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Abstract: The Brazilian Pantanal region experiences intense biomass burning during the dry season,
releasing large quantities of gasses and particles into the atmosphere, which have serious implications
on both the climate system and public health. Understanding the dynamics of these emissions is
crucial for mitigating the impact on the ecosystem, its functioning, and potential anthropogenic
disturbances. This study focused on analyzing emissions in the northern Pantanal during the 2022
drought. Concentrations of fine particulate matter (PM2.5), black carbon (BC), and 25 chemical
elements were measured using gravimetry, reflectance analysis, and X-Ray fluorescence, respectively,
from samples collected between August and October 2022. The average concentrations of PM2.5 and
BC increased approximately 4-fold and 2.5-fold, respectively, compared to averages from a decade
ago. Significant increases were also observed in elements such as sulfur (S), potassium (K), iron (Fe),
and silicon (Si). The maximum concentrations were comparable to values typical of the southern
Amazon, a region known for high deforestation rates and land use changes. Elemental analysis
revealed substantial shifts in concentrations, primarily associated with biomass burning (BB) and soil
suspension. Additionally, enrichment factor (Ef) analysis showed that lead (Pb) levels, correlated
with human activities, were 200 times higher than those found under clean atmospheric conditions.

Keywords: AOD; EDXRF; biomass burning; black carbon; soil suspension

1. Introduction

Atmospheric aerosols are solid or liquid particles suspended in the atmosphere, rang-
ing in size from approximately 0.001 to 100 µm. These particles play a critical role in the
climate system, and their high spatial and temporal variability represents one of the greatest
sources of uncertainty in Earth’s radiative balance [1,2]. These uncertainties stem from
a limited understanding of the physical and chemical properties of aerosols [3,4], which
can affect the climate both directly by scattering and absorbing solar radiation [5,6] and
indirectly by modifying cloud properties, thereby influencing precipitation efficiency [7,8]
and atmospheric reflectance.

Certain aerosols, such as those containing carbon and mineral dust, have a high
capacity to absorb radiation. Soot carbon particles, known as black carbon (BC), are emitted
by biomass burning (BB), composed almost entirely of carbon, and significantly contribute
to the absorption of solar radiation [9], influencing atmospheric stability [6]. BC emissions
result from various combustion processes, including biomass burning. The aging process
of BC alters its lifespan and removal rate, complicating our understanding of its true role
in the climate system [7]. While aerosols generally have a cooling effect on the climate,

Atmosphere 2024, 15, 1361. https://doi.org/10.3390/atmos15111361 https://www.mdpi.com/journal/atmosphere

https://doi.org/10.3390/atmos15111361
https://doi.org/10.3390/atmos15111361
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://orcid.org/0000-0002-8649-6865
https://orcid.org/0000-0002-6548-5729
https://orcid.org/0000-0002-3763-4467
https://orcid.org/0009-0006-6673-8640
https://orcid.org/0000-0002-7207-4450
https://orcid.org/0009-0009-0071-7822
https://doi.org/10.3390/atmos15111361
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos15111361?type=check_update&version=1


Atmosphere 2024, 15, 1361 2 of 14

counteracting the impact of greenhouse gasses, BC exerts a direct radiative forcing, making
it one of the key contributors to global warming [10].

In addition to the effects on the climate, emissions of particulate matter associated
with climate change have directly impacted the health of the population in every region of
the planet [11]. In Brazil, recent research has shown that biomass burning (BB) emissions
significantly worsen hospital records related to respiratory diseases [12]. Local studies
have also found a strong correlation between BB emissions and increased hospitalizations
of children due to respiratory illnesses [13], moreover, the association between meteoro-
logical conditions and aerosols increases viral transmission and the risk of mortality from
respiratory diseases [14,15].

In Brazil, several studies have characterized the physical and chemical properties of
aerosols in the central Amazon [5,16–20]. However, studies are still scarce in the south of
the Amazon basin [21]. This region, denominated as Pantanal Biome, is a unique ecosystem
with peculiar characteristics due to flooding regimes, rich in biodiversity, and providing
special conditions for monitoring the physical and chemical properties of aerosols. The
Pantanal is an excellent laboratory for monitoring aerosols, as during the rainy season it
can be representative of a practically clean atmosphere, under natural conditions. During
the dry season, as in other areas of South America and Brazil, it is strongly influenced by
emissions from biomass burning [22,23]. The concentrations of atmospheric aerosols in
the Pantanal northern region increase in the dry season. This is attached to anthropogenic
activities such as biomass burning, gold mining, and carriage [21].

