5700 m), with more accurate simulations in the upper layers, which is similar with the refinement effect of ammonium using Random Forest. In the Southern Atlantic, the corrected model still slightly underestimated BC concentrations in the lower layers (<2500 m), while moving closer to observations in the middle and upper layers (>2500 m).



After the correction using Random Forest, nitrate also saw better agreement with observations (Figure 8). Both the Northern and Southern Pacific regions, where GEOS-Chem initially underestimated nitrate, showed significant improvement post-correction. In the Southern Atlantic, where GEOS-Chem overestimated nitrate in the lower layer (<1500 m) and underestimated it above, corrections significantly diminished both overestimation and underestimation, with the corrected model performing notably well in this region. However, the refinement effect was least impressive in the North Atlantic, where, despite improvements, the corrected model still underestimated nitrate concentrations.



GEOS-Chem underestimated the mass concentration of OA in most regions during ATom-4. The underestimation of OA simulated by GEOS-Chem was significantly improved after using the LightGBM algorithm (Figure 9). In the North Pacific, significant improvements were observed except at altitudes between 1500 and 3000 m, where GEOS-Chem’s initial simulations were relatively accurate. The South Pacific showed a generally good performance but also benefited from correction in areas of underestimation. In the North Atlantic, while improvements were noted, underestimation persisted in the lower and middle layers (<3500 m). The South Atlantic experienced distinct underestimation at altitudes of 2000–3000 m, with notable correction achievements in the middle and upper layers (>4500 m).



For sulfate, as demonstrated in Figure 10, the LightGBM algorithm’s correction significantly reduced the bias between GEOS-Chem simulations and observations. In the North Pacific, an overestimation by both the original and corrected GEOS-Chem models was noted in the lower layers (below 3000 m), with the corrected model achieving closer approximation to observations in the middle and upper layers. The South Pacific saw improvements in correcting underestimations in the middle and upper layers. In the North Atlantic, despite some improvements, the corrected model continued to exhibit a low bias across all layers. The South Atlantic also saw corrections of underestimation, with a significantly reduced gap between the model and observations, indicating the Random Forest algorithm’s effectiveness in enhancing sulfate concentration simulations.





4. Conclusions


This study evaluates the effectiveness of five machine-learning algorithms—Random Forest, XGBoost, SVM, KNN, and LightGBM—in correcting biases in the GEOS-Chem model, specifically focusing on its wet-scavenging schemes. We first compare the performance of these algorithms in aligning GEOS-Chem’s outputs to be closer to the observed data, assessing the corrections through metrics such as RMSE, MAE, and EV.



Our findings indicate that the algorithms based on decision trees (Random Forest, XGBoost, and LightGBM) significantly outperformed SVM and KNN in terms of lower RMSE and MAE, as well as higher EV. Among the tree-based algorithms, Random Forest demonstrated a superior accuracy over XGBoost and LightGBM on both the test and validation datasets, and LightGBM used fewer computational sources than Random Forest and XGBoost. The selection process revealed that while the XGBoost algorithm showed promise on the training dataset, it was outperformed by the Random Forest algorithm on the test and validation datasets, and it is far less computationally efficient than LightGBM. Having balanced the accuracy and the computational efficiency, we finally choose Random Forest as the algorithm for correcting ammonium and nitrate and LightGBM as the algorithm for correcting OA, BC, and sulfate.



In terms of model accuracy before and after correction, GEOS-Chem initially underestimated the mass concentrations of five key aerosols (OA, BC, sulfate, nitrate, and ammonium), particularly during the ATom-4 period. The application of the Random Forest algorithm and the LightGBM algorithm markedly improved these underestimations across all five aerosols, as evidenced by reductions in relative error, RMSE, and MAE, along with an increase in EV. Despite these improvements, the model still exhibits some degree of underestimation for these aerosols in certain regions, with ammonium correction being the least effective.



