
Citation: Martim, C.C.; Paulista,

R.S.D.; Castagna, D.; Borella, D.R.; de

Almeida, F.T.; Damian, J.G.R.; de

Souza, A.P. Daily Estimates of Global

Radiation in the Brazilian Amazon

from Simplified Models. Atmosphere

2024, 15, 1397. https://doi.org/

10.3390/atmos15111397

Academic Editors: Yanbo Shen and

Abhnil Prasad

Received: 4 October 2024

Revised: 11 November 2024

Accepted: 16 November 2024

Published: 20 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Daily Estimates of Global Radiation in the Brazilian Amazon
from Simplified Models
Charles Campoe Martim 1, Rhavel Salviano Dias Paulista 1,2 , Daniela Castagna 1,2, Daniela Roberta Borella 2 ,
Frederico Terra de Almeida 2,3 , João Gabriel Ribeiro Damian 4 and Adilson Pacheco de Souza 1,2,3,*

1 Postgraduate Program in Environmental Physics, Federal University of Mato Grosso,
Cuiaba 78060-900, MT, Brazil; charles.martim@sou.ufmt.br (C.C.M.); rhavel.paulista@sou.ufmt.br (R.S.D.P.);
daniela.castagna@sou.ufmt.br (D.C.)

2 Postgraduate Program in Environmental Sciences, Federal University of Mato Grosso,
Sinop 78550-728, MT, Brazil; daniela.borella@sou.ufmt.br (D.R.B.); frederico.almeida@ufmt.br (F.T.d.A.)

3 Institute of Agrarian and Environmental Sciences, Federal University of Mato Grosso,
Sinop 78550-728, MT, Brazil

4 Faculty of Exact and Technological Sciences, Mato Grosso State University, Sinop 78550-000, MT, Brazil;
joao.gabriel.ribeiro@unemat.br

* Correspondence: adilson.souza@ufmt.br; Tel.: +55-66981363805

Abstract: Solar radiation is an element and a meteorological factor that is present in several pro-
cesses, such as evapotranspiration, photosynthesis, and energy generation, among others. However,
in some regions, there is a limitation in surface data measurements. In this study, 87 empirical
models were evaluated to estimate global radiation (Hg) in the Brazilian Amazon biome; these
models were divided into five groups according to the input variables, such as insolation (group I),
air temperature (group II), relative humidity (group III), astronomical variables (group IV), and
hybrid models (group V). The estimates were evaluated by their significance (t-test) and then ac-
cording to the statistical metrics of the models’ performance (R2, MBE, RMSE, and d). The group V
model

[
Hg/H0 = a + bln∆T + c(S/S0)

d
]

presented the best statistical performance in all the eval-

uated indicators, followed by the group I model
[
Hg/H0 = a + b(S/S0)

c], and then the group II

model
[
Hg/H0 = a + b∆T + c∆T0.25 + d∆T0.5 + e(Tmed/H0)

]
. The group III models presented a

low statistical performance, and the group IV models were not significant (NS) in all the evaluated
meteorological stations. In general, it was found that the simplified or hybrid models based on
insolation and air temperature were efficient in estimating Hg in the Brazilian Amazon biome.

Keywords: solar radiation; solar energy; minimum meteorological data; empirical estimation models;
statistical indicators; Amazon biome

1. Introduction

Solar radiation is a clean, abundant, continuous, and renewable energy source with
great potential for expanding its use in Brazil and worldwide. In the current context, the
spatial and temporal variability of the incidence of global radiation (Hg) on the Earth’s sur-
face can be considered one of the main drivers of its use, especially in climate change [1–3].
These variations, according to Souza et al. [4], depend on the Earth’s movements (rota-
tion and translation), geographic factors (latitude, longitude, altitude, orientation, and
inclination of the surface), and atmospheric factors, such as clouds and interactions with
greenhouse gases, aerosols, and water vapor [5–7]. All these factors generate great un-
certainties in obtaining solar radiation, especially for short temporal partitions such as
instantaneous, hourly, or daily values [8].

In short, when passing through the atmosphere, the electromagnetic waves that form
solar radiation can be attenuated by reflection, absorption, and diffusion due to contact
with the gases that make up the atmosphere, clouds, and/or suspended particles. However,
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these phenomena are insufficient to retain the entire spectrum of electromagnetic waves
from solar radiation. A percentage passes through the atmosphere without any interaction
(direct radiation), which, together with the diffuse component (selective and non-selective,
depending on the dimensions of the attenuating particle), hits the ground surface, forming
global radiation—Hg [4].

Knowledge of global radiation incidence on natural and/or forced surfaces with
different inclination angles and exposure faces can be applied in many scientific and
technological areas. Accurate information on Hg is widely needed in several chemical,
physical, and biological applications and processes [9] and in several sectors, such as
renewable energy, meteorology, agriculture, hydrology, ecology, environmental comfort,
epidemiology, and industry [10,11].

Despite its importance, in many regions, especially in underdeveloped countries,
measuring Hg is still a challenge due to the high costs of instruments (sensors) and their
periodic recalibration and maintenance needs; these activities are recurrent and necessary
in meteorological stations, even if they are automatic [12]. In addition, Hg datasets are
often characterized by many measurement failures or inconsistent data, mainly due to lack
of maintenance (dirt deposited on sensors, shading, and a lack of sensor calibration). These
problems occur even in countries with a high density of Hg monitoring stations [5,13,14].
Therefore, great efforts have been made to estimate Hg based on meteorological variables
with lower monitoring costs that are widely available and monitored at meteorological
stations worldwide [1].

In Brazil, this reality is no different, especially in the Amazon biome, which is located in
the north of the country and occupies 49% of the national territory; this region has the lowest
ratio between automatic meteorological stations (AMSs) and conventional meteorological
stations (CMCs) per area of the station network of the National Institute of Meteorology
(INMET). In addition to the low number of stations installed for surface monitoring, the
percentages of failures in the existing databases vary from 10 to 60% [15–17], thus limiting
seasonal assessments of the behavior of Hg incidence. Even in countries that invest
more in research, these problems are observed, as reported by Fan et al. [10], evaluating
122 meteorological stations in China, who observed failures of 0.3 to 7.5% in the databases.