The Pantanal is the largest contiguous wetland in the world [24,25]. Recent changes
in land use and atmosphere conditions contributed greatly to the unprecedented forest
fires recorded in the region, with approximately half of the area burned in 2020. This fire
season was responsible for more than 3.9 million hectares burned with diverse impacts on
the ecosystem, the hydrological cycle, and the economy [25–27]. The occurrence of the 2020
burning motivated this study, which aims to carry out a specific chemical characterization
of BB emissions in the Pantanal, now using the 2022 drought as a reference. The chemical
results were also complemented with surface remote sensing analyses from Aerosol Robotic
Network (AERONET) [28].

2. Materials and Methods
2.1. Study Site and Sampling

Aerosol samples were collected at the Base Avançada de Pesquisa do Pantanal (BAPP),
located 160 km south of the capital Cuiabá–MT, in the SESC Pantanal Park–Baía das Pedras
(16◦29′56′′ S, 56◦24′47′′ W), in the city of Poconé (Figure 1a), and close to the SESC Private
Natural Heritage Reserve (PNHR SESC). The Pantanal of Mato Grosso is located to the
north of the biome, the climate is classified as Humid Tropical with rainy summers and dry
winters, Aw in the Köppen–Geiger classification [26,27]. Climatological factors make the
Pantanal a unique ecosystem, such as the flat relief and seasonal rainfall dynamics, which
contribute to flooding part of the biome [21]. Considering only the cities of the Pantanal of
Mato Grosso, the annual precipitation mean is approximately 1360 mm [29].

Particulate matter with an aerodynamic diameter smaller than 2.5 µm (PM2.5) was
collected using 47 mm Teflon membrane filters, which captured aerosols after the aerody-
namic cut performed by the Partisol Model 2025i Sequential Air Sampler (Thermo Scientific,
Waltham, MA, USA), operating at a flow rate of 17 L/min−1 [30,31]. The sampling system
is illustrated in Figure 1b. Additionally, the system was automated, shutting down when
the flow rate dropped below 16 L/min−1. Due to the challenging accessibility of the collec-
tion site, each filter was sampled for 7 days or until the system automatically shut down.
Each sample was placed in a Petri dish, wrapped in aluminum foil, and stored in an inert
environment to prevent damage or contamination of the samples. Similar interference
conditions to those described in [19], such as vehicular traffic on a nearby road, may have
minimally influenced the sampling. Meanwhile, a complementary principal component
analysis (PCA) [32] revealed that all emissions could be explained by a single factor, rein-
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forcing that the characterization in this study pertains to PM2.5 emissions primarily from
biomass burning mixed with soil suspension. The collection campaign took place between
25 August 2022 and 14 October 2022 (2 months). Each filter represents a week average of
PM2.5 we have separated into seven analysis periods: P1 = 08/25 to 09/01, P2 = 09/02 to
09/08, P3 = 09/09 to 09/15, P4 = 09/16 to 09/22, P5 = 09/23 to 09/30, P6 = 10/01 to 10/07,
and P7 = 10/08 to 10/14. The period chosen for the sampling campaign, August to October,
covers the critical period of emissions for biomass burning in the study area [22,23].
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Figure 1. (a) Sampling site BAPP, Private Natural Heritage Reserve of SESC Pantanal–Baía das
Pedras, state of Mato Grosso, north of Brazilian Pantanal, (b) Representation of the sampling system
of atmospheric aerosol.

