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Abstract: This study utilized the Community Multiscale Air Quality (CMAQ) model to assess the
impact of open biomass burning (OBB) in Thailand and neighboring countries—Myanmar, Laos,
Cambodia, and Vietnam—on the PM2.5 concentrations in the Bangkok Metropolitan Region (BMR)
and Upper Northern Region of Thailand. The Upper Northern Region was further divided into the
west, central, and east sub-regions (WUN, CUN, and EUN) based on geographical borders. The
CMAQ model was used to simulate the spatiotemporal variations in PM2.5 over a wide domain in
Asia in 2019. The Integrated Source Apportionment Method (ISAM) was utilized to quantify the
contributions from OBB from each country. The results showed that OBB had a minor impact on
PM2.5 in the BMR, but transboundary transport from Myanmar contributed to an increase in PM2.5

levels during the peak burning period from March to April. In contrast, OBB substantially impacted
PM2.5 in the Upper Northern Region, with Myanmar being the major contributor in WUN and CUN
and domestic burning being the major contributor to EUN during the peak months. Despite Laos
having the highest OBB emissions, meteorological conditions caused the spread of PM2.5 eastward
rather than into Thailand. These findings highlight the critical impact of regional transboundary
transport and emphasize the necessity for collaborative strategies for mitigating PM2.5 pollution
across Southeast Asia.

Keywords: air pollution; particulate matter; open biomass burning; transboundary transport; air
quality simulation; source apportionment; Northern Thailand; Bangkok Metropolitan Region

1. Introduction

Open biomass burning (OBB) of agricultural residues is extensively practiced by
farmers across Southeast Asian countries [1–4]. This practice is favored primarily due to its
cost-effectiveness in swiftly clearing agricultural waste, pests, and unwanted or diseased
crops from fields, facilitating faster crop rotation while also replenishing the nutrients in
the soil [4–7]. Despite these benefits, fumes and particulate pollutants emitted from OBB
significantly degrade ambient air quality and pose risks to human health [8–12]. Some of
the major pollutants produced during this practice are particulate pollutants with diameters
smaller than 2.5 µm (PM2.5) [13–15]. These tiny particles are known to pose risks to human
health, as they can penetrate deep into the lungs and even enter the bloodstream, leading
to respiratory and cardiovascular diseases [16–18]. Moreover, PM2.5 not only contributes
to local air pollution but also to regional air pollution. Due to their small size, particulate
pollutants resulting from OBB can remain airborne for extended periods and travel long
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distances under favorable conditions, thus causing transboundary transport [3,11,12,19,20].
Furthermore, PM2.5 also has a considerable impact on global climate change. Due to their
ability to interact with solar radiation, these particles can alter atmospheric temperature
dynamics by absorbing or scattering sunlight, leading to changes in cloud formation,
atmospheric circulation, and precipitation patterns [21–25].

PM2.5 from both domestic and transboundary OBB sources has been a persistent issue
in Thailand, especially in the Upper Northern Region during the intensive burning season
at the end of the dry season, which spans from January to April [26–30]. According to
a report from the Pollution Control Department (PCD) [26], the annual national average
PM2.5 concentration in Thailand has consistently exceeded the recommended value from
the World Health Organization’s air quality guidelines [31] by five times in the last decade.
The high daily concentrations of PM2.5 have been reported to be associated with increases
in hospitalization and mortality rates in major cities in Thailand [15,30,32–35]. Furthermore,
research findings also suggest that Thailand’s economy is negatively impacted by PM2.5
pollution. For instance, Linh Thao et al. estimated that PM2.5 pollution cost Thailand’s
economy USD 1.19 billion in 2012. In addition, increased daily concentrations of PM2.5
have been linked to a decline in tourism [36–38].

