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Abstract: Water consumption forecasting is a critical aspect of the increasingly strained water re-
sources and sustainable water management processes. It is essential to explore the current status
of water use patterns and future development directions in Zhangye City. In this study, 17 factors
affecting water consumption in Zhangye City were selected to analyze changes in water consumption
and to predict values from 2003 to 2022, utilizing the entropy weight–VIKOR model and the grey
neural network model. The results indicate that agricultural water consumption and annual rainfall
are the factors with the largest weights among the social and natural attribute indicators, respectively,
significantly influencing water consumption in Zhangye City. As the proportions of water consump-
tion for forestry, animal husbandry, fishery, livestock, urban public use, and ecological environment
increase, while agricultural water consumption continues to decline, the overall water consumption
trend in Zhangye City from 2003 to 2022 shows a positive trajectory. Each water consumption factor
is tending toward greater balance, and the relationship between water supply and distribution is
improving. The multi-year average relative error of the water consumption predictions for Zhangye
City from 2003 to 2022 using the grey neural network model was 4.28%. Furthermore, the relative
error values for annual predictions ranged from 0.60% to 5.00%, achieving an accuracy rate of 80.00%.
This indicates a strong predictive performance. Ultimately, the model was used to predict a water
consumption of 20.18 × 108 m3 in Zhangye City in 2027. The model can serve as a theoretical
reference for short-term water consumption forecasting and for establishing a basin water resource
allocation system in Zhangye City.

Keywords: water consumption prediction; grey neural network; entropy weight–VIKOR model;
Zhangye City; attribution analysis

1. Introduction

Rapid urbanization has led to a dramatic increase in water consumption across vari-
ous sectors. However, the limited availability of water resources, coupled with the need
for rational planning and sustainable management, presents a significant challenge to
socio-economic development [1,2]. Effective management of water resources and accurate
prediction of water demand are crucial not only for ensuring the safety of urban water
supply but also for the optimal allocation and efficient use of these resources [3–5]. Nonethe-
less, water usage is influenced by a multitude of factors, including population changes,
economic development status, industrial activities, and climatic conditions. The complexity
and uncertainty inherent in these factors complicate the forecasting of water use [6,7].
Common methods for water use forecasting include time series analysis [8], statistical
modeling [9], and machine learning [10]. Among these, grey system theory is a theoretical
method used to solve the problem of incomplete and uncertain information, by generating
a regular sequence of data to reveal the inner connection and development law of things.
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As a valuable mathematical tool for addressing small sample sizes and unbalanced data,
this offers distinct advantages in water use prediction [11]. The grey neural network model,
which integrates the robustness of grey system theory with the self-learning capabilities
of artificial neural networks, is particularly effective in managing the non-linearity and
uncertainty present in urban water use systems [12,13]. For instance, Wang et al. [14]
demonstrated that the combination of the grey prediction GM(1,1) model and the Elman
neural network yielded relative prediction errors of less than 3.5% when forecasting water
consumption in Nanjing, thus enhancing the model’s accuracy. Furthermore, the grey
neural network model has also been successfully applied in predicting geological disasters;
for example, Yue et al. [15] found that the grey BP neural network model provided more
accurate predictions of landslide displacement values. As a data-driven prediction tool, the
grey neural network model has shown its powerful prediction ability in many fields, but
its integrated application in water resources prediction is still underexploited.

Zhangye City is traversed by the Heihe River, with river runoff, primarily consisting
of meltwater from the snowy mountains, serving as the main source of regional water
supply. As a significant city in the western part of the Hexi region of China, the sustain-
able utilization of water resources in Zhangye City is essential for ensuring the economic
and social development of the area. According to statistics, the annual water supply for
Zhangye City in 2022 was projected to be 19.43 × 108 m3. Of this total, 14.08 × 108 m3