The samples were analyzed to determine the mass concentration of particulate matter
in the atmosphere by gravimetric measurement. Before weighing, the samples had their
static electricity removed by a U-shaped electrode (PRX U, Huang GmbH, Leinfelden
Echterdingen, Germany). The procedure consists of determining the filter mass before and
after sampling using an electronic microanalytical balance of nominal precision 1 µg (XP6U,
Mettler Toledo, Greifensee, Switzerland) in a controlled environment with a temperature of
20◦C and relative humidity of 50% [14]. The gravimetric method has an estimated precision
of 90%, and the detection limit for the aerosol mass concentration is 0.3 µg m−3 [29]. The
determination of BC concentration was carried out by optical reflectance analysis. The
smoke stain reflectometer (M43D, Evans Electroselenium Ltd., Harlow, UK), which uses
diffuse white light and a detector with a peak efficiency of around 550 nm, was calibrated
with standard BC samples. The data collected from the reflectometer measures is applied
to Equation (1) to determine the equivalent concentration of black carbon (BC) [33].

BC = [(88.3 − (77.5 × log R)) + (16.7 × (log R)2)] × A/V (1)

where R is the measured reflection, A is the filter area (in this case, 13.85 cm2), V is the
volume of air in m3, and BC concentration is given in µg m−3.

Elemental analysis was performed through Energy Dispersive X-Ray Fluorescence
(EDXRF) with a spectrometer (EDX-700HS, Shimadzu, Kyoto, Japan). The sample was irra-
diated from below with X-Rays. The fluorescence radiation is proportional to the quantity
of each element, so detecting each element’s energy condition allows for qualitative and
quantitative analyses. The calibration of the fluorescence equipment (Epsilon 5, PANalyt-
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ical, Almelo, Netherlands) can be found at [34]. Teflon filters were submitted to EDXRF,
and spectra were accumulated for 900 s under the following conditions: Al filter, vacuum
as X-Ray path, 10 mm diameter collimator, 10–20 keV energy range, 50 kV tube voltage,
an Rh X-Ray tube, and a Si (Li) detector [35]. The analysis determined the concentration
of 25 chemical elements (Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As,
Se, Br, Rb, Sr, Cd, Sb and Pb) in the samples. The elementary analysis made it possible to
calculate the mass concentration of the Dust, according to Equation (2), where each element
concentration is given in µg m−3 [30].

Dust = 1.16 × (1.90Al + 2.15Si + 1.41Ca + 1.67Ti + 2.09Fe) (2)

2.2. Complementary Measures and Methods

To complement the discussions, this work used records of fire outbreaks (FO) and the
sum of fire radiative power (FRP) from the National Institute for Space Research, INPE
over the Pantanal (available at: https://queimadas.dgi.inpe.br/queimadas/bdqueimadas
(accessed on 1 September 2024)) The measurements of air temperature (Ta), relative hu-
midity (RH), accumulated rain (AR), net radiation (Rn), and wind direction and intensity
were obtained from the BAPP meteorological tower observatory. Measurements from the
CUIABA-MIRANDA station of the AERONET network [28] were also used to obtain the
optical depth for the fine, coarse, and total fractions of the aerosol (version 3: SDA Retrieval
Level 2.0 data) [36]. The Spearman correlation was used to evaluate the relationships
between PM2.5 and BC concentrations with meteorological parameters and aerosol optical
depth (AOD) values with a significance level of 95% (p-value < 0.05).

To quantify the anthropogenic influence on elemental concentrations, we adopted
the enrichment factor (Ef) method, which quantifies the contribution of each element
to a crustal condition [37–39] in the case of our study for background conditions. The
enrichment factor (Ef) was calculated with Equation (3).

Ef = (X/Al)aerosol/(X/Al)background (3)

where (X/Al) aerosol and (X/Al) background refer to the ratio between the concentration of
element X for Al in the atmosphere and element X for Al in the average background mass,
respectively. Al is typically used as a reference because it represents more than 8 percent of
the average crustal material [37–39].

The average elemental composition for the central Amazon, as reported by Arana and
Artaxo [14], was used as the background elemental composition. Elements with Ef close
to 1.0 have a strong natural component while elements with high enrichment factors tend
to be of artificial origin [40,41]. These reference concentrations are justified by the unique
conditions of elemental concentration in the central Amazon during the rainy season.
Such conditions are closer to an atmosphere as clean as in non-anthropized areas [14].
Therefore, the Ef method highlights the anthropogenic influence on the composition of
atmospheric aerosols and provides a valuable parameter for gaining insights into the
sources of emissions.