Numerous studies have examined the contribution of OBB to PM2.5 pollution in Thai-
land and Southeast Asia as a whole. Yin et al. [13] assessed the distribution of OBB and
its effects on ambient air quality in mainland Southeast Asia over a 15-year period from
2001 to 2016. Their findings indicated that OBB is the largest contributor to the annual
average PM2.5 concentration in mainland Southeast Asia, contributing to almost half of
all PM2.5. Hassan Bran et al. [39] utilized the WRF-Chem atmospheric chemical transport
model to conduct a source apportionment of PM2.5 in Thailand in 2017 and 2019. Their
findings revealed that OBB was the primary source of PM2.5 in Thailand, contributing
34.3% and 47.4% of the annual PM2.5 concentrations in 2017 and 2019, respectively. Song
et al. [40] performed source apportionment using radiocarbon analysis on PM2.5 samples
collected in urban and rural areas of Chiang Mai, a province in Upper Northern Thailand.
The source apportionment results revealed that most PM2.5 in both urban and rural areas
of Upper Northern Thailand was from OBB. Chansuebsri et al. [41] conducted a similar
source apportionment using the positive matrix factorization (PMF) receptor model and
the potential source contribution function (PSCF). The PMF results showed that biomass
burning contributed up to half of the PM2.5 in Chiang Mai during a high burning episode,
while the PSCF results further revealed that the area along the border between Thailand
and Myanmar was potentially the main source area of OBB. Amnuaylojaroen et al. [27]
employed an atmospheric chemical transport model alongside satellite data to investigate
the potential contribution of transboundary transport to PM2.5 pollution in Northern Thai-
land during periods of intense burning. The results indicated that biomass burning from
neighboring countries had a greater potential to contribute to air pollution in Northern
Thailand than domestic emissions. Similarly, Inlaung et al. [20] reported that transbound-
ary transport significantly contributed to PM2.5 in Northern Thailand, often surpassing the
contributions from domestic burning.

Despite the clear link between OBB and PM2.5 pollution in Thailand, it remains unclear
whether domestic burning or transboundary transport contributes more significantly to the
problem. Furthermore, the specific contributions of individual neighboring countries to
PM2.5 in Thailand have not been thoroughly investigated. This uncertainty complicates
the development of effective mitigation strategies, as policymakers may need to deploy
different measures depending on whether the primary source of pollution is local or
originates from other countries. In addition, the lack of research addressing the specific
contributions from each country makes it more challenging to coordinate regional efforts to
effectively address the issue. To address this knowledge gap, this study aims to assess the
contribution of OBB to PM2.5 in Thailand on a nation-by-nation basis using an atmospheric
chemical transport model.
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2. Materials and Methods
2.1. Study Area

This study assesses the contributions of OBB from target source countries to two key
receptor areas in Thailand: the Upper Northern Region and the Bangkok Metropolitan
Region (BMR). The target source countries include Thailand, Laos, Myanmar, Cambodia,
and Vietnam. To comprehensively capture the dispersion of PM2.5 from these target source
countries, the modeling domain for this study was set to cover a wide area of Asia, including
Southeast Asia, India, parts of China, and the southwestern Pacific region, as illustrated in
Figure 1a. The locations of the target source countries, the Upper Northern Region, and the
BMR are shown in Figure 1b–d, respectively.

1

4
(b)

b c

d

WUN
CUN
EUN

(a)

(c) (d)

Figure 1. Study area: (a) Modeling domain. The locations of EANET monitoring stations used in the
model evaluation are marked with red circles. (b) Target source countries. (c) Upper Northern Region
of Thailand. The locations of PCD monitoring stations used in the model evaluation are shown in
purple circles. (d) BMR, with the locations of PCD monitoring stations marked with green circles.

The Upper Northern Region of Thailand was selected due to its significant PM2.5
pollution issues. According to a report from the Pollution Control Department [42], eight
provinces in Upper Northern Thailand, namely, Mae Hong Son, Chiang Mai, Chiang Rai,
Lampang, Lamphun, Phrae, Nan, and Tak, experience severe PM2.5 episodes in which the
national standard level is exceeded for more than 30 days each year. Due to its topography,
this region is particularly vulnerable to PM2.5 pollution. As it is surrounded by high
mountainous terrain combined with peculiar meteorological features, such as calm winds
and temperature inversion, the Upper Northern Region is prone to air stagnation, leading
to the accumulation of air pollutants [43]. This is particularly true during the dry season, in
which the level of burning activities in this region and in bordering countries is high [44]. As
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PM2.5 from transboundary transport is expected to be more severe in areas closer to border
provinces [20], the Upper Northern Region was further divided into three sub-areas in this
study: the West Upper Northern (WUN), Central Upper Northern (CUN), and East Upper
Northern (EUN) sub-areas. These sub-areas were defined based on their geographical
borders. The WUN includes Mae Hong Son, Tak, and Chiang Rai, which are adjacent to
Myanmar. The CUN includes Chiang Mai, Lampang, and Phrae, which are inland and do
not border any countries, consisting mainly of urban areas. Lastly, EUN covers Nan, which
borders Laos. Lamphun was excluded from this study due to insufficient PM2.5 observation
data for the study period. This lack of data made it impossible to validate the model
accurately in this region, which could lead to uncertain results in source apportionment.

