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Abstract: Quantitative precipitation forecast (QPF) verification stands out as one of the most
formidable endeavors in the realm of forecast verification. Traditional verification methods are
not suitable for high-resolution forecasting products in some cases. Therefore, the SAL (structure,
amplitude and location) method was proposed as a method of object-based spatial verification
that studies precipitation verification in a certain range, which is combined with factors including
structure, amplitude and location of the targets. However, the setting of the precipitation threshold
would affect the result of the verification. This paper presented an improved method for determining
the precipitation threshold using the QPF from ECMWF, which is an ensemble forecast model and
three-source fusion product that was used in China from 1 July to 31 August 2020, and then the results
obtained with this method were compared with the other two traditional methods. Furthermore,
the SAL and the traditional verification methods were carried out for geometric, simulated and
real cases, respectively. The results showed the following: (1) The proposed method in this paper
for determining the threshold was more accurate at identifying the precipitation objects. (2) The
verification area size was critical for SAL calculation. If the area selected was too large, the calculated
SAL value had little significance. (3) ME (Mean Error) could not identify the displacement between
prediction and observation, while HSS (Heidke Skill Score) was sensitive to the displacement of the
prediction field. (4) Compared with the traditional verification methods, the SAL method was more
straight forward and simple, and it could give a better representation of prediction ability. Therefore,
forecasters can better understand the model prediction effect and what needs to be improved.

Keywords: precipitation forecasting; verification; SAL; threshold; three-source fusion product

1. Introduction

The verification of quantitative precipitation forecasts (QPFs) remains one of the
most challenging aspects of weather forecast verification [1]. Precipitation forecasting is
particularly difficult due to the complexity of precipitation processes, including the spatial
and temporal variability of rainfall. Proper verification of these forecasts is crucial, as this
not only evaluates model performance but also provides insights into errors, such as their
sources and distributions. These insights help improve forecasting methods and models,
especially in terms of precipitation location and intensity [2,3].

In recent years, with the improvement of numerical modeling and prediction tech-
niques, the accuracy of weather prediction has improved steadily [4,5]. A good numerical
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prediction verification should not only quantitatively evaluate the performance of the pre-
diction, but also provide error information regarding the prediction and observation, such
as the source and distribution of the error [6,7]. The results from the forecast verification
could provide an effective reference for forecasters to improve their forecasting skills. This
was especially important for the location and intensity of precipitation forecasting [8].

Traditionally, a point-to-point verification scheme is the most commonly used method
for the verification of numerical predictions. The prediction of the model was usually
evaluated using statistical metrics, such as root mean square error (RMSE), bias (BIAS) or
probability of detection (POD), false alarm ratio (FAR) and frequency bias indicator (FBI)
scores. The RMSE and BIAS were sensitive to discontinuities, clutter and boundary values,
while the others were sensitive to the location of events [9,10]. The point-to-point method
works well in low-resolution model products, but for high-resolution model products, it
may underestimate the prediction accuracy. For example, point-to-point verification often
showed lower scores for precipitation and had a complex structure, and its scale was usually
less than 100 km. Although the results of this method are quantitative and objective, it was
very sensitive to the location and did not fully account for the complexity of precipitation in
terms of its location, intensity and structure [11]. In the high-resolution numerical model’s
predicted precipitation, the issue of misses and false alarms was particularly serious, which
was known as the “double penalty” issue [8]. This method also lacked direct verification of
the precipitation area shape, structure and location, which was exactly the problem that
needs attention when using the model predictions. Given the importance and the difficulty
of this, many spatial precipitation verification methods have been proposed.

The spatial verification techniques could generally be divided into four categories, in
which the techniques of neighborhood and scale separation could be described as filtering
methods, and the other two techniques of feature-based and field deformation could be
broadly thought of as displacement methods [12].

The most commonly used neighborhood methods include Upscaling [13], Minimum
coverage [14], Fractions skill score [15], etc., which have proved to be effective in improving
the “double penalty” phenomenon to some extent. One kind of scale decomposition
technology, intensity scale [16], was specifically useful for rainfall verification, which
provided a way of evaluating the forecast skill as a function of precipitation rate and spatial
scale, but the calculation process was more complicated.