3. Results and Discussion
3.1. Variations in PM2.5 and BC Concentrations

The variations in PM2.5 concentrations for the respective analysis periods are presented
in Figure 2 and detailed in Table 1. PM2.5 concentrations ranged from approximately
7 µg m−3 in period P4 to more than 80 µg m−3 in period P5, with an overall average of
36.62 ± 31.69 µg m−3. The variation value represents the standard deviation from the mean,
and each individual error in PM concentration is estimated at 10%, as cited in the methods.
The variations in the concentrations of black carbon (BC) and dust were also evident in
Figure 2, exhibiting a similar pattern to that of PM2.5. These results can be explained
by the meteorological patterns shown in Figure 3. Although the total analysis period is
classified as dry, precipitation was recorded in periods P4, P6, and P7. Figure 3A illustrates
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the relationship between accumulated precipitation and aerosol load in the atmospheric
column, revealing a distinct pattern of aerosol optical depth (AOD) compared to PM2.5
measurements at the surface. The total AOD measured at 500 nm is nearly equal to the
values for fine particulate matter at 500 nm (AODfine), which is characteristic of biomass
burning emissions. In this case, we observe an increase in AOD from periods P1 to P4,
followed by a significant reduction that reaches a minimum AOD in P6, with values close
to 0.4, which are typically found during the rainy season in this region [21].
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Table 1. Mean concentrations, standard deviations, minimums, and maximums associated with
PM2.5, BC, and elemental concentration for the entire study period (PM2.5 and BC are expressed as
µg m−3 and elements expressed as ng m−3).

Fine Particulate Matter BAPP Pantanal (Dry Season)

Mean Σ Min Max

PM 36.62 31.69 7.02 83.66
BC 1.83 1.65 0.37 3.72
Na 94.05 95.33 19.68 279.87
Mg 28.12 27.45 0.86 81.81
Al 167.60 113.47 53.82 377.72
Si 243.52 181.99 71.59 500.15
P 33.54 38.88 5.74 98.82
S 688.32 627.43 200.90 1693.09
Cl 2.19 3.13 0.05 8.55
K 582.71 524.06 106.69 1392.17
Ca 49.07 45.44 11.56 132.15
Ti 18.93 21.01 0.02 53.30
Cr 2.05 1.71 0.42 4.62
Mn 3.86 3.30 0.74 8.65
Fe 238.28 172.63 56.47 582.40
Ni 0.53 0.49 0.11 1.45
Cu 2.65 3.15 0.69 9.16
Zn 7.66 7.22 1.33 22.49
As 0.14 0.10 0.01 0.31
Se 0.12 0.16 0.00 0.45
Br 8.62 7.47 2.36 18.84
Rb 0.98 0.80 0.20 2.53
Sr 2.27 3.96 0.00 11.00
Cd 8.56 8.48 0.85 22.37
Sb 5.47 4.55 1.78 13.39
Pb 4.28 9.16 0.08 24.93

The variation in surface concentrations has different dynamics than the aerosol load
in the atmospheric column because wet deposition can act differently at each specific scale.
Nevertheless, the precipitation is not enough to extinguish the burning spots, which continue
to emit gases and particles that remain concentrated primarily in atmospheric regions closer
to the surface. Therefore, the concentration of PM2.5 in the dry period will directly depend on
the local burning and the influences of wind intensity and direction [37,42].

At a comparative level, the work of Santos et al. [19], carried out on the same site
and characterization techniques, found maximum PM2.5 concentrations ranging from 14 to
20 µg m−3 during the dry period of 2012. Our results show an increase of approximately
four times for the maximum concentrations of fine aerosols in the Pantanal. The work of
Artaxo et al. [43], south of the Amazon biome in a region directly affected by BB emissions,
found maximums varying between 300 and 350 µg m−3 in the 2010 drought. The study by
Santanna et al. [37], with measurements close to the urban area of Cuiabá, found maximum
values that varied between 50 and 60 µg m−3 in August 2004.