BMR was included as a target receptor area due to its demographic and economic
significance. The BMR comprises Bangkok (the capital of Thailand) and its vicinity. It
consists of six provinces: Bangkok, Nakhon Pathom, Pathum Thani, Nonthaburi, Samut
Prakan, and Samut Sakhon. It is the most densely populated region of Thailand, housing
16% of the nation’s population [45]. As the most populated area in Thailand, the adverse
health impacts of PM2.5 pollution can affect a large number of residents, making it crucial
to understand the sources and mitigation strategies for this pollutant.

2.2. Model Configuration

In this study, the Community Multiscale Air Quality (CMAQ) model version 5.3.3 [46]
was used to simulate the spatiotemporal variations in PM2.5 in the modeling domain. The
horizontal grid resolution of the domain was 45 × 45 km, and the number of grid cells was
192 × 129. The simulation period was from January to December 2019, with December 2018
as a spin-up period. The year 2019 was chosen as the study period because it was the most
recent typical year prior to the COVID-19 pandemic, during which there were significantly
fewer anthropogenic emissions due to lockdown measures [47,48]. The chemical mecha-
nism developed by the State Air Pollution Research Center (SAPRC) (version 07TC) [49]
and the aero6 aerosol module with aqueous chemistry were employed. The boundary
conditions used were derived from the output of the Whole Atmosphere Community
Climate Model (WACCM) [50].

The meteorological field input for the CMAQ-ISAM model was generated using the
Weather Research and Forecasting (WRF) model version 4.3 [51]. The following physics and
dynamics options were employed for WRF simulation: the Morrison double-moment mi-
crophysics scheme [52], the Rapid Radiative Transfer Model for Global Climate Models [53]
for longwave and shortwave radiation, the MYNN surface layer scheme [54], the Noah
land surface model [55], the MYNN3 planetary boundary layer (PBL) scheme [56], and the
Grell 3D ensemble cumulus scheme [57]. The topology and land use data used were global
multi-resolution terrain elevation data (GMTED) from 2010 [58] and moderate-resolution
imaging spectroradiometer (MODIS) data [59], respectively. Grid nudging was applied
throughout the entire simulation, using nudging coefficients of 1.0 × 10−4 s−1 for the wind
components and 5.0 × 10−4 s−1 for both potential temperature and the water vapor mixing
ratio. The initial and boundary conditions for the WRF model were obtained from ECMWF
Reanalysis version 5 (ERA5) [60]. The hourly results from the WRF simulation were
then converted into CMAQ meteorological field input using the Meteorology–Chemistry
Interface Processor (MCIP) version 5.3.3.

2.3. Emission Inventories

Various emission inventories were used to produce emission data for the CMAQ
model in this research. For OBB, emission data from the Fire Inventory from NCAR (FINN)
version 1.5 [61] were used. Similarly to previous research [62], FINN was chosen for this
study due to its finer spatial and temporal resolution (1 km, daily) for the year of interest.
It is superior to other emission inventories, such as the Global Fire Emissions Database
(GFED) [63], which provides monthly data at a 0.25-degree resolution, and the Global Fire
Assimilation System (GFAS) [64], which provides daily data at a 0.1-degree resolution.
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Moreover, FINN version 1.5 has been reported to yield the best performance for simulating
PM2.5 in the region of Southeast Asia, outperforming other inventories, as well as the newer
FINN version 2.5 [65]. In order to avoid large fire emissions being confined solely to the
surface layer, emissions from OBB were assumed to be uniformly distributed from the
surface to the height of the planetary boundary layer (PBL). This assumption is supported
by previous studies; moderately sized fires on a landscape scale, such as crop or grassland
fires, seem to primarily emit their smoke into the PBL [66], and PM2.5 concentrations
simulated with CMAQ were not significantly affected by alterations in the injection height
of fire emissions within the PBL and were not affected by emissions released into the free
atmosphere [67,68].