Furthermore, the study leverages unique insights from ATom-4 data on aerosols in remote oceanic regions to refine the GEOS-Chem model. We acknowledge the limitations of using only ATom-4 data for comprehensive algorithm evaluation and stress the need for further validation to confirm the algorithms’ effectiveness and identify areas for improvement. Through this work, we only aimed to enhance the understanding and study of aerosols in remote ocean environments and hope that it provides an option for better remote aerosol simulations.
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Figure 1. Flight paths of ATom-1~4. 
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Figure 2. The steps of the iteration optimization. 
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Figure 3. The linear regression relationship between the mass concentration of ATom observation and the mass concentration of targeted aerosols. 
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Figure 4. Height distribution of OA, BC, sulfate, nitrate, and ammonium. 
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Figure 5. Height distribution of (a) OA, (b) BC, (c) sulfate, (d) nitrate, and (e) ammonium in the test dataset. 
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Figure 6. Refinement effects of the Random Forest algorithm for ammonium. (a) Relative error between observations and GEOS-Chem. (b) Relative error between observations and the refinement results (red arrows show the distribution of mass concentration with height in the corresponding areas: North Pacific, South Pacific, North Atlantic, South Atlantic). 
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Figure 7. Refinement effects of the LightGBM algorithms for BC. (a) Relative error between observations and GEOS-Chem. (b) Relative error between observations and the refinement results (red arrows show the distribution of mass concentration with height in the corresponding areas: North Pacific, South Pacific, North Atlantic, and South Atlantic). 






Figure 7. Refinement effects of the LightGBM algorithms for BC. (a) Relative error between observations and GEOS-Chem. (b) Relative error between observations and the refinement results (red arrows show the distribution of mass concentration with height in the corresponding areas: North Pacific, South Pacific, North Atlantic, and South Atlantic).
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Figure 8. Refinement effects of the Random Forest algorithms for nitrate. (a) Relative error between observations and GEOS-Chem. (b) Relative error between observations and the refinement results (red arrows show the distribution of mass concentration with height in the corresponding areas: North Pacific, South Pacific, North Atlantic, and South Atlantic). 
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Figure 9. Refinement effects of the LightGBM algorithm for OA. (a) Relative error between observations and GEOS-Chem. (b) Relative error between observations and the revised results (red arrows show the distribution of mass concentration with height in the corresponding areas: North Pacific, South Pacific, North Atlantic, and South Atlantic). 
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Figure 10. Refinement effects of the LightGBM algorithm for sulfate. (a) Relative error between observations and GEOS-Chem. (b) Relative error between observations and the corrected results (red arrows show the distribution of mass concentration with height in the corresponding areas: North Pacific, South Pacific, North Atlantic, and South Atlantic). 
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Table 1. Summary of tuning parameters and their dynamic ranges in four different machine-learning algorithms, noting that SVM parameters need to be exponentiated before they are in the form of C and gamma, i.e., C = 10expC, gamma = 10expGamma.
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Algorithm

	
Parameter

	
Dynamic Range






	
Random Forest

	
N_estimators

	
(10, 500)




	
Min_sample_split

	
(2, 10)




	
Max_features

	
(1, 25)




	
Max_depth

	
(5, 60)




	
XGBoost

	
N_estimators

	
(10, 500)




	
Min_sample_split

	
(2, 10)




	
Max_features

	
(1, 25)




	
Max_depth

	
(5, 60)




	
SVM

	
expC

	
(−3, 3)




	
expGamma

	
(−4, 1)




	
KNN

	
N_neighbors

	
(3, 25)




	
LightGBM

	
N_estimators

	
(10, 500)




	
Learning_rate

	
(0.01, 0.3)




	
Num_leaves

	
(20, 100)




	
Max_depth

	
(5, 50)











 





Table 2. Machine-learning simulation results for OA, sulfate, nitrate, ammonium, and BC, where XGBoost is Gradient Boosting, SVM is Support Vector Machine, and KNN is K Nearest Neighbors.
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RMSE

	
MAE

	
EV






	
OA

	
Random Forest

	
0.393

	
0.115

	
0.728




	
XGBoost

	
0.395

	
0.119

	
0.719




	
SVM

	
0.633

	
0.180

	
0.320




	
KNN

	
0.666

	
0.233

	
0.238




	
LightGBM

	
0.387

	
0.123

	
0.737




	
Sulfate

	
Random Forest

	
0.079

	
0.045

	
0.823




	
XGBoost

	
0.083

	
0.052

	
0.804




	
SVM

	
0.129

	
0.087

	
0.608




	
KNN

	
0.135

	
0.076

	
0.579




	
LightGBM

	
0.076

	
0.044

	
0.839




	
Nitrate

	
Random Forest

	
0.014

	
0.005

	
0.725




	
XGBoost

	
0.019

	
0.005

	
0.721




	
SVM

	
0.046

	
0.036

	
0.465




	
KNN

	
0.024

	
0.008

	
0.456




	
LightGBM

	
0.017

	
0.006

	
0.645




	
Ammonium

	
Random Forest

	
0.019

	
0.008

	
0.820




	
XGBoost

	
0.020

	
0.009

	
0.800




	
SVM

	
0.062

	
0.049

	
0.021




	
KNN

	
0.041

	
0.018

	
0.508




	
LightGBM

	
0.019

	
0.009

	
0.813




	
BC

	
Random Forest

	
0.013

	
0.004

	
0.744




	
XGBoost

	
0.018

	
0.005

	
0.717




	
SVM

	
0.029

	
0.018

	
0.289




	
KNN

	
0.018

	
0.007

	
0.297




	
LightGBM

	
0.012

	
0.004

	
0.733











 