The spatial–temporal characterization of global radiation requires a series of long-term
measurements. Despite the importance and interest of the scientific and governmental
community, knowledge of this is still developing in the Amazon biome. This is mainly
due to the large territorial extension, limited land access, and low population density (in
terms of number of cities). Information on daily Hg levels in this biome is necessary for
several applications associated with environmental sciences, since solid scientific evidence
indicates that a representative part of this ecosystem is being affected by anthropogenic
actions, particularly by the expansion of agricultural activities, the increasing frequency and
severity of forest fires, and the degradation of and reduction in natural vegetation [18–20].

To meet the relevant needs for obtaining global radiation data, several models have
been developed for Hg estimates based on other meteorological data and have been
commonly made available/evaluated worldwide [16,21,22]. It is no different for regions
such as the Brazilian Amazon, where, despite some studies having already been carried
out [15,17], there is still a need to evaluate simplified Hg estimation models for constructing
continuous data series for agricultural and environmental applications.

Evaluations of simplified and/or parameterized models for Hg estimates require
regional calibrations of the statistical coefficients that can provide good estimates through
indirect relationships with other meteorological variables, as long as these are simple to
monitor, have greater database availability, or have a good correlation with Hg, as is the
case with insolation, air temperature, relative humidity, and rainfall [9–12,23].

The first empirical model for estimating Hg based on insolation (S) was proposed by
Angström [24] and later modified by Prescott [25]; in honor of the authors, it became known
as the Angstrom–Prescott (A-P) model. Regarding air temperature, the first simplified
model was proposed by Hargreaves and Samani [26], when they proved that the daily
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thermal amplitude (∆T = Tmax − Tmax) presents good correlations with Hg incidence;
later, Bristow and Campbell [27] proved that there is an exponential correlation between
∆T and Hg.

Studies based on insolation present a superior performance when compared to studies
based on other meteorological variables, such as air temperature [28,29]; however, in the
Brazilian context, the availability of insolation data is lower for most biomes and states,
unlike air temperature, which is measured in practically all CMSs and AMSs [30,31]; this
disparity is more pronounced in the context of the Brazilian Amazon. Therefore, there are
several possibilities for adjusting the models based on other meteorological or geographic
variables that correlate with Hg, as this allows for increased application possibilities for
different situations according to data availability and improves Hg’s predictive capacity.

After the widespread dissemination of the Angstrom–Prescott [25], Hargreaves and
Samani [26], and Bristow and Campbell [27] models, several authors proposed modi-
fications such as polynomial, logarithmic, potential, and exponential adjustments. In
a literature review, Pietro and García (2022) [11] reported the existence of 165 different
models, which can be classified according to the meteorological and non-meteorological
variables used: (i) models based on insolation (S), in hours (group I); (ii) models based on
maximum, average, and minimum air temperatures, in ◦C (group II); and (iii) models that
consider combinations of variables, such as insolation; maximum, average and minimum
air temperatures; relative humidity; latitude; atmospheric pressure; solar declination; wind
speed; and rainfall (group III). Empirical models have been studied in different regions
of the world for Hg estimates on a daily scale, especially based on these three groups
mentioned above. Highlights include studies based on insolation (S) for China [9,22,32,33],
Spain [34], Turkey [35–38], Sudan [39], Egypt [40], Saudi Arabia [41], Nigeria [29], Iran [21],
and South Korea [42].

Therefore, other studies involving models based on air temperature (daily maximum,
average, and minimum) were developed for different locations by different authors, such
as Egypt [12], China [1,9,10,22,43–45], United States [23,27,46–48], Italy [23], United King-
dom [23], Netherlands [23], South Africa [23], Australia [23], Nigeria [28,29,49], Saudi
Arabia [50], Africa [51], Iran [21,52], India [2,53], and Turkey [14]; models based on relative
humidity were in Nigeria [28], Bahrain [54], Turkey [55], and Nigeria [29,49]; models based
on astronomical variables in Jordan [56], Turkey [37,55], and Nigeria [29]; and hybrid
models in China [9,10,22,32,45], Nigeria [28,29,49,57,58], Sudan [54], Bahrain [54], Saudi
Arabia [41], Turkey [14,55], and South Korea [42].

The most comprehensive study involving Hg estimates was conducted in the Ama-
zon biome with the Angstrom–Prescott model for 20 meteorological stations (MSs) [17];
however, this article was based on only two Hg estimation models. Studies developed
in several regions of Brazil also presented point estimates for some locations in the Ama-
zon [4,15,16,59]. In all cases, the importance of understanding the dynamics of the region’s
atmosphere was highlighted in the estimates. One of the simplest ways to understand the
behavior of the atmosphere based on solar radiation is through atmospheric transmissivity
indices or a clarity index (Kt), which shows the ratio between global radiation (Hg) and
extraterrestrial radiation (H0). Several studies have been carried out to explore various
models in different locations around the world, and many comparisons have been made to
optimize and find the best models for estimating Hg as a function of the levels or classes of
the clarity indices [60–62].

Given the environmental importance of this biome and Hg for several agro-environmental
applications, the objective of this study was to evaluate and determine which models
based on meteorological and astronomical variables present the best performance in es-
timating daily global radiation (Hg) in the Brazilian Amazon, using meteorological and
astronomical variables.
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2. Materials and Methods
2.1. Study Area

The study area is concentrated in the Brazilian Amazon biome, which encompasses a
large area of 4,196,943 km2 distributed across nine states: Acre, Amapá, Amazonas, Pará,
Rondônia, Roraima, part of Tocantins, Mato Grosso, and Maranhão (Figure 1). Twenty
locations with meteorological stations (MSs) that presented simultaneous automatic (MSAs)
and conventional (MSCs) measurements (Table 1) were selected, considering the following
daily databases: (i) MSAs—maximum, average, and minimum temperature (Tmax, Tmed,
and Tmin); average relative humidity (RHmed); and global horizontal radiation (Hg);
(ii) MSCs—insolation (S). These databases were obtained from the website of the National
Institute of Meteorology (INMET) (https://portal.inmet.gov.br/ accessed on 3 March
2023). Although the INMET station network is larger than that selected in this study
for the Amazon region, it is worth noting that only those that presented concomitant
measurements of Hg and S were selected.
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Figure 1. The location of the 20 meteorological stations evaluated in this study in the Amazon biome,
Brazil (the numerical order of the stations–“1–20”—is presented in Table 1) [63,64].