After conducting a series of trial runs with the model, it was observed that the model
overestimated PM2.5 concentrations under conditions where the PBL height was relatively
low. To address this issue, when the PBL height was less than 0.5 km, the emissions from
OBB were assumed to be uniformly vertically distributed from the surface level to a height
of 0.5 km instead of the actual PBL height. This adjustment was made through a process of
trial and error. Many studies have also followed the same approach [69–74], highlighting
the fact that setting up an atmospheric model for each scenario requires unique assumptions
and modifications to accurately reflect the specific conditions being studied, as there is no
universal method for setting up such models.

Emissions from other sources were derived from the following inventories: most of
the anthropogenic emissions were from the Regional Emission Inventory in Asia (REAS)
version 3.2 [75], which provides emission data only until 2015. Therefore, the 2015 data were
used in this study to represent emissions in 2019. Marine and air traffic emissions were taken
from the Task Force for Hemispheric Transport of Air Pollution (HTAP) version 2.2 [76],
natural emissions were taken from the Model of Emissions of Gases and Aerosols from
Nature (MEGAN) version 2.04 [77], and lastly, volcanic SO2 emissions were taken from
Carn et al. [78].

All emission inventories were combined using an in-house program to create two
CMAQ-ready gridded emission inputs. The first gridded input contained solely OBB from
FINN version 1.5, while the other included emissions from all other sources. Figure 2
visually illustrates the average emission intensities of both emission inputs.

(a) (b)(mg s−1 km −2) (mg s−1 km −2)

Figure 2. Average PM2.5 emission intensities in the modeling domain: (a) emissions from open
biomass burning and (b) emissions from other sources.

In the modeling domain, the total PM2.5 emissions from OBB amounted to 8.81 Tg/year,
while other emission sources contributed 18.79 Tg/year. Among the target source countries,
Laos had the highest annual PM2.5 emissions from OBB at 2.23 Tg/year. This was followed
by Myanmar with 2.02 Tg/year, Thailand with 0.97 Tg/year, Vietnam with 0.84 Tg/year,
and Cambodia with 0.68 Tg/year.
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2.4. Source Apportionment

To perform nation-by-nation source apportionment, the built-in Integrated Source
Apportionment Method (ISAM) tool [79,80] was used to individually track PM2.5 from
OBB in each target source country. Region masks were applied, and five tags were assigned
accordingly: Thailand (THA), Laos (LAO), Myanmar (MYA), Cambodia (CAM), and
Vietnam (VNM). In addition, another tag (ETC) was assigned to track PM2.5 from OBB
outside the nations of interest.

The overall contribution of OBB was calculated by dividing simulated PM2.5 values
by the sum of values from the THA, LAO, MYA, CAM, VNM, and ETC tags, with the
remaining percentage representing contributions from non-OBB sources. Similarly, the
contributions from each target source country were calculated by dividing values from
each tag by the simulated PM2.5 concentration.

2.5. Observation Data and Model Evaluation

The performance of the CMAQ model in reproducing the spatiotemporal variations
in the PM2.5 concentration was evaluated by comparing simulated values with ground-
level observed values from monitoring stations. Observed values from nine monitor-
ing stations across seven Southeast Asian countries, which were provided by the Acid
Deposition Monitoring Network in East Asia (EANET) [81], were used. In addition,
the PM2.5 concentration in Thailand was further evaluated using observed data from
13 monitoring stations in the Upper Northern Region and 17 monitoring stations in the
BMR, which were provided by the PCD through their official air quality report website
(http://air4thai.pcd.go.th/webV3/#/History, accessed on 18 December 2023). The loca-
tions of all PCD and EANET stations used for model evaluation are shown in Figure 1.

Since the model output was in a gridded format, with each grid cell representing a
mean PM2.5 concentration over the corresponding geographic area, the simulated value
for each grid cell was compared with the observed value at the monitoring station located
within that grid. If multiple monitoring stations were located within the same simulation
grid, the average of the observed values from all stations in that grid was used for com-
parison. The statistical metrics used for the comparison included the Pearson correlation
coefficient (r), Normalized Mean Bias (NMB), and Normalized Mean Error (NME). Detailed
formulas for each metric are provided in Appendix A.