was sourced from surface water, accounting for 72.46% of the overall water supply [16,17].
Additionally, the annual water consumption is expected to match the water supply. Rapidly
changing socio-economic conditions complicate the relationship between water use and
supply, making effective water resource management a critical component of sustainable
development in Zhangye City. However, the interplay of natural conditions and human
activities results in a complex and variable water demand in the city, introducing numerous
uncertainties in the prediction and management of water consumption. Consequently, this
study examines 17 factors influencing water consumption in Zhangye City and employs
the entropy weight–VIKOR method to analyze the current status of water consumption and
identify the key influencing factors. Additionally, utilizing water consumption statistics
from 2003 to 2022, a grey neural network is applied to predict future water consumption in
Zhangye City. The objective is to conduct an in-depth analysis of the factors influencing
water consumption and to develop a prediction model characterized by robust generaliza-
tion capabilities and high accuracy, which can provide valuable decision support for the
rational planning and scientific management of water resources in Zhangye City, while
also serving as a significant reference for water resource management in similar regions.

2. Materials and Methods
2.1. Study Area

The target area of this study is Zhangye City, located in the middle reaches of the
Heihe River Basin, within the central part of the Hexi Corridor (between 97◦12′–102◦12′ E
and 37◦28′–40◦00′ N). The city encompasses a total area of 3.86 × 104 km2 and is admin-
istratively divided into five counties and one district. As of the end of 2022, the total
population was approximately 112.11 × 104, with an urbanization rate of about 53.49%.
The region experiences an average multi-year rainfall of 118.20 mm and an average annual
temperature ranging from 4.1 to 8.3 ◦C. The primary water source for all units within the
study area is the Heihe River and its tributaries, providing a total water supply of approxi-
mately 17.49 × 108 m3. Of this supply, agricultural irrigation accounts for 85.74%, while
water consumption for forestry, animal husbandry, fishery, and livestock constitutes 8.49%.
Industrial water consumption is 0.88%, public water consumption in urban areas accounts
for 0.42%, residential water usage represents 2.43%, and water allocated for ecological
purposes comprises 2.04%. The amount of water supplied to Zhangye City during the
year is equal to the total amount of water consumed by all water-using sectors. The per
capita water resource availability during the year is estimated at 1.73 × 104 m3 [17,18]. A
schematic overview of the study area is presented in Figure 1.
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2.2. Data Sources

The data sources for this study primarily include the “Gansu Provincial Statistical
Yearbook” [18], the “Gansu Provincial Water Resources Bulletin”, and the “Zhangye City
Calendar Years Temperature Statistics” for the years 2003–2022. This research examines
the factors influencing water resources demand and consumption in various cities across
China, with a specific focus on Zhangye City. The selected evaluation index set comprises
17 factors, including agricultural water consumption, industrial water consumption, res-
idential water consumption, FAFW (forestry, animal husbandry, and fishery water use),
urban public water consumption, ecological environment water consumption, population
density, urbanization rate, AFA value added (agri-forestry–animal husbandry and fish-
ery value added), added value of industry, gross domestic product, annual precipitation,
water-saving irrigated area, cultivated land area, the number of water-producing systems,
water production modulus, and the average annual temperature [19]. During the modeling
process, the dataset for Zhangye City from 2003 to 2021 was utilized as the training set,
while each data index for 2022 served as the validation set.

2.3. Research Methods
2.3.1. Entropy Weight–VIKOR Model

(1) Entropy weight method [20]

1. Data standardization:
Positive indicator:

x′ij =
Xij −min(X1j, X2j, · · · , Xnj)

max(X1j, X2j, · · · , Xnj)−min(X1j, X2j, · · · , Xnj)
(1)

Negative indicator:

x′ij =
max(X1j, X2j, · · · , Xnj)− Xij

max(X1j, X2j, · · · , Xnj)−min(X1j, X2j, · · · , Xnj)
(2)

where Xij is the original data, x′ij is the normalized data, max (Xnj) is the maximum value
in the original data, and min (Xnj) is the minimum value in the original data.