The displacement method includes the field deformation method and object-based
feature verification [12]. The difference between the two methods was that the object-based
approaches analyze each feature separately, whereas the field deformation approaches
analyze the entire field.

The latest field decomposition method includes Keil and Craig’s improved method of
FQM (forecast quality measure), called DAS (displacement and amplitude score) [17], which
allowed false alarms to be handled correctly, whereas the FQM does not [17]. Similarly,
this kind of method comprises a large amount of calculation and can only give an overall
evaluation. At present, the commonly used object-oriented feature verification methods
include MODE (method for object-based diagnostic evaluation) [18,19], SAL (structure,
amplitude and location) [20], CRA (continuous rain area) [8], etc. These methods pay
attention to the differences in structure and location between prediction and observation
fields in a limited identification area. Some studies [21–25] showed that the CRA method has
high computational complexity, and the determination of relevant parameters of the MODE
method formula was highly subject [18,19,26], while the SAL method has more scientific
results, and the calculation process is relatively simple. SAL is a spatial verification method
developed by Wernli et al. [20] to assess high-resolution NWP precipitation forecasts. The
method evaluates three primary attributes of both observed and simulated precipitation:
(1) the amplitude A, which refers to the total precipitation across the domain; (2) the
location L, indicating where the precipitation occurs; and (3) the structure S, defining the
size and shape of the precipitation areas. Precipitation areas, also referred to as features,
are defined as contiguous regions where precipitation exceeds a specified threshold.
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SAL spatial verification technology [20] was applied to the verification of the precipita-
tion forecast in the Elbe River basin in Germany. This method belonged to the object-based
spatial verification method to study precipitation targets in a certain region. According to
its connectivity, the precipitation area in this region was divided into different precipitation
objects, which then could be combined to calculate the structure (S), amplitude (A) and
location (L) of the precipitation objects, and the value ranges for these components were
[−2,2], [−2,2] and [0,2], respectively.

The determination of precipitation objects was the basis for the accurate calculation
of SAL. Therefore, an appropriate threshold had a great impact on the calculation results.
Previous studies had shown that there were still some defects in the determination of
threshold; for example, the threshold determined by the precipitation body determination
scheme proposed by Wernli [20] was too large, and some of the main precipitation infor-
mation was ignored. Therefore, this paper will propose an improved SAL method and
compare this method with the original one and the traditional verification method as well,
so as to provide more accurate and objective error information for forecasters.

The data and the study area are presented in Section 2, including the SAL verification
method in detail and the improved strategy for threshold selection. Section 3 presents the
experimental results under geometric, simulated and real precipitation scenarios, compar-
ing these results with traditional verification methods. Finally, Section 4 summarizes the
main findings of this study and discusses potential future research directions.

2. Data and Methodology
2.1. Data Description

The data used were taken from the 24 h precipitation forecast results of the ECMWF
ERA5 ensemble forecast model (0.5◦ × 0.5◦) from 1 July to 31 August 2020, and the region
around China (70~140◦ E, 15~55◦ N) was selected as the analysis area. The parameter of
total precipitation of ERA5 was the accumulated liquid and frozen water, comprising rain
and snow. It was the sum of large-scale precipitation and convective precipitation and did
not include fog, dew or the precipitation that evaporates in the atmosphere before it lands
on the surface of the Earth.

The gridded observation, developed by the National Meteorological Information
Center [27], was a three-source fusion precipitation product with a spatial resolution of
5 km and temporal resolution of 1 h, which used the Bayesian fusion method to ingest
the regional ground rainfall observation (more than 30,000 stations in China), the high-
resolution QPE product from radar and satellite-retrieved precipitation.