3. Results and Discussion
3.1. Model Performance

The monthly average observed PM2.5 concentrations from monitoring stations were
compared with the simulation results for the BMR, WUN, CUN, and EUN regions, as
shown in Figure 3. In the BMR, the observed monthly average PM2.5 concentrations ranged
from 14.0 to 52.9 µg/m³, with an annual average of 25.2 µg/m³, which was nearly at the
threshold of the national standard of 25 µg/m³. The highest concentrations were observed
in January. In contrast, the sub-areas within the Upper Northern Region (WUN, CUN, and
EUN) exhibited significantly higher PM2.5 levels, with monthly averages ranging from
6.1 to 90.1 µg/m³. The annual average for the Upper Northern Region as a whole was
31.0 µg/m³, exceeding the national standard. All sub-areas in the Upper Northern Region
experienced their peak monthly average concentrations in March. WUN had the highest
PM2.5 pollution, with an annual average concentration of 33.1 µg/m³ and a peak monthly
concentration of 102.5 µg/m³. The CUN had an annual average of 30.3 µg/m³ and a peak
concentration of 66.8 µg/m³ in March, while the EUN had an annual average of 29.6 µg/m³
and a peak concentration of 90.2 µg/m³ in the same month.

These observed PM2.5 values aligned with those in a previous study [20], which
showed that transboundary transport significantly contributes to PM2.5 levels, particularly
in regions closer to the borders. WUN, which borders Myanmar, and EUN, which borders
Laos, exhibited some of the highest PM2.5 concentrations, supporting the notion that
pollutants from neighboring countries are likely to impact the air quality in these areas. In

http://air4thai.pcd.go.th/webV3/#/History
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contrast, the BMR and the CUN region, which do not share borders with other countries
and are more urbanized, showed comparatively lower PM2.5 levels. Urban areas, such
as Chiang Mai and Lampang in CUN, tend to have lower contributions from OBB due
to the reduced prevalence of such activities in densely populated regions. This urban
characteristic, combined with the lack of cross-border pollution, helps explain the lower
PM2.5 levels observed in these areas.

The comparison of the observed and simulated PM2.5 values in Figure 4 and the results
of the statistical evaluation in Table 1 demonstrated strong agreement, with correlation
coefficients of 0.68 and 0.73 for the EANET and PCD stations, respectively. This highlighted
the model’s ability to capture the spatial and temporal distribution of PM2.5 across the
modeling domain. The NMB values of 12% at EANET stations and −8% at PCD stations
indicated slight overestimation and underestimation, respectively, suggesting variability in
model accuracy due to factors such as local emissions and meteorological conditions. Ac-
cording to Huang et al. [82], NMB values within ±30% are generally considered acceptable,
affirming the model’s reliability. Similarly, according to the same study, the NME values
of 41% for EANET and 11% for PCD fell within acceptable ranges, further confirming the
model’s accuracy.

Additionally, the model effectively captured seasonal variations, particularly during
intense burning episodes in the dry season, as shown in Figure 3. The regional correlation
coefficients of 0.78 for BMR, 0.97 for WUN, 0.86 for CUN, and 0.96 for EUN demonstrate
robust model performances across these areas.

Figure 3. Time series of the observed (black line) and simulated (red line) monthly average PM2.5

concentrations in each target receptor area, with whiskers representing the range between minimum
and maximum values: (a) BMR, (b) WUN, (c) CUN, and (d) EUN.

14

(a) (b)

Figure 4. Comparison of the simulated and observed PM2.5 concentrations: (a) EANET stations and
(b) PCD stations.
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Table 1. Statistical metrics for the evaluation of the CMAQ model’s performance. Monthly average
values were used for calculation.