According to the Köppen classification (KCC), the 20 stations included three sub-
classes of tropical climates—Am (monsoon), Af (with a dry season), and Aw (with a dry
winter)—with high precipitation (over 3600 mm year−1) in the north of the biome and
with a reduction towards the south of the Amazon [65]. Geographically, the AMSs and
CMSs were located between latitudes 0.035◦ to −11.97◦ and longitudes −48.43◦ to −69.87◦

(in three distinct time zones), while altitudes varied from 9 to 366 m. The longest data
series evaluated was twenty-two years (2000 to 2022) at the Manaus station (AM), and the
shortest data series was five years (2012 to 2017) at the Soure station (PA) (Table 1).

The meteorological data were subjected to filters to identify inconsistencies and fail-
ures [66], in which case days that presented daily failures of Tmax, Tmed, Tmin, S, and
RHmed and hourly failures of Hg between 10 am and 2 pm (local solar time) were excluded;
days with an insolation ratio (Ri) > 1.0 and Kt > 0.85 were also excluded. Subsequently, by
AMS, the data series was divided into 70% for calibration of the model coefficients, and the
remainder (30%) was used to evaluate the statistical performance. This separation of the

https://portal.inmet.gov.br/
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databases ensured the representativeness and proportionality of the periods of the year
(months) in both databases.

Table 1. Meteorological stations in the Brazilian Amazon and their respective locations, climate
classification, geographic coordinates, and data period.

State Meteorological Station KCC * Lat. (◦) Lon. (◦) Alt. (m) Data Period

Acre (AC) 1—Rio Branco Am −9.67 −68.16 163 2015–2022

Amapá (AP) 2—Macapá Am 0.035 −51.08 16 2013–2022

Amazonas (AM)

3—Barcelos Af −0.98 −62.92 29 2008–2022
4—Eirunepé Af −6.65 −69.87 121 2012–2022

5—Itacoatiara Af −3.12 −58.47 41 2008–2022
6—Lábrea Am −7.25 −64.78 61 2008–2018

7—Manaus Af −3.1 −59.95 61 2000–2022
8—Parintins Af −2.63 −56.75 18 2008–2018

9—São Gabriel da Cachoeira Af −0.12 −67.05 79 2011–2022

Mato Grosso (MT) 10—Sinop Aw −11.85 −55.55 366 2006–2017

Pará (PA)

11—Belém Af −1.41 −48.43 21 2003–2022
12—Cametá Af −2.23 −49.48 9 2008–2022

13—Conceição do Araguaia Aw −8.25 −49.27 175 2008–2022
14—Itaituba Af −4.27 −56.00 24 2008–2022
15—Marabá Aw −5.36 −49.37 116 2009–2022

16—Monte Alegre Am −2 −54.07 100 2012–2022
17—Óbidos Am −1.88 −55.51 89 2012–2017
18—Soure Am −0.72 −48.51 12 2008–2017

19—Tucuruí Am −3.82 −49.67 137 2008–2017

Roraima (RR) 20—Boa Vista Am 2.82 −60.68 82 2010–2022

Latitude (Lat.); longitude (Lon.); and altitude (Alt.). * KCC are Koppen climate classes according to * Alvares
et al. [60].

2.2. Simplified Models for Estimating Global Radiation (Hg)

All simplified models evaluated are based on extraterrestrial radiation (H0), which
corresponds to radiation that has not yet interacted with atmospheric elements; this
variable was obtained by Equation (1), which depends on the eccentricity factor of the
Earth’s orbit (dr—Equation (2)), solar declination (δ—Equation (3)), and the daily hour
angle (h—Equation (4)). In addition to H0, some simplified models depend on the pho-
toperiod (So—Equation (5)), atmospheric transmissivity (Kt—which represents the frac-
tion of radiation that reaches the Earth’s surface—Equation (6)), or the insolation ratio
(Ri—which represents the fraction of time of the incidence of direct radiation throughout
a day—Equation (7)) [15,67].

H0 = 37.59 × dr ×
( π

180
× h × senϕ× senδ+ cosϕ× cos δ× senh

)
(1)

dr = 1 + 0.033 × cos
(

360 × DJ
365

)
(2)

δ = 23.45 × sen
[

360
365

(DJ + 284)
]

(3)

h = cos−1(−tanϕ× tan δ) (4)

S0 =
2 × h

15
(5)

Kt =
Hg
H0

(6)
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Ri =
S
S0

(7)

where ϕ is the local latitude of the stations (◦); δ and dr are dependent only on the time
of year (DJ, which indicates the ordering of the days throughout the year (1 ≤ DJ ≥ 365
or 366 days); h is dependent on the time of year and latitude; and the values of Kt and Ri
are dimensionless.

Based on the literature review, 87 simplified models for daily Hg estimates were
obtained, presenting differences in the input variables or the analytical estimation model.
These models were divided into 5 groups according to the input variables, generating the
following combinations:

− Group I: empirical models based on insolation (S), photoperiod (S0), and extraterres-
trial radiation (H0) (Table 2);

− Group II: empirical models based on maximum, mean, and minimum air temperature
(Tmax, Tmed, and Tmin) and extraterrestrial radiation (H0) (Table 3);

− Group III: empirical models based on relative humidity (RH) and extraterrestrial
radiation (H0) (Table 4);

− Group IV: empirical models with astronomical variables, such as solar declination (δ),
Julian day (DJ), and extraterrestrial radiation (H0) (Table 4);

− Group V: hybrid empirical models, based on two or more variables such as S, Tmax,
Tmed, Tmin, RHmed, latitude (ϕ), photoperiod (S0), and extraterrestrial radiation
(H0) (Table 5).