Then, the EC precipitation field and the observation field were interpolated into a
specified resolution as 0.25◦ for analysis. This is done to ensure that the number of grid
points in the observational field matches that of the EC precipitation field. Secondly,
normalization is performed, which means unifying the length of effective precipitation
values in both the observational field and the EC precipitation field. For grid points without
observational precipitation data, the model forecast values are set as missing, thereby
unifying the meaningful data range of both observations and forecasts. This ensures that
all data participate in the verification in the same format and within the same non-missing
data range. The numerical forecast and the observational field are shown in Figure 1.
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Figure 1. Precipitation accumulation over 24 h. from (a) numerical forecast and (b) observation at 
08:00 on 14 July 2020, UTC. 
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Figure 1. Precipitation accumulation over 24 h. from (a) numerical forecast and (b) observation at
08:00 on 14 July 2020, UTC.

2.2. Methods
2.2.1. SAL Metrics

SAL is a kind of object-oriented verification method. Based on the distribution, and
according to certain criteria, the precipitation within the forecasted and observed areas
is divided into different precipitation components (main objects and individual objects).
Then, the forecast of the main/individual precipitation objects is verified based on three key
forecast elements: amplitude (A) or intensity, location (L) and structure (S). Among these,
the A value reflects the deviation between the forecasted and observed main/individual
precipitation objects; the L value typically measures the distance between the centroids of
the forecasted and observed main precipitation objects, as well as the distance between the
centroid of each individual object and the center of the main object; the S value comprehen-
sively reflects the deviation of central values and sizes of all individual objects between the
forecasted and observed precipitation. The final verification results are three values for S,
A and L, with ranges of [−2,2], [−2,2] and [0,2], respectively. When all three values become
0, it indicates the best forecast performance. This method needed to identify precipitation
objects and an area D (referring to the area that was connected and the grid point with
values that were bigger than the threshold), and then to describe the amplitude, location
and structure of all precipitation objects. Similar to the CRA method, three components
were given to represent objects of interest, but compared with the CRA method, it did not
need to match each precipitation object in the region one-to-one, and the operation was
relatively simple. This method can not only avoid the “double penalty” phenomenon, but
also enable forecasters to understand the essential differences between forecasting and
observation in terms of structure, location and amplitude.

a. Structure (s)

S =
V(Rmod)− V(Robs)

0.5[V(Rmod) + V(Robs)]
(1)

where V(R) = ∑m
n=1 Rnvn

∑m
n=1 Rn

, Vn = ∑(i,j)∈Rn Ri, j/Rmax
n = Rn/Rmax

n .
Ri,j represents the precipitation at grid point (i, j), Rmax

n represents the maximum
precipitation within object n, Rn represents the total precipitation within object n, Vn is the
ratio of the total precipitation to the maximum in the nth object, and V(R) is the weighted
average of Vn. When S is negative, it means that the region of predicted precipitation is
relatively small or the precipitation center value is significantly larger than the surrounding
areas, or the two conditions exist at the same time, and vice versa.

b. Amplitude

A =
D(Rmod)− D(Robs)

0.5[D(Rmod) + D(Robs)]
(2)
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where D(R) represents the average value of all grid points in the selected area (Rmod
represents the prediction field and Robs represents the observation field). A is in the
range of [−2,2], A = 0 indicates that the prediction effect was optimal, A > 0 shows that
the prediction amplitude was bigger than the observation, and A < 0 indicates that the
prediction amplitude was lower than the observation.

c. Location

This component consists of two parts, i.e., L = L1 + L2. L1 represents the normalized
result of the distance between the gravity centers of the observation and the prediction field:

L1 =
|x(Rmod)− x(Robs)|

d
(3)

where x(Rmod), x(Robs) represents the gravity center of prediction, the observation field in
region D, and d represents the maximum distance between valid precipitation grid points
in region D. The range of L1 was [0,1], L1 = 0 indicates that the gravity center of prediction
is overlapped with the observation field, and the prediction is perfect. However, even if the
precipitation fields are completely different, the gravity centers may be similar. For this
reason, another parameter L2 was introduced to account for the average distance between
the gravity center of the overall objects and each individual precipitation, as follows:

L2 = 2 ∗ |r(Rmod)− r(Robs)|
d

(4)

where r = ∑m
n=1 Rn ·|x−xn |

∑m
n=1 Rn

Rn = ∑(i,j)∈Rn Ri,j.
m is the number of individuals in the region, and Rn is the total precipitation of the nth

individual, which is the weighted average of the distance between each individual object
and overall objects. The significance of r was that the larger the total precipitation of the
individual, the farther it was from the gravity center of overall precipitation objects. The
value of L2 is in the range of [0,1], and the L value is in the range of [0,2]. Therefore, we can
obtain a perfect match when both L1 and L2 are equal to 0. The closer L is to 0, the better
the prediction is.

2.2.2. Threshold Determination Scheme

It was critical and skillful to determine the objects of interest for a reasonable verifica-
tion according to a specific rainfall threshold. A bigger threshold would reduce the size of
precipitation objects, while a smaller threshold would introduce more weak precipitation
areas [28,29]. The key to the SAL method is the identification of precipitation areas and
individual precipitation entities; thus, the determination of the precipitation threshold is
particularly important [30,31]. Therefore, an appropriate threshold is a key step to deter-
mine the precipitation area and calculate SAL accurately [32]. Wernli initially took 1/15
of the maximum precipitation in the verification area as the threshold; this value is an
experienced value, i.e., it is found to be appropriate through testing. When the maximum
precipitation has extreme or abnormal values, the threshold will be too big. This kind of
threshold determination scheme (simply abbreviated to TS1) has obvious disadvantages,
as shown in Figure 2a.

The precipitation events were verified in the Yangtze River by Ying Gong [23], which
has been improved on the basis of Wernli. The precipitation value at each point has been
put in order. A threshold can be determined then by multiplying the value at the index
which is at the 95th percentile by 1/15. This method is marked as TS2, as shown in Figure 2b.
But this approach suffers from significant drawbacks that there were too many smaller
precipitation values and the determined threshold would be significantly smaller, which
could lead to the introduction of many small and dispersed weak precipitation areas [33].

Because of the defects of the two methods mentioned above, an improved method has
been proposed. Firstly, we put the precipitation values in sequence order. The grid points
with precipitation values of 0 in the convective precipitation area account for the majority.
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Smaller precipitation values will introduce many small and dispersed weak precipitation
areas. Here, we remove the grid with precipitation less than 0.1 mm. Then, a threshold
could be determined by multiplying the value at the index which was at the 95th percentile
by 1/15. The grid point with values that are bigger than this threshold was the object in the
area of interest, which is marked as TS3, as shown in Figure 2c.
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Figure 2 shows the precipitation objects (accumulated rainfall in 24 h) determined by
three threshold schemes using the ECMWF ERA5 model data around China at 08:00 on 1
July 2020 (UTC) in (a) to (c).

The three schemes were used to calculate the accumulated precipitation threshold
in 24 h from 08:00, 1 July to 31 August 2020. The results (calculated every 24 h and
averaged every four days) are shown in Figure 3. It could be observed that the threshold
determined by TS1 was much bigger than the others, and precipitation objects with potential
increasement would be lost. The threshold determined by TS2 was the smallest, and weak
precipitation areas were reserved. Using TS3, more reasonable precipitation areas could be
extracted, which not only retained the features with severe rainfall that need to be focused
on, but also removed the weak sporadic precipitation, as shown in Figure 3.
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August 2020.