Monitoring Stations Parameter (Unit) Value

EANET

Mean CMAQ (µg/m³) 31.11
Mean obs (µg/m³) 27.76

r 0.68
NMB (%) 12.0
NME (%) 41.0

PCD
(BMR+Upper Northern)

Mean CMAQ (µg/m³) 29.7
Mean obs (µg/m³) 27.65

r 0.73
NMB (%) −8
NME (%) 11

PCD (BMR)

Mean CMAQ (µg/m³) 25.18
Mean obs (µg/m³) 26.28

r 0.78
NMB (%) −4
NME (%) 26

PCD (WUN)

Mean CMAQ (µg/m³) 29.53
Mean obs (µg/m³) 33.14

r 0.97
NMB (%) −11
NME (%) 22

PCD (CUN)

Mean CMAQ (µg/m³) 27.04
Mean obs (µg/m³) 30.27

r 0.86
NMB (%) −9
NME (%) 32

PCD (EUN)

Mean CMAQ (µg/m³) 28.47
Mean obs (µg/m³) 29.62

r 0.96
NMB (%) −4
NME (%) 21

3.2. Nation-by-Nation Contribution Assessment Results

Figure 5 shows the spatial distribution of the annual average and the March–April
average PM2.5 concentrations as simulated by the model. The figure clearly demonstrates
that the PM2.5 levels over Southeast Asia, particularly in Northern Thailand, Myanmar, and
Laos, were significantly higher during March and April compared with the annual average.
In Thailand, the model showed an annual average PM2.5 concentration of 20.1 µg/m³,
which increased sharply to 40.0 µg/m³ during March and April, nearly doubling. Compar-
ing these results with the input OBB emission data in Figure 2 confirmed that OBB was the
primary driver of this sharp increase in PM2.5 levels. During the intense burning period,
Laos experienced the highest PM2.5 concentrations, followed by Myanmar and Thailand,
which aligned with the previously described emission intensities. These findings highlight
the substantial impact of OBB during intense burning episodes, highlighting how these
activities significantly degrade air quality across the region during the dry season.

Figure 6 illustrates the spatial distribution of the annual contribution from OBB in each
target source country, while Figure 7 shows the spatial distribution of the contributions
during the intense burning period from March to April. Comparing these two figures
revealed that the PM2.5 levels from OBB in all target countries were significantly higher
during the March–April period compared with the annual average. This comparison
supports the conclusion that the sharp increase in PM2.5 concentrations during this time
was primarily driven by OBB, highlighting its crucial role in air quality degradation during
the peak burning season.
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Conc.
(µg m−3)

Conc.
(µg m−3)

(a) (b)

Figure 5. Spatial distribution of simulated PM2.5 concentrations: (a) annual average and (b) average
during the intensive burning period (March–April).

Figures 8 and 9 summarize the annual contributions from OBB and the contributions
from OBB during March and April, respectively, in each target source country. The con-
tribution assessment results for the BMR indicated that OBB contributed only 15.3% to
the annual average PM2.5 concentration. Compared with the Upper Northern Region,
where OBB was a significant contributor, its impact on the BMR was relatively minor in
comparison with other pollution sources. These results contradict those of a previous
study [83–85], which reported that OBB was the primary or secondary contributor to PM2.5
in the BMR, with contributions ranging from 20% to 40%. The differences in these find-
ings were likely due to differences in methodology. While those studies utilized receptor
modeling, which estimates source contributions at specific sites based on the chemical
analysis of air samples, this study employs an atmospheric chemical transport model. The
transport model enables a more comprehensive analysis across a larger spatial domain,
capturing both local and transboundary pollution. Furthermore, the previous studies were
limited to 2–4 specific urban and suburban sites, which may not fully account for regional
or transboundary contributions.

(b) (c)

(d) (e)

(a) Conc.
(μg/m³)

(f)

Figure 6. Average annual contribution of PM2.5 concentrations due to OBB in each target source country:
(a) Thailand, (b) Laos, (c) Myanmar, (d) Cambodia, (e) Vietnam, and (f) other countries.
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(b) (c)

(d) (e) (f)

(a) Conc.
(μg/m³)

Figure 7. Spatial distribution of PM2.5 from OBB in each target source country during March–April:
(a) Thailand, (b) Laos, (c) Myanmar, (d) Cambodia, (e) Vietnam, and (f) other countries.