2. Ratio of indicators under each program yij:

yij =
x′ij

∑n
i−1 x′ij

(3)
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where yij is the ratio of indicators under each program.
3. Information entropy for each indicator ej:

ej = − ln(n)
n

∑
i=1

(yij × ln(yij)) (4)

4. Indicator weights Wj:

Wj =
1− ej

n−
n
∑

i=1
ej

(i = 1, 2, · · · , n) (5)

(2) VIKOR model [21]

1. Group utility Si and individual regret Ri:

Si =
n

∑
i=1

Wj(b∗j − bij)

b∗j − b−j
(6)

Ri = max
1≤j≤n

[
Wj(b∗j − bij)

b∗j − b−j

]
(7)

where b∗j and b−j are the maximum and minimum values of each column of the matrix after
normalization of the data, respectively. Individual regret here refers to the gap between the
individual evaluation object and the optimal solution.

2. Indicator values for trade-off decision-making Qi:

Qi =
υ(Si − S∗)
S− − S∗

+
(1− υ)(Ri − R∗)

R− − R∗
(8)

where S∗ and R∗ are the minimum value of group utility and individual regret, respectively;
S− and R− are the maximum value of group utility and individual regret, respectively; and
υ denotes the coefficient of decision-making mechanism, which is 0.5.

2.3.2. Grey Neural Network Model

(1) GM(1,1) model [22]

1. The original data x(0) are accumulated once to obtain a new sequence x(1):

x(0) =
{

x(0)(1), x(0)(2), · · · , x(0)(n)
}

(9)

x(1) =
{

x(1)(1), x(1)(2), · · · , x(1)(n)
}

(10)

2. Immediate neighborhood mean sequence of the new sequence Z(1)(k):

z(1)(k) = ax(1)(k) + (1− a)x(1)(k− 1) k = 2, 3, · · · , n (11)

where a takes the value of 0.5.
3. Establish the time response equation for the GM(1,1) model:

dx(1)(t)
dt

+ αx(1)(t) = µ (12)

where the development factor α and the amount of grey play µ are obtained using the least
squares method.
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4. Least squares calculation of α and µ:

(α, µ)T = (BT B)
−1

BTY (13)

B =

−z(1)(2)
...

−z(1)(n)

1
...
1

 (14)

Y =

x(0)(2)
...

x(0)(n)

 (15)

where B and Y are the data matrix and data vector, respectively.
5. Calculation of predicted values x̂(0):
Solving Equation (12) yields the predicted value of x(1). The reverse cumulative

subtraction yields the predicted value x̂(0) of the original data sequence x(0).

x̂(0)(t + 1) = x̂(1)(t + 1)− x̂(1)t (16)

6. Residual method to test the accuracy of GM(1,1) model:

ε(k) =
x(0)(k)− x̂(0)(k)

x(0)(k)
(17)

where ε(k) is the relative residual, generally required to be < 20% ; when ε(k) < 10%, it
indicates that the model is more accurate.

(2) BP neural network model [23]

1. Network initialization:
Weights ω and bias b are usually initialized using a random method to break the

symmetry of the network.
2. Forward propagation:
The input data are passed through each layer of the network until the last layer outputs

a prediction. For the jth neuron in layer l, output al
j:

zl
j = ∑i (ω

l
ija

l−1
j ) + bl

j (18)

al
j = ϕ(zl

j) (19)

where al−1
j is the output of the ith neuron in layer l − 1; ωl

ij is the weight connecting the ith

neuron in layer l − 1 to the jth neuron in layer l; bl
j is the bias of the jth neuron in layer l;

and ϕ is the activation function (identity), with the solver being Ibfgs.
3. Calculation of losses:
This is used to measure the difference between the predicted and actual values of the

network and is calculated as follows:

L =
1
n∑n

k=1 (yk − ŷk)
2

(20)

where n is the number of samples; yk is the actual output value of the sample; and ŷk is the
predicted output.