The identified precipitation objects were similar by thresholds calculated by TS2
and TS3, which could well reflect the shape of the precipitation area. However, TS2
easily introduce small and dispersed precipitation areas, while the precipitation objects
determined by TS1 were not reasonable. The forecasting results (accumulated rainfall
in 24 h), which were calculated by S, A and L from ECMWF at 08:00 2 July 2020, are
shown in Figure 4, in which parameter A from the three schemes was consistent, the S
and L calculated by TS1 were negative and slightly larger, respectively, while the S and
L calculated by TS2 and TS3 differ little, indicating that the results of these two methods
were similar. Therefore, the threshold calculated by TS3 was selected for analysis.
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2.2.3. Traditional Verification Metrics
Mean Error (ME)

The average error was defined as the average value of the difference between all grid
points of observation and prediction:

ME =
1
N ∑

(i,j)∈D
[Rmod(i, j)− Robs(i, j)] (5)

where N is the number of grid points in region D, and R(i,j) is the value of grid points for
observation or prediction. When ME was 0, it indicated perfect prediction. Positive or
negative ME indicated overestimation or underestimation.

Root Mean Square Error (RMSE)

Root mean square error was defined as follows:

RMSE =

√√√√ 1
N ∑

(i,j)∈D
[Rmod(i, j)− Robs(i, j)]2 (6)

The root mean square error was positive, and its value was 0 in a perfect prediction.

Frequency Bias Index (FBI)

The FBI was based on a contingency table, which corresponds to the ratio of the
predicted number to the observed number:

FBI = (a + b)/(a + c) (7)

where a is hit, b is false alarm and c is miss. The FBI range is 0 to infinity; 1 indicated perfect
prediction, and greater than or less than 1 indicated overestimation or underestimation.

Heidke Skill Score (HSS)

The HSS was also based on a contingency table:

HSS = 2(ad − bc)/[(a + c)(c + d) + (a + b)(b + d)] (8)

where d is correct negative, HSS range is [0,1], 1 is the perfect score, 0 means no skill and
HSS represents the proportion of correct prediction after eliminating the correct prediction
due to random opportunities.
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3. Experimental Results
3.1. Geometric Cases

By simplifying complex precipitation distributions into geometric shapes (such as
ellipses), it becomes easier to isolate and study specific properties such as amplitude,
structure and location. This helps in breaking down complex systems into more manageable
components for analysis. Figure 5 shows four idealized precipitation objects, which were
labeled as G0 to G3. The objects in dark gray denote more intense precipitation, and the
surrounding light gray indicates weak precipitation. Compared to object G0, the amplitude
and structure of G1 and G2 were almost equal. The center of G1 was located 40 grid points
east of G0, with only a difference in displacement. The center of G2 and G3 were shifted
40 grid points to the right from G0, and they had a larger rainfall area and different aspect
ratio. Details of these objects are shown in Table 1. x, y represent the number of grid points
from the center of the ellipse to the horizontal and vertical axis, respectively. Table a and b
represent the major and minor axes of the ellipse, respectively.
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Table 1. Several types of ellipse parameters defined.

Precipitation Object x y a b Aspect Ratio a/b

G0 50 30 25 5 5
G1 50 70 25 5 5
G2 50 70 25 15 1.67
G3 50 70 25 45 0.56

Table 2 showed SAL of several elliptical precipitation areas and the values of traditional
verification metrics ME, RMSE, HSS and FBI. In the comparison of G0 and G1, it is assumed
that G0 was the observation field and G1 was the prediction field, their shape and amplitude
were equal and there was eastward displacement relative to the observation field, resulting
in S and A being 0 and L being 0.266. In the traditional verification score, ME was 0
because the positive and negative offset each other. Therefore, ME could not identify the
displacement of prediction and observation. In addition, the FBI was close to 1, indicating
that the forecast was perfect, but there were differences in positions. The score of HSS was
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equal to 0, which indicated no skill. Therefore, the FBI and HSS metrics were not enough
to represent their prediction effect. This case showed that there was diversity in quality
assessment when using traditional verification metrics, that is, the prediction was described
as perfect by the ME and FBI metrics, and although RMSE was not perfect, its value was
very small, while HSS indicated no skill. On the contrary, SAL provides more valuable
information, that is, the amplitude and structure of model prediction had a perfect score of
0, and there was a certain displacement.

Table 2. SAL and traditional ME, RMSE, HSS and FBI for idealized elliptical precipitation objects.