On average, PM2.5 concentrations for the central Amazon during the dry period
vary between 3.4 [43] and 4.8 µg m−3 [14]. For the south of the Amazon, in the arc
of deforestation, this average goes to 33 µg m−3 [43]. The average found in our study
approximates the PM2.5 concentrations of regions highly impacted by changes in land
cover due to deforestation [43,44]. It is important to note that the averages obtained in our
study are based on a relatively small sample size, and these average values could shift
with a higher frequency of sample collection. Nonetheless, the analyses reveal elevated
concentrations of PM2.5 during the dry period of 2022.

For BC concentrations, our results also show higher concentrations than Santos et al. [19]
in the Pantanal. For the 2012 dry period, BC maximums varied between 1.6 and 1.8 µg m−3,
while our results show maximums of 3.7 and 2.8 µg m−3 in periods P5 and P6, respectively.
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Recent work by Palácios et al. [21] also over the north of the Pantanal, with aethalometer
measurements, found daily values above 3 µg m−3 for the dry periods of 2017 and 2019,
years in which the Pantanal was also heavily impacted by local fires [23]. The mean for
BC in our results was 1.83 ± 1.65 µg m−3 while Palácios et al. [21] obtained 1.01 ± 0.95,
and 0.90 ± 0.81 µg m−3, for the years 2017 and 2019, respectively. These differences can be
justified by the differences in the methods of obtaining BC. Table 2 shows a comparison of our
results for PM2.5 and BC with other averages obtained for the Amazon in urban areas, both
containing aerosol carbon sources such as biomass and fossil fuel burning.

Table 2. Comparison of means and standard deviations of PM2.5 and BC (µg m−3) for different
regions in Brazil.

PM2.5 BC Local Period Reference

3.40 ± 2.00 0.23 ± 0.15 ZF2 Amazon Forest 2008–2012 Artaxo et al. [43]
33.00 ± 36.00 2.80 ± 2.92 PVH Amazon deforested 2009–2012 Artaxo et al. [43]
1.65 ± 0.92 0.09 ± 0.06 ZF2 Amazon Forest 2008 Arana and Artaxo [14]
7.60 ± 3.70 1.20 ± 0.80 Cuiabá 2004 Santanna et al. [37]
26.72 ± 14.20 2.27 ± 1.30 São Paulo 2019 Vieira et al. [35]
8.66 ± 3.14 0.76 ± 0.42 Pantanal 2012 Santos et al. [19]
-- 0.75 ± 0.83 Pantanal 2017–2019 Palácios et al. [21]
36.62 ± 31.69 1.83 ± 1.65 Pantanal 2022 This work

All information in Table 2 was extracted for the fine fraction of aerosols in the period
considered dry, that is, with the influences of BB emissions. The results show large varia-
tions between PM2.5 and BC values which can be explained by several factors, such as the
acquiring method, characteristic local emission, and the sampling period. Regarding the
sampling period, we highlight that for El Niño years, the central and northern regions of
Brazil are influenced by a precipitation deficit, causing an increase in the dry period result-
ing in larger burned areas and more emissions of aerosols. The study by Palácios et al. [42]
showed that for El Niño conditions, there is a significant increase in the aerosol load south
of the Amazon basin. The increase in BC concentrations found in this study may have a direct
influence on the local microclimate, giving positive feedback on temperature maximums [10].
The study by Curado et al. [45] in the Pantanal showed a positive correlation between BC and
temperature maximums with consequences for carbon capture.

3.2. Meteorological Influences

Figure 3 shows the average meteorological conditions for each period of analysis.
Although there is no direct relationship, it is possible to observe some relationships between
AODtotal, PM2.5, and BC concentrations. AODtotal values were above 0.4 in the initial five
periods and the third period presented the highest AODfine average, 0.93. We emphasize
that the AODfine is linked to the amount of fine optically active aerosols in the atmosphere,
therefore a good correlation with PM2.5 is expected. However, differences in the observed
patterns emerged across the analyzed periods. Between P1 and P2, AODfine and PM2.5
exhibited similar behaviors. In the P3 onward, surface concentrations decreased while
AODfine continued to increase. The patterns of air temperature and relative humidity
mirrored the surface measurements [44]. Air temperature gradually increased from P1
to P2 before declining in P3. These findings are consistent with the positive correlation
between BC concentration and maximum air temperature.