Despite the relatively minor overall impact of OBB on the PM2.5 levels in the BMR,
the influence of transboundary transport remained significant, even when considering
the distance from international borders. Notably, domestic OBB accounted for only 2.5%
of the annual PM2.5 in the BMR, while transboundary transport contributed 12.7%, with
Myanmar being the largest contributor at 3.5%. During the intense burning period from
March to April, the contribution from OBB to PM2.5 in the BMR increased significantly
to 31.7%, of which only 4.7% was from local sources, while the remaining 27% was due
to transboundary transport, with Myanmar again being the most significant contributor
(12.3%). This highlighted that, although less pronounced than in the Upper Northern
Region, transboundary transport still significantly impacted the PM2.5 levels in the BMR
during peak burning periods.

For the Upper Northern Region, the contribution assessment results indicated that
OBB significantly impacted PM2.5 levels, contributing 43.0%, 29.9%, and 41.8% to the
annual PM2.5 concentrations in the WUN, CUN, and EUN sub-areas, respectively. During
the intensive burning period in March and April, these contributions increased to 61.9%,
48.1%, and 60.2%, respectively. Myanmar was the most significant contributor to PM2.5
levels in WUN, with contributions of 19.7% annually and 31.5% during the intense burning
period. For CUN, while Thailand was the largest contributor annually at 12.7%, Myanmar
became the most significant contributor during the peak months at 20.1%. In contrast,
Thailand was the major contributor to EUN both annually and during the peak months,
with contributions of 18.6% and 25.6%, respectively.

The results also revealed that transboundary transport had a greater influence on
PM2.5 levels in the Upper Northern Region than domestic burning, contributing 29.5%,
17.1%, and 23.1% annually in the WUN, CUN, and EUN sub-regions, respectively. During
the peak burning months, these contributions increased to 42.4%, 28.6%, and 34.6% in
WUN, CUN, and EUN, respectively. These findings were consistent with those of previous
research [20], which reported similar percentages of contributions from transboundary
transport in the provinces within the WUN and EUN sub-regions. However, for CUN, the
contribution percentages reported in this study were slightly lower, which was likely due
to differences in the modeling framework and emission inventories used. WUN and EUN
were more affected by transboundary transport due to their proximity to international
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borders, whereas CUN, being more centrally located, was primarily influenced by domestic
sources. Despite EUN’s proximity to Laos, the transboundary contribution from Laos
(10.5%) was secondary to that of domestic burning (18.6%). Although Laos had the highest
PM2.5 emissions from OBB, prevailing meteorological conditions caused the PM2.5 to be
dispersed eastward, away from the Upper Northern Region of Thailand.

Despite the valuable insights from this study, several limitations should be acknowl-
edged. First, the coarse spatial resolution of the model may reduce the accuracy of repro-
ducing the spatiotemporal variations in PM2.5, particularly in areas with complex terrain.
A finer resolution could provide a clearer view of pollution dispersion patterns. Second,
the lack of an up-to-date emission inventory for the study year required the use of older
data as a proxy, so year-specific variations may not have been captured. These limitations
emphasize the need for future research with improved spatial resolution and updated
emission data to better understand the contributions from OBB and other sources.

Figure 8. Annual nation-by-nation contributions from OBB to the PM2.5 concentrations in each target
receptor area: (a) BMR, (b) WUN, (c) CUN, and (d) EUN.

Figure 9. Nation-by-nation contributions from OBB to PM2.5 concentrations from March to April in
each target receptor area: (a) BMR, (b) WUN, (c) CUN, and (d) EUN.
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4. Conclusions

This study employed the Community Multiscale Air Quality (CMAQ) atmospheric
chemical transport model to assess the contributions of open biomass burning (OBB) from
target source countries to PM2.5 concentrations in the Upper Northern Region of Thailand
and the Bangkok Metropolitan Region (BMR). The Upper Northern Region was further
divided into three sub-regions based on geographical borders: West, Central, and East
Upper Northern (WUN, CUN, and EUN). The target source countries considered were
Thailand, Myanmar, Laos, Cambodia, and Vietnam. The CMAQ model was used to
simulate the spatiotemporal variations in PM2.5 concentrations throughout 2019 over a
wide Asian domain. Model performance was then evaluated by comparing the simulation
results with observed data from the Acid Deposition Monitoring Network in East Asia
(EANET) and the Thai Pollution Control Department (PCD). The model demonstrated a
strong ability to replicate the spatiotemporal variations in PM2.5 across the study domain,
with correlation coefficients of 0.68 and 0.73 for the EANET and PCD stations, respectively.
The Integrated Source Apportionment Method (ISAM) tool was then applied to quantify the
contributions of local OBB and transboundary transport from the target source countries.