S A L ME RMSE HSS FBI

G0 vs. G1 0 0 0.266 0 8.268 −0.030 1
G0 vs. G2 1 1 0.258 2.080 11.616 −0.050 3.047
G0 vs. G3 1.60 1.600 0.261 8.308 17.345 0.048 9.166
G2 vs. G3 1 1 0.004 2.077 8.137 0.469 3.047

For the comparison of G0 and G2, and G0 and G3 (in both cases, G0 was taken as
the observation field), the predicted precipitation area moved eastward relative to the
observation, and there was a difference in shape. This feature was captured by SAL,
resulting in L > 0 and S > 0. The traditional verification metrics tend to have poor prediction
effects, especially G0 and G3, with the largest being ME, RMSE and FBI, and HSS tends
to be 0. However, to some extent, the forecast effect was not as bad as indicated in the
traditional test scores. The reason for the poor scores of G0 and G3 evaluated by traditional
verification metrics was that metrics such as ME, RMSE and FBI were very sensitive to
the area of precipitation. If there was no overlap between the forecast and the observation
field, the scores calculated by traditional methods were poor. According to the evaluation
of SAL, G0 and G1 had the worst prediction in terms of location, while G0 and G2, and G0
and G3 had the worst prediction in terms of amplitude and structure.

In the comparison of G2 and G3, as we can see, component L and HSS had the
best ideal values relative to the other four comparisons. This was due to the center of
gravity being closed. Their S and A parameters indicate that G3 overestimates the size
and amplitude of the precipitation area, which was consistent with the results obtained by
ME, RMSE and FBI. When there was no displacement error or the displacement error was
small, the traditional scores were more accurate. When the displacement error was large,
there was a contradiction between the scores of the traditional methods and SAL methods.
Therefore, the HSS metric was very sensitive to the displacement of the prediction field, and
when the observation and prediction overlapped, the HSS value was positive; otherwise, it
was negative.

3.2. Simulation Cases

In this paper, the 24 h cumulative precipitation reported from 08:00 on 19 July 2020 is
selected as the actual field, marked as F0, as shown in Figure 6a. Three different treatments
are made for the actual field as the prediction field: F1 (move F0 to the southeast), F2
(move F0 to the southeast and multiply it by 1.5 times: F2 = 1.5 × F1) and F3 (move F0
to the southeast and reduce each grid value by 1.27 mm; if the grid value is negative, it
is 0, i.e., F3 = max [0, F1–1.27 mm]). The three simulated precipitation fields are shown in
Figure 6b–d, in which the red outline represents the area determined by TS3. This paper
will compare the results of these three artificial simulation prediction fields.

This showed that the precipitation areas identified by F0, F1 and F2 were identical,
because F1 was obtained by F0 displacement, while F2 was obtained by displacement and
linear transformation. However, some precipitation areas would be moved out of the study
border during displacement. Therefore, although the precipitation distribution was the
same, the values of S and A were not 0. The results of SAL and the traditional inspection
index of F0 and F1, F0 and F2, and F0 and F3, respectively, are shown in Table 3.
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Table 3. SAL value of simulated precipitation area and traditional ME, RMSE, HSS and FBI.

S A L ME RMSE HSS FBI

F0 vs. F1 0.044 −0.045 0.030 −0.235 15.983 0.515 0.900
F0 vs. F2 0.956 0.353 0.213 2.316 21.047 0.513 0.879
F0 vs. F3 −0.219 −0.406 0.071 −1.821 15.929 0.368 0.481

In the comparison of F0 and F3, F3 reduces each grid point by 1.27 mm compared with
F0, so the value of A becomes negative, which was −0.406. The structural component S
was also negative, which was due to the obvious reduction in precipitation areas when
the value of each grid point decreased to 1.27 mm. The phenomenon that the grid value
decreases R0 and the precipitation areas decrease significantly showed that the center of the
precipitation area comprised strong precipitation, while the surrounding area was widely
distributed with weak precipitation, and the precipitation intensity changed significantly
in a certain area. This kind of precipitation was usually convective precipitation, while
the precipitation with uniform distribution and insignificant change in a certain area was
usually stratiform precipitation, as shown in Figure 7.
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3.3. Real Cases

In this section, the 24 h cumulative precipitation areas in three time periods were
selected for analysis, at 08:00 on 23 July 2020, 08:00 on 24 July 2020 and 20:00 on 25 August
2020. The main purpose of this study was to analyze the importance of region size selection
when calculating SAL.