4. Backpropagation and parameter updates:
The error gradient of the output layer:

δL
j =

∂L
∂zL

j
= ϕ′(zL

j ) ·
∂L
∂aL

j
(21)
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Error gradient in the non-output layer (l < L):

δl
j =

∂L
∂zL

j
= ∑i ωl+1

ij δl+1
j ·ϕ

′(zl
j) (22)

where L is the last layer, and ϕ′ is the derivative of the activation function.
Update the weights and bias using gradient descent:

ωl
ij ← ωl

ij − α · δl
j · al−1

j (23)

bl
j ← bl

j − α · δl
j (24)

where α is the learning rate.
The above steps may be repeated until the prediction error of the network is reduced

to an acceptable level or a preset number of iterations is reached, the preset number of
iterations here being 1000; otherwise return to step 2.

(3) Grey neural network model

The grey neural network model is a data prediction model that integrates GM(1,1) and
BP neural networks. Its primary advantage lies in effectively leveraging the strengths of
both models to enhance prediction accuracy. Previous researchers have conducted various
explorations into the combination of these models [24,25]. In this study, we select a superior
combination mode, specifically the parallel mode, to construct the grey neural network
model. The basic structure of the model is illustrated in Figure 2. The specific calculation
steps are outlined as follows.
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1. Determine the sequence of predicted values:
Set the GM(1,1) model prediction result as sequence Yi(1), the BP neural network

model prediction result as sequence Yi(2), and the expectation of the prediction structure
as sequence Xi.

2. Portfolio forecasts:
First determine the root mean square error (ζ1 and ζ2) and the mean absolute percent-

age error (ζ1 and ζ2) for Yi(1) and Yi(2) versus Xi. The formulas are as follows:

ξ =
1
n

n

∑
i=1
|Xi −Yi| (25)

ζ =
1
n

n

∑
i=1

∣∣∣∣Xi −Yi
Xi

∣∣∣∣ · 100% (26)

Next, the weights (Wi) of each base model of the combined model are determined
through ζ1 and ζ2. The formula is as follows:

Wi =
ξi

n
∑

i−1
ξi

n = 1, 2 (27)
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Finally, the predicted sequential results of the grey neural network model are obtained
by arithmetic averaging.

Yj = W1Y1(1) + W2Y2(1) (28)

3. Results
3.1. Status of Water Use in Zhangye City

According to the “Gansu Province Water Resources Bulletin”, the annual water con-
sumption of Zhangye City is categorized into seven sectors: agriculture, industry, residen-
tial life, forestry, animal husbandry, fishery, and urban public and ecological environment.
The variations in water consumption across these sectors from 2003 to 2022 are illustrated in
Figure 3. The average annual total water consumption in Zhangye City during this period
is 22.02 × 108 m3, with agriculture representing the largest share among all sectors, and the
combined water consumption of each water sector is equal to the total amount of water
supplied during the year. Since 2013, the area of water-saving irrigation for arable land
in Zhangye City has consistently increased, while public water use in urban areas consti-
tutes the smallest proportion, averaging 0.42%. Industrial water use has exhibited notable
fluctuations from 2003 to 2022, characterized by two phases of continuous growth from
2003 to 2006 and 2007 to 2014, followed by a gradual decline from 2015 to 2022, dropping
to 71.63% of its 2015 level by 2022, thus ranking the city fifth in terms of industrial water
consumption. The water consumption for forestry, animal husbandry, fishery, and livestock
surged abruptly in 2013, making it the second-largest consumer of water, with an average
consumption of 11.39% from 2013 to 2019, which subsequently decreased to 8.00% during
the period from 2020 to 2022. The city’s ecological environmental water consumption ranks
fourth, having remained above 1.20% during the periods of 2005 to 2012 and 2015 to 2022.
In recent years, due to the region’s focus on ecological and environmental protection, water
consumption in this sector has continued to rise, surpassing 2.00%. Public water use in
urban areas holds the smallest share, which increased to between 0.92% and 1.17% from
2013 to 2018, before declining to approximately 0.50% post-2018.
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3.2. Attribution Analysis of Water Consumption in Zhangye City