Table 2. Empirical models for indirect estimates of global radiation, based on insolation.

Nº References Models

1 Angström [24]; Prescott [25] Hg/H0 = a + b(S/S0)
2 Ögelman et al. [36] Hg/H0 = a + b(S/S0) + c (S/S0)

2

3 Bahel [68] Hg/H0 = a + b(S/S0) + c(S/S0)
2 + d(S/S0)

3

4 Newland [33] Hg/H0 = a + b(S/S0) + cln(f(S)/S0)
5 Togrul and Onat [37] Hg/H0 = a + b/H0 + c(S/S0)/H0
6 Togrul et al. [38] Hg/H0 = a + bln(f(S)/S0)
7 Almorox and Hontoria [34] Hg/H0 = a + b EXP(S/S0)
8

Elagib and Mansell [39]
Hg/H0 = a EXP(bS/S0)

9 Hg/H0 = a(S/S0)
b

10 Hg/H0 = a + b(S/S0)
c

11 El-Metwally [40] Hg/H0 = a1/(f(S)/S0)

12 Bakirci [35] Hg/H0 = a + b EXP(S/S0) + c(S/S0)
13 Li et al. [43] Hg/H0 = a + b/H0 + c S/H0

Table 3. Empirical models of daily estimates of global radiation based on air temperature.

Nº References Models

14 Hargreaves and Samani [26] Hg/H0 = a∆T0.5

15 Bristow and Campbell [27] Hg/H0 = a(1 − EXP(−b∆Tc))
16 Hargreaves et al. [51] Hg/H0 = a + b∆T0.5

17 Ertekin and Yaldiz [55] Hg/H0 = a + b/H0+c ∗ (Tmed/H0)
18 Goodin et al. [46] Hg/H0 = a ∗ (1 − EXP(−b ∗ ∆Tc/H0))

19 Thornton and Running [47] Hg/H0 = 1 − EXP
(
−a ∗ ∆Tb

)
20 Weiss et al. [48] Hg/H0 = 0.75 ∗

(
1 − EXP

(
−a ∗ ∆T2/H0

))
21 Chen et al. [22] Hg/H0 = a + b ∗ ln∆T
22 Abraha and Savage [23] Hg/H0 = 0.75 ∗

(
1 − EXP

(
−a ∗ ∆T2/∆Tmed

))
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Table 3. Cont.

Nº References Models

23 Falayi et al. [29] Hg/H0 = a + b ∗ Tmin
24 Hg/H0 = a + b ∗ Tmax

25
Panday and Katiyar [53]

Hg/H0 = a + b ∗ Tmax/Tmin
26 Hg/H0 = a + b ∗ Tmax/Tmin + c ∗ (Tmax/Tmin)2

27 Hg/H0 = a + b ∗ Tmax/Tmin + c ∗ (Tmax/Tmin)2 + d ∗ (Tmax/Tmin)3

28
Adaramola [28]

Hg/H0 = a + b ∗ Tmed
29 Hg/H0 = a + b ∗ Tmin/Tmax

30
Chen and Li [9]

Hg/H0 = a + b ∗ ∆T
31 Hg/H0 = a + b ∗ Tmin + c ∗ Tmax + d ∗ Tmin ∗ Tmax
32 Hg/H0 = a + b ∗ Tmin + c ∗ Tmax

33 Li et al. [32] Hg/H0 = a/H0 + b ∗ Tmin + c ∗ Tmax
34 Benghanem and Mellit [50] Hg/H0 = a/H0 + b ∗ ∆Tc

35 Li et al. [44] Hg/H0 = a + (b + c ∗ Tmed) ∗ ∆T0.5

36

Hassan et al. [12]

Hg/H0 = a + b ∗ ∆Tc

37 Hg/H0 = a + b ∗ H0 ∗ Tmedc

38 Hg/H0 = a ∗ H0 ∗ Tmedb

39 Hg/H0 = a ∗ EXP(b ∗ Tmedc)
40 Hg/H0 = a + b ∗ Tmed + c ∗ Tmed2

41 Hg/H0 =
(

a + b ∗ ∆T + c ∗ ∆T2
)
∗ ∆Td

42
Jahani et al. [21] Hg/H0 = a + b ∗ ∆T + c ∗ ∆T2 + d ∗ ∆T3

43 Hg/H0 = a + b ∗ ∆T0.5 + c ∗ ∆T1.5 + d ∗ ∆T2.5

44
Fan et al. [10] Hg/H0 = a + b ∗ ∆T + c ∗ ∆T0.25 + d ∗ ∆T0.5

45 Hg/H0 = a + b ∗ ∆T + c ∗ ∆T0.25 + d ∗ ∆T0.5 + e ∗ Tmed/H0

Table 4. Empirical models of daily estimates of global radiation based on relative air humidity
(RHmed) and astronomical variables (δ, H0, and DJ).

Nº References Models

46 Elagib et al. [39] Hg/H0 = a/H0 + b ∗ RHmed/H0
47 Hg/H0 = a/H0 + b ∗ (RHmed − H0)/H0

48 Falayi et al. [29] Hg/H0 = a + b ∗ RHmed
49 Kolebaje et al. [49] Hg/H0 = a + b ∗ RHmed0.5

50 Ertekin and Yaldiz [55] Hg/H0 = a/H0 + b ∗ δ/H0
51 Togrul and Onat [37] Hg/H0 = a/H0 + b ∗ senδ/H0
52 Togrul and Onat [37] Hg/H0 = a + b/H0
53 Al-Salaymeh [56] Hg/H0 = a/H0 + b ∗ sen(2 ∗ π ∗ DJ/c + d)/H0
54 Al-Salaymeh [56] Hg/H0 =

(
a + b ∗ DJ + c ∗ DJ2 + d ∗ DJ3 + e ∗ DJ4

)
/H0

Table 5. Hybrid empirical models of daily estimates of global radiation with meteorological and
astronomical variables.