Firstly, SAL was applied to the whole China region. Each observation and prediction
field has a main precipitation area and multiple small precipitation areas. The SAL values
and traditional verification scores of the overall area (Figure 8), main area and local area
(Figure 9) were calculated. The results are shown in Table 4. They showed that the forecast
at 20:00 on 25 August 2020 had the smallest absolute values of S, A and L, and the effect
was the best compared with the other two. For the overall prediction, the S was positive,
indicating that the predicted precipitation area was greater than the actual precipitation
area. In the main area, the S was also positive, because the maximum values in the overall
and main precipitation areas were the same, resulting in the same precipitation threshold,
so the identified precipitation areas were also similar. In the local area, the S value becomes
negative, because it could be concluded that the small precipitation area had little effect on
the overall S value.

In the overall, main and local areas, the main difference was the change in the L value.
With the decrease in the area, the L value gradually increased, which was caused by the
decrease in d in Formula (2).

Therefore, it was more meaningful to apply SAL to a limited area, because there
were many different precipitation systems in a large overall area, and their formation
mechanisms were different. If SAL calculation was carried out in a large range, it was of
little significance.

Table 4. SAL values and traditional ME, RMSE, HSS and FBI values of precipitation areas in
actual cases.

Region S A L ME RMSE HSS FBI

2020072408 overall 0.216 −0.125 0.237 −1.632 17.548 0.328 1.125
2020082520 overall 0.181 −0.043 0.124 −0.896 18.823 0.549 1.265
2020072308 overall 0.196 −0.145 0.275 −1.418 17.417 0.416 1.227
2020072408 main 0.105 −0.015 0.330 −1.289 19.968 0.340 1.407
2020082520 main 0.459 −0.463 0.181 −4.950 24.680 0.608 1.006
2020072308 main 0.178 0.094 0.276 −1.647 21.379 0.408 1.313
2020072408 local −0.866 −1.027 0.338 −5.157 15.081 0.362 0.518
2020082520 local −0.188 0.324 0.190 1.343 6.194 0.462 1.153
2020072308 local −0.863 −1.292 0.284 −11.614 23.096 0.429 0.443
2020083120 local 0.673 −0.073 0.215 0.976 36.620 0.156 1.643
2020082908 local −1.150 −0.683 0.138 −14.139 39.592 0.298 0.454

Figure 10 shows the prediction results of two models with the maximum RMSE. The
RMSE had reached more than 30. However, the prediction quality of the two prediction
results was very different. The difference in prediction quality can be seen intuitively from
Figure 10. At 20:00 on 31 August 2020, there was a precipitation area in the southeast coastal
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area of China. It can be seen from Table 4 that it was mainly the difference in structure (S)
and location (L). It can be seen from Figure 10 that the prediction field was much larger than
the observation field, the center of gravity of the two precipitation fields also had a large
displacement and the prediction center of gravity moves to the southeast, compared to the
observation. At 08:00 on 29 August 2020, the error mainly comes from the structure (S) and
strength (A). The prediction field was smaller than the observation field, and the amplitude
was weaker than the observation field. Therefore, although the two had similar RMSEs, the
error sources were different. In the first example, the “double punishment” phenomenon
was caused by the precipitation target displacement, while in the second example, the
RMSE value was too large due to the underestimation of precipitation intensity, which
highlights the importance of SAL evaluation and was more meaningful than traditional
verification metrics.
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Figure 8. Cumulative precipitation over 24 h. at 08:00 on 23 July (a), 08:00 on 24 July (c) and 20:00 on
25 August 2020 (e). The left is the observation field (a,c,e), and the right is the forecast field (b,d,f).
The red outline is the precipitation threshold, the red cross is the center of gravity of the precipitation
field, and the yellow box is the main body and local area.
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Figure 9. Accumulated precipitation in local areas at 08:00 on 23 July (a), 08:00 on 24 July (c) and
20:00 on 25 August 2020 (e). The left is the observation field (a,c,e), and the right is the forecast field
(b,d,f). The red outline is the precipitation threshold, and the red cross is the center of gravity of the
precipitation field.
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4. Conclusions