To ground the analysis of the status quo and the primary influencing factors of wa-
ter consumption in Zhangye City, the entropy weight–VIKOR model was employed to
identify these factors and assess the current state of water consumption. The calculation
results are presented in Table 1. From Table 1, it is evident that among the 17 evaluated
factors, agricultural water consumption exerts the greatest influence on regional water
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consumption, accounting for 11.47%, while the water production modulus (the ratio of
groundwater production per unit area per unit time to the decline in the water table) has
the least influence at 1.78%. Among the natural attribute indicators, annual precipitation
has the smallest weighting and a correspondingly lower degree of influence, whereas the
water production modulus indicator has the largest weighting and a higher degree of
influence. In terms of social attribute indicators, agricultural water consumption holds the
highest weight, while residential water consumption has the lowest. Utilizing the weights
of these indicators, the VIKOR model facilitated a comprehensive analysis of the water
usage situation in Zhangye City from 2003 to 2022, with results also shown in Table 1. The
data indicate a positive trend in overall water usage in Zhangye City during this period,
suggesting a more balanced distribution of various water use factors and an improving
relationship between water supply and distribution. Although there was a short-term
deterioration in the water usage situation from 2010 to 2012, there has been a consistent
improvement from 2013 to 2022. This phenomenon may be attributed to an increase in
the proportion of water usage for forestry, livestock, fisheries, urban public water use,
and ecological environmental needs during this timeframe, while agricultural water use
continued to decline, leading to a temporary uneven or irrational distribution of water
resources in the study area.

Table 1. Main impact factors and current status of water consumption in Zhangye City.

Evaluation Indicators Effect Indicator
Weights (%) Year Benefit Ratio

Value (Q)
Compromise

Decision Ordering

AFA value added/(104 CNY) ↑ * 8.35 2003 0.513 8
Industrial value added/(108 CNY) ↑ 4.98 2004 0.559 9
Gross domestic product/(108 CNY) ↑ 7.55 2005 0.887 17

Annual precipitation/(108 m3) ↑ 6.82 2006 0.870 16
Water-saving irrigation area/(104 acres) ↑ 9.65 2007 0.950 18

Number of water-producing systems ↑ 1.83 2008 0.969 20
Modulus of water yield ↑ 1.78 2009 0.958 19

Annual average temperature/(◦C) ↓ 4.04 2010 0.748 13
Water consumption in agriculture/(108 m3) ↓ 11.47 2011 0.770 14

Industrial water consumption/(108 m3) ↓ 5.58 2012 0.792 15
Residential water consumption/(108 m3) ↓ 2.83 2013 0.735 12

FAFW/(108 m3) ↓ 6.14 2014 0.690 10
Urban public water consumption/(108 m3) ↓ 6.44 2015 0.728 11

Ecosystem water consumption/(108 m3) ↓ 4.70 2016 0.465 7
Population density/(person per km2) ↓ 8.67 2017 0.310 5

Urbanization rate ↓ 5.63 2018 0.397 6
Cropland area/(104 acres) ↓ 3.54 2019 0.159 4

— — — 2020 0.141 3
— — — 2021 0.129 2
— — — 2022 0.064 1

* Note: ↑ in the table represents a positive indicator; ↓ represents a negative indicator.