Nº References Models

55 Glover and McCulloch [69] Hg/H0 = a ∗ cosϕ+ b ∗ (S/S0)

56
Swartman and Ogunlade [58]

Hg/H0 = a ∗ EXP(b ∗ (S/S0 − RHmed))
57 Hg/H0 = a + b ∗ RHmed + c ∗ S/S0
58 Hg/H0 = a ∗ RHmedb ∗ (S/S0)

c

59
Ododo et al. [57] Hg/H0 = a ∗ Tmedb ∗ Tmedc ∗ (S/S0)

d

60 Hg/H0 = a + b ∗ Tmed + c ∗ RHmed + d ∗ Tmed + e ∗ (S/S0)
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Table 5. Cont.

Nº References Models

61 Elagib et al. [39] Hg/H0 = a/H0 + b ∗ (RHmed − ∆T − H0)/H0
62 Chen et al. [22] Hg/H0 = a + b ∗ ln∆T + c ∗ (S/S0)

d

63

Falayi et al. [29]

Hg/H0 = a + b ∗ Tmed + c ∗ (S/S0)
64 Hg/H0 = a + b ∗ TmIN + c ∗ (S/S0)
65 Hg/H0 = a + b ∗ Tmax + c ∗ (S/S0)
66 Hg/H0 = a + b ∗ Tmed + c ∗ RHmed + d ∗ (S/S0)

67 El-Sebaii et al. [41] Hg/H0 = a + b ∗ Tmed + c ∗ RHmed
68 Adaramola [28] Hg/H0 = a + b ∗ (Tmin/Tmax) ∗ RHmed/100

69 Korachagaon and Bapat [70] Hg/H0 = a + b ∗ Tmax + c ∗ ∆T + d ∗ RHmed
70 Hg/H0 = a + b ∗ Tmax + c ∗ Tmin + d ∗ ∆T + e ∗ RHmed

71

Chen and Li [9]

Hg/H0 = a + b ∗ ∆T0.5 + c ∗ (S/S0)
72 Hg/H0 = a + b ∗ Tmin + c ∗ Tmax + d ∗ (S/S0)
73 Hg/H0 = a + b ∗ Tmax + c ∗ Tmin + d ∗ RHmed + e ∗ (S/S0) RHmed + e (S/So)
74 Hg/H0 = a + b ∗ ∆T0.5 + c ∗ RHmed

75

Li et al. [32]

Hg/H0 = a/H0 + b ∗ Tmin + c ∗ Tmax + d ∗ RHmed
76 Hg/H0 = a/H0 + b ∗ Tmin + c ∗ Tmax + d ∗ RHmed/H0
77 Hg/H0 = a/H0 + b ∗

√
(∆T) + c ∗ RHmed

78 Hg/H0 = a/H0 + b ∗
√
(∆T) + c ∗ (RHmed/H0)

79
Saffaripour et al. [52]

Hg/H0 = a + b/H0 + c ∗ Tmax/H0 + d ∗ (S/S0)/H0
80 Hg/H0 = a + b/H0 + c ∗ RHmed/H0 + d ∗ (S/S0)/H0
81 Hg/H0 = a + b ∗ senδ+ c ∗ (S/S0)

82 Lee [42] Hg/H0 = a + b ∗ (S/S0)
c + d ∗ ∆Te

83
Li et al. [45] Hg/H0 = a ∗ (1 + b ∗ RHmed) ∗ ∆T0.5

84 Hg/H0 = a ∗ (1 + b ∗ RHmed) ∗
(

1 − EXP
(
−c ∗ ∆Td

))
85 Kolebaje et al. [49] Hg/H0 = a + b ∗ ∆T/f(S)
86 Hg/H0 = a + b ∗ ((∆T + RHmed)/S0)

0.5

87 Yildirim et al. [14] Hg/H0 = a + b ∗ RHmed + c ∗ S/S0 + d ∗ (S/S0)
2 + e(S/S0)

3

Local calibrations of the estimates of the empirical coefficients (“a”, “b”, “c”, and
“d”) of the simplified models were performed for each station with data grouping, using
the iterative Gauss–Newton algorithm for nonlinear optimizations by the least squares
method, in the Statistica 14.0.0.15 software (TIBCO Software Inc., Santa Clara, CA, USA),
together with an evaluation of the maximization of the coefficient of determination (R2)
and restrictions for Hg < H0. Sequentially, the analyses for the groupings of the models
are presented.

2.2.1. Simplified Models Based on Insolation (S)—Group I

The Angstrom–Prescott model was the precursor of this type of estimation (Table 2),
which linearly correlates the insolation ratio (Ri) and atmospheric transmissivity (Kt); in
this case, the linear coefficient (“a”) and angular coefficient (“b”) are dependent on regional
atmospheric conditions and need to be calibrated locally. Although these coefficients are
empirical, they describe two physical possibilities of Hg incidence: (i) when Ri tends to
zero, the linear coefficient (a) indicates the minimum transmissivity of the atmosphere
in the region, given by diffuse radiation; and (ii) when Ri tends to 1.0, the sum of the
two coefficients indicates the maximum transmissivity of the atmosphere in the region on
clear days and the contributions of diffuse and direct radiation [34].

This methodology is based on obtaining S using Campbell–Stockes heliographs
(Hidromec, Rio de Janeiro, RJ, Brazil), positioned and aligned according to local latitude,
showing the concentration and projection of solar rays in the heliograms, according to
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the apparent diurnal movement of the Sun (the zenith angle). Although simplified, this
analysis can indicate changes in the incidence pattern of direct radiation due to the increase
in atmospheric multireflection and horizontal brightness when S tends to 0.0 [56]. Further-
more, it is worth noting that there may be an incidence of global radiation at a level below
that necessary for the burning of heliograms (estimated at around 120 W m−2); however,
these energy levels can be computed as diffuse radiation in cloudy sky conditions [66].