This paper proposes a new precipitation target determination method based on the
SAL spatial verification method, and this method was used to analyze virtual geometric
cases, simulations cases and real 24 h cumulative precipitation from July to August 2020.
We explored the differences and advantages between the SAL test method and traditional
verification metrics. The results show that, compared to traditional verification metrics
such as ME (Mean Error) and RMSE (root mean square error), the SAL method can more
intuitively reflect the differences between forecasts and observations in terms of structure,
intensity and location. In particular, when dealing with the “double penalty” problem
in high-resolution precipitation forecasts, the SAL method demonstrates significant ad-
vantages. Compared to previous research by Wernli et al. [21], our improved threshold
method can more accurately identify the main precipitation regions, thereby improving
the precision of precipitation object identification. From this study, the main conclusions
drawn are as follows:

(1) The key step in the SAL spatial verification method was the identification of the
precipitation body. By comparing three threshold determination schemes, the thresh-
old determination method proposed in this paper could identify the main body of
precipitation more accurately and effectively.

(2) The traditional ME metric could not identify the displacement between prediction
and observation, while the HSS index was very sensitive to the displacement of the
prediction field, and when the observation and prediction overlap, the HSS value was
positive; otherwise, it was negative.

(3) Structure component S could be used as a metric to judge whether precipitation is
convective and stratiform precipitation. Generally speaking, when the smaller value
R0 is subtracted from the grid value of the precipitation area and S changes greatly
and is negative, the precipitation area is convective precipitation, and vice versa.

(4) Regional selection was very important for SAL calculation. If the regional selection is
too large, there may be multiple precipitation systems in the region, and the formation
mechanism may be different. The calculated SAL value had little significance.

(5) Compared with the traditional verification metrics, the SAL verification method was
easy to calculate and operate, and could better reflect the model prediction ability, so
forecasters could better understand the model prediction effect and what needs to
be improved.

(6) Since this study only used summer data for verification, it can only reflect the superi-
ority of the SAL method in precipitation forecasting for this season, which has certain
limitations. To more accurately understand the forecasting performance in other sea-
sons, further verification work will continue to be conducted in the future, providing
more references for forecasters. Our findings also emphasize that the interpretation
of SAL must be specific to the chosen threshold and field. For instance, utilizing a
larger domain diminishes the impact of the L component since object displacements
are normalized by the diagonal length of the domain.

The SAL verification method could not only quantitatively analyze the prediction
performance of QPF, but also reflect the physical parameters of the model from different
aspects. In terms of artificial weather influence, it was necessary to obtain the evaluation
of intensity, location and operation area after operation. From this perspective, SAL will
apply the effect evaluation of artificial weather modification in the future, which can not
only obtain quantitative evaluation parameters, but also reflect the changes in physical
parameters inside the cloud cluster.

The contribution of this study to the spatial verification of quantitative precipitation
estimation (QPE) lies in proposing an improved threshold selection method that can more
accurately identify the main precipitation regions and reduce the misjudgment of weak
precipitation areas. By applying the SAL method to different geometric, synthetic and actual
precipitation scenarios, it demonstrated its effectiveness in mitigating the “double penalty”
problem in high-resolution forecasts. The study compared the performance differences
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between traditional verification methods and the SAL method, revealing the limitations
of traditional metrics such as ME (Mean Error) and RMSE (root mean square error) in
high-resolution precipitation forecasting. It provides forecasters with a more intuitive tool
to understand the performance of forecast models, especially under complex terrain and
diverse precipitation structures.
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