3.3. Water Consumption Prediction Based on GM(1,1) Model and BP Neural Network Model

The GM(1,1) model and the BP neural network model were employed to predict the
water consumption of Zhangye City from 2003 to 2022, with the prediction results illustrated
in Figure 4. The GM(1,1) model yielded an average relative error of 5.087%, which is below
the threshold of 20%, indicating a good fit for the model. Additionally, all class ratio values
of the water consumption sequence, after translation and transformation, fell within the
interval (0.909, 1.100), suggesting that the sequence is appropriate for constructing a grey
prediction model. The post hoc error ratio was determined to be 0.647, further affirming the
model’s accuracy. As depicted in Figure 4a, the multi-year average relative error between
the predicted water consumption of Zhangye City from 2003 to 2022 using the GM(1,1)
model and the actual water consumption is 5.087%. The year with the highest relative error
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was 2008, with relative errors exceeding 5.00% noted in the years 2008, 2014–2015, and
2020–2022, while the remaining years exhibited relative error values ranging from 0.00%
to 4.692%, indicating a generally accurate prediction. In Figure 4b, the BP neural network
model demonstrated a training set R2 of 0.982 (indicative of a value close to 1.00), a root
mean square error (RMSE) of 0.253 (where a smaller RMSE indicates higher accuracy), and
a mean squared error (MSE) of 0.064 (with smaller values correlating to greater model
accuracy). The mean absolute error (MAE) was recorded at 0.210, reflecting the average
absolute error of the predicted values; again, smaller values suggest a more accurate model.
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3.4. Water Consumption Prediction Based on Grey Neural Network Model

The grey neural network model was employed to predict the annual water consump-
tion of Zhangye City from 2003 to 2022, with the accuracy of the model’s predictions
presented in Table 2. As indicated in Table 2, the predictions made by the grey neural
network model closely align with the actual water consumption figures, which demonstrate
a trend of decline over the years. The multi-year average relative error between the actual
and predicted water usage was 4.28%, with a maximum relative error of 22.12% occurring
in 2004. This performance is comparable to the prediction results of the GM(1,1) model
and the BP neural network model, suggesting that the grey neural network model offers a
higher accuracy in its predictions. In response to the national water conservation policy
and the promotion of water-saving initiatives, Zhangye City has been actively developing
water-efficient irrigated farmland, resulting in a year-to-year reduction in overall water
consumption of 0.075%. Concurrently, the total population of Zhangye City is declining
at a rate of 0.579%, which will subsequently reduce water consumption across the agri-
culture, industry, forestry, animal husbandry, fishery, and livestock sectors, contributing
to a gradual decrease in total water consumption. Although total water consumption in
2022 has increased by 4.88% compared to 2003, this can be attributed to a cultivated land
area growth rate of 12.39% and the additional water demands due to urbanization for
residential and public use. Overall, water consumption in Zhangye City has stabilized in
recent years, and it is anticipated that disparities in water consumption will continue to
diminish in the coming years. In summary, the grey neural network model was used to
predict the water consumption of Zhangye City, and the water consumption was predicted
to be 20.75 × 108, 20.61 × 108, 20.47 × 108, 20.33 × 108, and 20.18 × 108 m3 for the years
2023–2027, respectively.
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Table 2. Grey neural network model prediction results (108 m3).

Year Measured
Value

Projected
Value

Relative
Error/% Year Measured

Value
Projected

Value
Relative
Error/%

2003 18.521 18.7940 1.45 2013 22.992 22.3251 2.99
2004 18.176 23.3393 22.12 2014 23.456 22.2114 5.60
2005 23.525 23.3850 0.60 2015 23.655 22.0996 7.04
2006 23.44 23.2601 0.77 2016 22.805 21.9425 3.93
2007 23.708 23.2720 1.87 2017 21.834 21.6521 0.84
2008 23.579 23.1020 2.06 2018 20.606 21.2320 2.95
2009 23.777 22.9110 3.78 2019 20.648 21.2380 2.78
2010 23.541 22.6980 3.71 2020 19.975 20.9875 4.82
2011 23.312 22.5930 3.18 2021 19.948 20.8612 4.38
2012 23.444 22.4150 4.59 2022 19.425 20.6953 6.14

4. Discussion

The quantitative analysis of water use trends in Zhangye City presented in this study
indicates that agricultural water use constitutes the predominant component of the over-
all water use structure. This finding aligns with existing literature and underscores the
crucial role of agricultural water management in ensuring regional water security [26,27].
The cyclical fluctuations observed in industrial water use are closely tied to the stages
of economic development, reflecting the dynamic equilibrium between industrial water
demand and macroeconomic factors. Concurrently, the consistent growth in ecological
water consumption highlights the strategic importance of ecological water needs in the
allocation of water resources, consistent with contemporary water resource management
principles that prioritize ecological considerations and promote green development [28,29].
These findings provide a scientific foundation for the formulation of targeted water re-
source optimization strategies and emphasize the necessity of considering the coordinated
development of agricultural, industrial, and ecological water use in the planning and
management of water resources.