The results from contribution analysis indicated that the overall impact of OBB on the
BMR was relatively minor compared with that of other pollution sources, which was likely
due to its urban setting. OBB contributed only 15.3% to the annual PM2.5 concentration
with Myanmar as the primary contributor. However, during the peak burning period from
March to April, the contribution increased to 31.7%, with the transboundary transport from
Myanmar remaining as the most significant contributor, accounting for 12.7%.

In contrast, OBB significantly impacted the PM2.5 levels in the Upper Northern Region,
contributing 43.0%, 29.9%, and 41.8% to the annual PM2.5 concentrations in the WUN, CUN,
and EUN sub-regions, respectively. These contributions increased substantially during
the peak burning period in March and April, reaching 61.9% in WUN, 48.1% in CUN,
and 60.2% in EUN. Among the contributors, Myanmar was the most significant source
of PM2.5 in WUN, contributing 19.7% annually and 31.5% during peak months. In CUN,
Thailand was the main annual contributor (12.7%), while Myanmar dominated during peak
burning (20.1%). In EUN, despite proximity to Laos, where OBB emissions are the highest
in the region, Thailand contributed the most, with 18.6% annually and 25.6% during peak
burning. The prevailing meteorological conditions caused PM2.5 from OBB in Laos to be
dispersed eastward, away from Thailand.

Overall, these findings highlighted that transboundary transport had a more signifi-
cant impact on the PM2.5 levels in Thailand than that of domestic burning and that regional
cooperation and comprehensive strategies are needed to effectively mitigate pollution.
This study’s limitations include the use of a coarse spatial resolution, which may have
affected the accuracy of PM2.5 simulations in complex terrains, and the reliance on older
emission inventory data. Future research employing higher spatial resolution and updated
emission inventories is essential for refining the understanding of contributions from OBB
and other sources.
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Abbreviations
The following abbreviations are used in this manuscript:

BMR Bangkok Metropolitan Region
CMAQ Community Multiscale Air Quality
CUN Central Upper Northern
EANET Acid Deposition Monitoring Network in East Asia
ERA5 ECMWF Reanalysis version 5
EUN East Upper Northern
FINN Fire Inventory from NCAR
GFAS Global Fire Assimilation System
GFED Global Fire Emissions Database
GMTED Global Multi-Resolution Terrain Elevation Data
HTAP Task Force for Hemispheric Transport of Air Pollution
ISAM Integrated Source Apportionment Method
MCIP Meteorology–Chemistry Interface Processor
MEGAN Model of Emissions of Gases and Aerosols from Nature
MODIS Moderate Resolution Imaging Spectroradiometer
NMB Normalized Mean Bias
NME Normalized Mean Error
OBB Open Biomass Burning
PBL Planetary Boundary Layer
PCD Pollution Control Department
PM2.5 Particulate matter with a diameter smaller than 2.5 µm
PMF Positive Matrix Factorization
PSCF Potential Source Contribution Function
REAS Regional Emission Inventory in Asia
SAPRC State Air Pollution Research Center
WACCM Whole Atmosphere Community Climate Model
WRF Weather Research and Forecasting
WUN West Upper Northern

Appendix A. Formulas for Model Evaluation Metrics

Pearson correlation coefficient (r):

r = ∑n
i=1(Oi − Ō)(Si − S̄)√

∑n
i=1(Oi − Ō)2 ∑n

i=1(Si − S̄)2
(A1)

Normalized Mean Bias (NMB):

NMB =
∑n

i=1(Si − Oi)

∑n
i=1 Oi

× 100% (A2)

Normalized Mean Error (NME):

NME =
∑n

i=1 |Si − Oi|
∑n

i=1 Oi
× 100% (A3)

where the following are denoted:

• Oi is the observed value for observation i;
• Si is the simulated value for observation i;
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• Ō is the mean of observed values;
• S̄ is the mean of simulated values;
• n is the total number of observations.
• NMB and NME are expressed as a percentage by multiplying the result by 100%.
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