Models 2 to 13 were developed as modifications to the Angstrom–Prescott model,
with the insertion of second- and third-degree polynomial terms, logarithms, exponentials,
and potentials, and are functions of the variables S, S0, and H0. It was necessary to insert
the expression f(S) = (S + 1) in place of S represented in models 4, 6, and 11 because these
are models limited to days where there is no sunlight (S = 0). This condition represents
4.5% of the historical series of meteorological stations in the Amazon biome.

2.2.2. Simplified Models Based on Air Temperature (S)—Group II

In general, insolation (S) measurements are limited to a few meteorological sta-
tions [9,23]. For example, in China, “S” is monitored in only 30% of the country’s sta-
tions [1]; specifically, in the Amazon biome (the region of this study), it is around 27%.
In developing countries, air temperature is typically the meteorological variable with the
greatest spatial and temporal diffusion of measurements due to the sensors’ simplicity and
wide application [51].

Models 14 to 45 (Table 3) are based on different daily correlations between Hg and
statistical variations in air temperature, such as maximum temperature (Tmax), mean
temperature (Tmed), minimum temperature (Tmin), mean monthly thermal amplitude
(∆Tmed), and daily thermal amplitude (∆T = Tmax − Tmin); these models can also be
classified into five subgroups, depending on different combinations of the input variables:
(Tmax, Tmin, H0), (Tmed, H0), (Tmin, H0), (Tmax, H0), and (Tmax, Tmed, Tmin, H0).

2.2.3. Simplified Models Based on Relative Humidity or Astronomical Variables—Groups
III and IV

In the literature, fewer models have been developed for these input variables since
their relationships with global radiation are indirect, and they have longer response time
intervals with Hg. Relative air humidity can be obtained by psychrometric sets (dry bulb
and wet bulb) or capacitive sensors, and, in this case, in Brazilian conditions, there is
greater availability of daily average values, with models 46 to 49 representing this group.
In turn, models 46 to 54 are based on non-meteorological variables and are generally
directly associated with the time of year, depending on solar declination (δ), the numerical
ordering of the days throughout the year (DJ—Julian day), and extraterrestrial radiation
(H0) (Table 4).

2.2.4. Hybrid Models—Group V

Complex or hybrid models aim to improve the performance of the simplified empirical
models [21], since, in addition to the direct influence of global radiation on air temperature
or insolation, other astronomical and geographic factors can directly interfere with the
incidence of radiation on the Earth’s surface [49]. Table 5 presents 33 models dependent on
the relationships between ϕ, H0, S, S0, Tmax, Tmed, Tmin, RHmed, ∆T, and δ.

2.3. Statistical Performance of Empirical Models

After local calibrations of the coefficients of each model, the t-test (which is a hy-
pothesis test) was performed to assess the significance (with an adopted value of p < 0.05)
of the model coefficient (βa) concerning the standard error of the estimated coefficient
(SEβa) to verify the possibility of using the coefficients and models in the estimation of Hg
(Equation (8)).
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Test − t =
βa

SEβa
(8)

In the literature, several statistical indicators evaluate the performance of the statistical
or parametric models used in meteorological and climate estimates, including for obtaining
Hg [71,72]. In general, the use of the root mean square error (RMSE), mean bias error
(MBE), Wilmott’s “d” index, and the coefficient of determination or R2 (Equations (9)–(12),
respectively) has been recommended.

According to Adaramola [28], the MBE indicator, when positive, represents overesti-
mates, and, when negative, indicates underestimates of the variable studied; the disadvan-
tage of this indicator is that high values with different signs may end up canceling each
other out, generating a small error, which impairs the analysis of the estimation model. The
RMSE index, on the other hand, is represented only by positive values, with values close to
zero being ideal. Since it is a quadratic function, large variations in the data can increase the
values; that is, it is a metric of how the estimated values are spread around the measured
ones. The Willmott index or “d” is an indicator that provides dimensionless values between
0 and 1, and the higher the value, the better the model’s performance. The coefficient of
determination or R2 indicates the quality of the linear relationship between the measured
values (the independent variable) and estimated values (the dependent variable), which
varies from 0 to 1, with values closer to 1 indicating better estimates. Although there are
several statistical indicators, it is not recommended to use only one quality of fit index in
isolation; that is, several indicators should be used together, as they may present different
or similar responses regarding the statistical performance of the models analyzed [10,72].

RMSE =

[
∑N

i=1(Pi − Oi)2

N

] 1
2

(9)

MBE =

[
∑N

i=1(Pi − Oi)
N

]
(10)

d = 1 −
[

∑N
i=1(Pi − Oi)2

∑N
i=1(|Pi − O|+ |Oi − O|)2

]
(11)

R2 = 1 − ∑n
i=1(Pi − Oi)2

∑n
i=1(Oi − 0)2 (12)

where Pi is the estimated value; Oi is the reference value observed at the meteorological
stations; O is the average of the reference values; and N is the number of observations.

3. Results

Although the Brazilian Amazon biome has a tropical climate, variability was observed be-
tween the averages of the meteorological variables in the different seasons evaluated (Table 6).
The annual averages and standard errors of the Hg averages ranged from 15.1 ± 3.59 (Belém)
to 20.6 ± 4.19 MJ m−2 d−1 (Monte Alegre) and generated average atmospheric transmissivity
coefficients of 0.42 ± 0.12 (Belém) to 0.57 ± 0.11 (Monte Alegre); the annual averages of
sunshine (S) ranged from 3.94 ± 2.70 (Eirunepé) to 7.57 ± 2.59 h (Cametá), totaling sunshine
ratios of 0.33 ± 0.22 (Eirunepé) to 0.63 ± 0.21 (Monte Alegre). Regarding air temperatures,
variations of 30.94 ± 0.95 ◦C (Soure) to 33.54 ± 2.75 ◦C (Conceição do Araguaia) were ob-
served for Tmax; from 25.41 ± 1.63 ◦C (Sinop) to 27.83 ± 1.56 ◦C (Roraima) for Tmed; and
from 20.16 ± 2.11 ◦C (Sinop) to 25.34 ± 1.51 ◦C (Soure) for Tmin; therefore, the annual
RHmed varied from 68.54 ± 10.17 (Roraima) to 83.88 ± 6.11% (Barcelos), and the total an-
nual rainfall ranged from 1616 ± 100 (Roraima) to 3205 ± 129 mm (Belém). The annual
averages of the theoretical variables, such as radiation at the top of the atmosphere (H0),
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showed small oscillations (35.76 ± 2.95 to 36.36 ± 2.55 MJ m−2 d−1), depending on the
local latitudes.