Figure 3B also shows the average behavior of the Rn. The behavior of Rn has no rela-
tionship with AODtotal or surface concentrations because this interaction is complex [44,46].
Blocking direct solar radiation, through scattering or absorption, can negatively influence
Rn, however, retention of this radiation in the atmosphere can increase the amount of
long-wave radiation, influencing Rn positively [45,47]. In general, more measurements in a
specific experimental design need to be developed in the Pantanal so that these feedback
processes are better understood. In this study, we justify the main variations in surface
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concentrations based on the number of burning spots that occurred during the analysis
period. Fire Outbreaks (FO) is a recurring problem in the Pantanal due to the environmental
impact and the damage to health they can cause [22,48]. During the dry season, fires are
constant as shown in Figure 4, and with the contribution of wind intensity and direction
(Figure 5), concentrations can still increase due to transport in the atmosphere [21].
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Our analysis shows that P1 obtained the highest value for FRP, reaching 16,711 W,
however, the distance from BAPP, FO (Figure 4), wind direction (Figure 5), and PM2.5
concentration (Figure 2) suggest low BB influence on collected samples. The largest PM2.5
peaks occur in the second, fifth, and sixth periods, with the values of FRP 3561, 8606, and
8961 W, respectively. Considering the position of the FO and the wind speed and direction,
the samples collected in these periods may have been directly influenced by regional forest
fires. Furthermore, period five (P5) presented the highest number of FO (Figure 4) and at
the same time the maximum dust concentration of 3.7 µg m−3 (Figure 2). When analyzing
the correlations between surface concentrations (PM2.5 and BC) with the other variables
used in this study, no statistically significant correlation was found. The similarity in the
variation of black carbon (BC) and dust concentrations suggests that aerosol composition
in the northern Pantanal during the dry season is a mixture of biomass burning and soil
resuspension. The PCA analysis confirmed that 99% of the emissions could be explained
by a single factor.

In addition, the wind intensity contributes to soil suspension. Crossed with other
factors such as land use and models of particle dispersion, it determines some aspects
of aerosol composition and their trajectory [36,49], however, this work is focused on
the characterization of PM2.5, thus a qualitative analysis of air conditions and elemental
concentration was enough. Despite this, the spatial and temporal variability of aerosols over
a long 1 week must influence the correlation between PM2.5 concentrations and the other
meteorological variables. Precipitation events should decrease the concentration of PM in
the atmosphere [50], such as the variation observed in P6 to P7. Nonetheless, the continuous
emissions of biomass and soil suspension could rapidly increase the concentrations of PM2.5,
BC, and Dust.

3.3. Elemental Concentration and Enrichment Factor

Figure 6 presents the most significant elemental concentrations observed during
the study period. In comparison with the study by Santos et al. [19], an increase in
the concentrations of sulfur (S), potassium (K), iron (Fe), and silicon (Si) is noticeable.
While the concentrations of Fe and Si are close to those measured in 2012, the maximum
concentrations of S and K were three times higher. Elemental concentrations follow the
same pattern as PM2.5 and BC concentrations with small variations for Si and Fe. For Si,
concentrations were the same in periods P5 and P6, while Fe suffered an approximate
reduction of 50% for the respective periods. The study by Santanna et al. [37] explains that
the increased concentrations of aluminum (Al), silicon (Si), and iron (Fe) during the dry season
are primarily linked to soil conditions, as these elements are characteristic of crustal material
and among the most abundant in Earth’s crust. During this period, arid soil, combined with
higher average wind speeds and minimal precipitation, transforms the soil into a significant
emission source, contributing to aerosol levels alongside biomass burning.

Although the factor analysis was limited by the sample quantity, the dominant ele-
mental concentrations still show a strong association with biomass burning emissions, with
additional contributions from soil resuspension [14,19,37,42]. In fact, 99% of the emissions
were attributed to a single factor that we identify as a mixture between BC and Dust. The
concentrations of Fe, S, and K can be a good indication of BB contribution. The classic study
by Andreae [51] highlights that the concentrations of K can be used as an indicator of fires
in the flaming phase. However, Urban et al. [52] highlight the limitations of using K as
a marker when studying soil resuspension emissions in fertilized areas.