Table 3. Parameters of tree-based models.
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Max_Depth

	
Max_Features

	
Min_Samples_Split

	
N_Estimators






	
Random Forest

	
OA

	
23

	
8

	
2

	
87




	
Sulfate

	
47

	
4

	
2

	
458




	
Nitrate

	
59

	
20

	
2

	
314




	
Ammonium

	
35

	
6

	
2

	
336




	
BC

	
51

	
20

	
3

	
369




	

	

	
Learning_rate

	
Max_depth

	
N_estimators

	
Num_leaves




	
LightGBM

	
OA

	
0.05979

	
43

	
434

	
43




	
Sulfate

	
0.10171

	
48

	
497

	
93




	
Nitrate

	
0.13818

	
49

	
405

	
75




	
Ammonium

	
0.13283

	
26

	
226

	
51




	
BC

	
0.06604

	
38

	
196

	
85




	

	

	
Max_depth

	
Max_features

	
Min_samples_split

	
N_estimators




	
XGBoost

	
OA

	
34

	
6

	
3

	
345




	
Sulfate

	
27

	
3

	
7

	
265




	
Nitrate

	
21

	
3

	
3

	
463




	
Ammonium

	
21

	
3

	
3

	
463




	
BC

	
14

	
5

	
9

	
251











 





Table 4. GEOS-Chem result and corrected model result of OA, BC, sulfate, nitrate, and ammonium in the test dataset.
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RMSE

	
MAE

	
EV






	
OA

	
Random Forest

	
0.393

	
0.251

	
0.728




	
LightGBM

	
0.387

	
0.123

	
0.736




	
GEOS-Chem

	
0.901

	
0.277

	
0.183




	
Sulfate

	
Random Forest

	
0.079

	
0.045

	
0.823




	
LightGBM

	
0.076

	
0.044

	
0.839




	
GEOS-Chem

	
0.168

	
0.117

	
0.372




	
Nitrate

	
Random Forest

	
0.011

	
0.003

	
0.883




	
LightGBM

	
0.017

	
0.005

	
0.645




	
GEOS-Chem

	
0.031

	
0.017

	
0.077




	
Ammonium

	
Random Forest

	
0.019

	
0.008

	
0.821




	
LightGBM

	
0.019

	
0.009

	
0.813




	
GEOS-Chem

	
0.028

	
0.012

	
0.638




	
BC

	
Random Forest

	
0.013

	
0.004

	
0.768




	
LightGBM

	
0.012

	
0.004

	
0.733




	
GEOS-Chem

	
0.017

	
0.007

	
0.565











 





Table 5. The metrics of OA, BC, sulfate, nitrate, and ammonium in the validation dataset.
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RMSE

	
MAE

	
EV






	
OA

	
Random Forest

	
0.821

	
0.251

	
0.154




	
LightGBM

	
0.859

	
0.255

	
0.138




	
GEOS-Chem

	
0.899

	
0.302

	
0.128




	
Sulfate

	
Random Forest

	
0.210

	
0.135

	
0.379




	
LightGBM

	
0.217

	
0.139

	
0.334




	
GEOS-Chem

	
0.273

	
0.210

	
0.277




	
Nitrate

	
Random Forest

	
0.046

	
0.021

	
0.194




	
LightGBM

	
0.046

	
0.021

	
0.179




	
GEOS-Chem

	
0.052

	
0.027

	
0.181




	
Ammonium

	
Random Forest

	
0.071

	
0.036

	
0.336




	
LightGBM

	
0.072

	
0.037

	
0.298




	
GEOS-Chem

	
0.073

	
0.037

	
0.329




	
BC

	
Random Forest

	
0.010

	
0.006

	
0.391




	
LightGBM

	
0.012

	
0.006

	
0.322




	
GEOS-Chem

	
0.012

	
0.007

	
0.268
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