Table 6. Annual averages and standard errors of the averages of the meteorological (Hg, S, Tmax,
Tmed, Tmin, RHmed, and rainfall—rainfall of the average annual totals) and astronomical variables
(H0), obtained on a daily scale for the 20 meteorological stations studied in the Brazilian Amazon.

Stations
Hg

(MJ m−2

d−1)

H0
(MJ m−2

d−1)
Kt S

(hours) Ri Tmax
(◦C)

Tmed
(◦C)

Tmin
(◦C)

RHmed
(%)

Rainfall
(mm

year−1)

1 17.17 ± 4.80 36.23 ± 3.40 0.47 ± 0.13 5.58 ± 3.11 0.46 ± 0.26 31.29 ± 2.84 25.60 ± 2.04 21.68 ± 1.96 78.42 ± 12.52 2954 ± 139

2 19.86 ± 5.28 36.12 ± 1.35 0.55 ± 0.14 6.95 ± 3.23 0.58 ± 0.26 31.76 ± 1.65 27.54 ± 1.22 23.97 ± 0.73 76.56 ± 1.22 2100 ± 145

3 17.17 ± 5.23 35.99 ± 1.34 0.48 ± 0.14 4.77 ± 3.12 0.40 ± 0.08 32.02 ± 2.29 26.34 ± 1.23 22.76 ± 1.18 83.88 ± 6.11 2443 ± 72
4 15.64 ± 4.25 36.36 ± 2.55 0.43 ± 0.12 3.94 ± 2.70 0.33 ± 0.22 31.55 ± 2.27 25.92 ± 1.48 22.24 ± 1.39 70.16 ± 14.29 1952 ± 75
5 16.12 ± 5.09 36.05 ± 1.98 0.45 ± 0.14 5.78 ± 3.33 0.48 ± 0.27 31.52 ± 2.24 27.24 ± 1.44 24.01 ± 0.98 79.57 ± 6.57 2339 ± 104
6 17.15 ± 3.84 35.76 ± 2.95 0.48 ± 0.10 5.24 ± 3.30 0.44 ± 0.25 32.75 ± 2.10 26.70 ± 1.30 22.57 ± 1.51 78.86 ± 5.96 2230 ± 103
7 16.34 ± 5.04 35.91 ± 2.03 0.46 ± 0.14 5.52 ± 3.23 0.46 ± 0.27 32.30 ± 2.21 27.74 ± 1.64 24.32 ± 1.22 75.86 ± 9.16 2206 ± 99
8 17.52 ± 5.41 35.88 ± 1.84 0.49 ± 0.14 6.17 ± 3.41 0.51 ± 0.28 31.29 ± 2.07 27.15 ± 1.43 24.24 ± 1.09 81.09 ± 6.72 2343 ± 110
9 15.22 ± 4.76 36.17 ± 1.30 0.42 ± 0.12 4.73 ± 2.81 0.39 ± 0.23 31.30 ± 2.23 26.41 ± 1.45 23.14 ± 1.19 81.46 ± 7.99 2867 ± 46

10 19.13 ± 4.19 35.95 ± 3.96 0.53 ± 0.12 6.03 ± 3.04 0.50 ± 0.26 32.35 ± 2.81 25.41 ± 1.63 20.16 ± 2.11 72.04 ± 15.78 1952 ± 132

11 15.09 ± 3.59 36.04 ± 1.55 0.42 ± 0.10 6.48 ± 2.75 0.54 ± 0.23 32.67 ± 1.35 27.27 ± 1.09 23.56 ± 0.65 78.49 ± 5.75 3205 ± 129
12 20.16 ± 3.78 35.91 ± 1.79 0.56 ± 0.10 7.57 ± 2.59 0.63 ± 0.21 32.47 ± 1.21 27.75 ± 1.13 24.23 ± 1.02 74.36 ± 6.15 2230 ± 137
13 18.64 ± 4.46 35.79 ± 3.26 0.52 ± 0.13 6.96 ± 3.26 0.58 ± 0.28 33.54 ± 2.75 26.83 ± 1.69 21.60 ± 2.12 70.50 ± 12.26 1686 ± 104
14 18.75 ± 4.71 36.03 ± 2.25 0.52 ± 0.13 6.24 ± 3.18 0.52 ± 0.26 32.67 ± 2.17 27.58 ± 1.46 23.85 ± 0.96 74.87 ± 7.16 2069 ± 95
15 18.25 ± 3.87 35.82 ± 2.57 0.51 ± 0.11 6.36 ± 3.10 0.53 ± 0.26 32.26 ± 1.95 26.59 ± 1.14 22.40 ± 1.37 76.53 ± 7.75 1885 ± 123
16 20.61 ± 4.19 36.13 ± 1.71 0.57 ± 0.11 7.53 ± 2.79 0.63 ± 0.23 31.66 ± 1.69 27.54 ± 1.29 23.97 ± 1.05 75.30 ± 6.98 1661 ± 104
17 16.64 ± 4.52 36.21 ± 2.31 0.46 ± 0.12 6.70 ± 3.21 0.56 ± 0.26 33.08 ± 2.45 26.84 ± 1.46 22.74 ± 0.78 78.22 ± 8.71 2572 ± 107
18 19.82 ± 4.30 35.96 ± 1.38 0.55 ± 0.12 6.89 ± 3.55 0.57 ± 0.29 30.94 ± 0.95 27.71 ± 1.04 25.34 ± 1.51 76.98 ± 6.03 2093 ± 74
19 16.95 ± 3.48 36.06 ± 1.99 0.47 ± 0.09 6.22 ± 2.81 0.52 ± 0.23 31.43 ± 1.68 26.73 ± 1.15 23.36 ± 0.94 78.42 ± 7.70 2400 ± 157

20 19.35 ± 4.35 35.99 ± 1.77 0.54 ± 0.11 6.49 ± 2.87 0.54 ± 0.23 33.51 ± 2.22 27.83 ± 1.56 23.70 ± 1.07 68.54 ± 10.17 1.616 ± 100

Global radiation (Hg, MJ m−2 d−1), extraterrestrial radiation (H0, MJ m−2 d−1), transmissivity coefficient (Hg/H0),
insolation (S, hours), photoperiod (S0, hours), insolation ratio (S/S0), maximum temperature (Tmax, ◦C), average
temperature (Tmed ◦C), minimum temperature (Tmin, ◦C), average relative humidity (RHmed, %), and rainfall
(mm year−1).