For the heavy metals Pb and Cd, the averages found in our study were 4.28 and
8.56 ng m−3. In the case of Pb, the maximum concentration reached 24.93 ng m−3. This
peak value occurred in P5, and is six times higher than the average concentration for this
element (see Table 1). The presence of Pb may be related to anthropogenic factors, especially
mining activities that contaminate the soil with heavy metals and increase the suspension
of contaminated soil [52]. The dust compound, calculated from the concentration of the
elements Al, Si, Ca, Ti, and Fe (Equation (2)), is the main constituent of natural atmospheric
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aerosols. Annually, the Amazon receives a substantial load of dust from the African
continent, which transports tons across the Pacific Ocean [43,49]. In the Pantanal, land
use by agricultural activities, mining, and vehicle traffic is responsible for the suspension
of dust, which, depending on the composition of the soil, can pose health risks [19,53].
This work calculated the maximum dust concentration at 3.7 µg m−3, while in the study
by Morais [33] during the dry season at the Amazon Tall Tower Observatory (ATTO), the
maximum concentration was 1.4 µg m−3, highlighting that areas with greater concentration
of human activities promote greater soil suspension.
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Reference measurements from Arana and Artaxo [14] facilitated the determination of
the enrichment factor (Ef) for 17 elements, as illustrated in Figure 7. The results in Figure 7
show that for all evaluated elements, there is an anthropogenic contribution. For the fine
fraction of aerosols, BB emissions are responsible for the high values of K, S, Mg, and
Zn [29,54]. In this case, we highlight the Ef of K which was approximately 10 times higher
than the natural concentration. As for soil resuspension emissions, we have increases in Al,
Si, Ti, Fe, Ni, and Cu, which varied in elevations of 1.6 for Si and 12.8 for Cu (times higher).
The results also show that Pb was the most anthropic contribution element in the study
with Ef above 200 times the natural emission value, although its average concentration is
low (see Table 1). The results identified in this study are generally consistent with those
obtained by Santanna et al. [37], although the values are approximately 10 times higher for
most elements. The concentrations of Cl, K, and Br can be attributed to biomass burning,
while Fe, Cu, Zn, and Pb suggest anthropogenic emissions. This indicates that the region is
undergoing significant anthropogenic transformation, which may have serious implications
for the environment and public health. As previously mentioned, these transformations can
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be directly associated with mining activities that contaminate the soil with heavy metals
and increase the suspension of contaminated soil [49].
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4. Conclusions

In this study, the mass concentrations of PM2.5 and BC were determined through
gravimetric analysis and optical reflectance during the dry period of 2022 in the northern
Pantanal. Concentrations varied across the analyzed periods, reflecting local BB emissions.
The average concentration of PM2.5 was 36.62 ± 31.69 µg m−3, while BC had an average of
1.83 ± 1.65 µg m−3. These concentrations represent increases of approximately 80% and
60% for PM2.5 and BC, respectively, compared to those recorded a decade ago at the same
site. The elemental concentration of S, K, Fe, and Si has also increased significantly in the
last decade. In this study, the concentration of those elements reached 688.32 ± 627.43,
582.71 ± 524.06, 238.28 ± 172.63, and 243.52 ± 181.99 ng m−3, respectively. Additionally,
other elements such as Pb, with a maximum concentration of 24.93 ng m−3, and Cd, with a
maximum concentration of 22.37 ng m−3 indicate a worrying concentration. Furthermore, a
significant increase in heavy metals was found in the composition of aerosols. Notably, the
average concentration of Pb, which was the most significant constituent in the enrichment
analysis, exhibited values 200 greater than those typically observed under clear atmospheric
conditions. We also emphasized the enrichment factor values for Br and Cu. These
compounds indicate a strong anthropogenic contribution, primarily emitted by biomass
burning and gold mining. Environmental factors such as wind speed and low precipitation
values contribute to soil suspension as an aerosol source, indicating that aerosols emitted in
the dry season period are predominantly a mix of biomass burning and dust. The results,
both in terms of elemental composition and BC concentration over the 10-year interval,
indicate a shift in the regional dynamics of the Pantanal. We suspect that the increase in
anthropogenic activities in the biome in the last decade is responsible for this change in the
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concentration and composition of atmospheric aerosols in the Pantanal Mato Grosso and
we aim to explore this issue further in future research.
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