Numerous models for analyzing and forecasting water demand are based on more
comprehensive datasets and can be utilized for predictive analyses by identifying patterns
of change in the data, as well as revealing trends, cycles, and seasonality [30]. However,
models such as time series analysis for predicting water demand must meet specific
assumptions, including data smoothness and linear relationships. Additionally, these
models are significantly influenced by region-specific climatic and hydrological attributes,
which may limit the accuracy of predictions [31]. This study presents a novel analytical
framework for identifying and quantifying the key drivers of water use by innovatively
integrating the entropy weighting method with the VIKOR multi-criteria decision-making
model. This approach, which has been utilized less frequently in the field of water resources
management, offers a new perspective for assessing the complexity and dynamics of
water use structures. Additionally, this study introduces a grey neural network model for
predictive analysis of water use, recognized for its high accuracy in non-linear time series
prediction [32]. Notably, the significant downward trend in industrial water consumption
observed after 2015 contrasts with the continuous growth pattern documented in previous
studies. This phenomenon may be closely linked to the implementation of local water
conservation measures and the optimization of industrial structures [33]. These findings not
only enhance the quantitative analysis tools available for water resource management, but
also provide policymakers with empirical evidence regarding improvements in industrial
water use efficiency and the adjustment of water conservation strategies.

This study provides a comprehensive analysis of water use dynamics in Zhangye City;
however, the influence of external factors such as policy changes and population migration
on water use requires further investigation. Additionally, the effects of climate change on
water availability, particularly in arid regions, warrant closer examination [34,35]. Fur-
thermore, research on water use efficiency and the potential for water conservation across
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various sectors should be expanded. In the agricultural sector of Zhangye City, precision
irrigation techniques are being promoted to optimize the allocation and utilization of water
resources. In the industrial sector, it is essential to enhance water recycling and regulation
to ensure the effective reuse of water resources and minimize waste. Simultaneously, a
thorough assessment of water use in forestry, animal husbandry, fisheries, and livestock
will be conducted to identify sustainable management practices for ecological water use
and to safeguard the ecological environment. Additionally, efforts will be made to improve
the efficiency of urban and residential water use, while reducing leakage through technical
interventions to enhance water resource utilization. Finally, it is crucial to strengthen
policy support to foster innovation in water-saving technologies and simultaneously raise
public awareness of water conservation, thereby creating a societal atmosphere in which
water-saving practices are embraced by all.

5. Conclusions

This study employs the entropy weight–VIKOR model and a grey neural network
model to analyze and predict water consumption in Zhangye City, a significant urban
area in the middle reaches of the Heihe River, from 2003 to 2022. The findings indicate
that the average annual water consumption in Zhangye City during this period was
22.02 × 108 m3, demonstrating a consistent decline over the years, although this trend has
begun to stabilize in recent years. Among the indicators influencing water consumption, the
social attribute indicator accounts for the largest share of agricultural water use, while the
natural attribute indicator, specifically annual precipitation, significantly affects changes in
water consumption levels in Zhangye City. The combined model—integrating the GM(1,1)
model with the BP neural network model—was utilized to forecast water consumption
from 2003 to 2022, achieving a multi-year average relative error of 4.28%. The maximum
relative error recorded was 22.12% in 2004; however, aside from 2004 and 2015, where
relative errors exceeded 7.00%, the relative errors for the remaining years ranged from
0.60% to 6.14%. The final prediction of water consumption in Zhangye City in 2027 was
20.18 × 108 m3. The predictions generated by the grey neural network model in this study
demonstrate a high degree of accuracy, suggesting that this model is suitable for forecasting
short-term water use in areas akin to Zhangye City within the middle section of the Heihe
River Basin.
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