When analyzing the correlations between the meteorological variables (Figure 2)
together for the 20 meteorological stations, it is observed that, for global radiation, only
in the correlation with the mean relative humidity (RHmed) does a decrease in Hg occur
with an increase in RHmed; in this case, when adjusting the simple linear regression
[Hg = 37.74 − 0.2627 RHmed], a correlation coefficient of −0.52 was obtained. On the other
hand, the worst correlations are observed with Tmin (correlation coefficient “r” = 0.081).
Weak correlations between Hg and Tmin or RHmax are expected since these two variables
are interdependent regarding the times of occurrence (normally at night—an absence of
solar radiation). Stronger and increasing correlations of Hg with Tmed and Tmax are also
observed, with correlation coefficients of 0.56 and 0.66, respectively; as for the insolation (S)
measured in the heliographs, it is found that there is a linear coefficient that indicates the
existence of S for minimum Hg values of approximately 2.0 MJ m−2 d−1, with a correlation
coefficient of 0.83 and smaller dispersions.

For the frequency distributions, normal distributions are observed for Tmax, Tmed,
and Tmin; for Hg and RHmed, the averages occur in percentiles above 60%. Regarding S,
there are higher percentages of cloudy days (S = 0) and an increasing frequency of occur-
rences between 1 and 11 h of insolation. The Hg interpolations show greater uniformity
when associated with Tmax and S. To evaluate the behavior of global radiation throughout
the year as a function of the seasonality of rainfall in the Amazon biome, the grouping
of monthly data for the 20 meteorological stations was considered, and the values were
plotted in boxplots (Figure 3).
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(Hg, Tmax, Tmin, Tmed, RHmed, and S) in the Brazilian Amazon biome.

Although many meteorological stations are located at close latitudes, the average
global radiation incidence can vary significantly among themselves; for example, at the
meteorological stations of Macapá (0.035◦ N), Barcelos (−0.98◦ S), and São Gabriel da
Cachoeira (−0.12◦ S), where the median Hg values were 21.52, 18.09, and 15.79 MJ m−2 d−1,
respectively, this behavior shows the influence of precipitation (cloudiness) on Hg, since,
at these meteorological stations, the annual rainfall totals are 2100, 2433, and 2867 mm,
respectively. It is also possible to consider in the comparison between these same three
meteorological stations that the effect of the proximity of large surfaces of free water (as
occurs in Macapá) is that the incidence of Hg depends on the movements of regional or
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mesoscale atmospheric circulation. On water-free surfaces, there may be a potential increase
in actual water vapor pressures (ea) in the atmosphere, due to higher levels of direct water
evaporation. However, this water vapor can be transported in the atmosphere to other
regions by winds, thus reducing the attenuation of water vapor in Hg on a local scale.
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and minimum limits of the daily values are represented). 

Another way to observe the variations of Hg in the Brazilian Amazon can be 
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(Figure 4) by comparing the daily seasonality of Hg throughout the analyzed period for 
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Figure 3. Monthly boxplots of measured daily global radiation (Hg—black lines and markers) and
calculated extraterrestrial radiation (H0—red lines and markers) monthly for 20 meteorological
stations in the Brazilian Amazon (for each cluster of monthly data, the median, mean, maximum, and
minimum limits of the daily values are represented).
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In the rainy season (October to April), Hg averages are generally lower compared
to the dry season (May to September) in the region. It is worth noting that the minimum
values of global radiation as an outlier in the rainy season for most of the EMAs evaluated
are related to the presence of clouds. However, they can also occur in the dry season when
associated with fires, common in the region during this period. They emit particulate
matter that remains suspended in the atmosphere, thus attenuating Hg through absorption
and non-selective diffusion and reducing atmospheric transmissivity.

Another way to observe the variations of Hg in the Brazilian Amazon can be per-
formed between meteorological stations located at different latitudes of the biome (Figure 4)
by comparing the daily seasonality of Hg throughout the analyzed period for the meteoro-
logical stations of Boa Vista (2.82◦ N), Manaus (3.10◦ S), and Sinop (11.85◦ S). It is noted
that in Sinop the maximum Hg reached close to 30 MJ m−2 d−1. There is less variation in
the daily averages in the dry season than in the rainy season. Furthermore, as the time of
year influences extraterrestrial radiation (H0), it is clear that, in the dry season, due to the
solar declination and the latitude of Sinop, the daily H0 values are lower, and, consequently,
they can generate higher atmospheric transmissivity coefficients when compared to other
meteorological stations in the biome.
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Each simplified Hg estimation model’s specific coefficients (a, b, c, and d) were
calibrated using the Statistica 14.0.0.15 software. By using the t-test at a significance level of
5%, the significance of the adjusted coefficients for each model was verified. The values of
the adjusted coefficients for the best models in the 20 meteorological stations evaluated can
be found in Table 7. The results of the statistical performance indicators (MBE, RMSE, and
Willmott’s “d”) were presented only for the models with adjusted coefficients that were
significant at 5%.

Table 7. Calibrated coefficients for models 10, 45, and 62 of estimates of daily global radiation for
each meteorological station evaluated in the Brazilian Amazon biome.

Met.
Stations

Model 10 Model 62

a b c R2 a b c d R2

1 0.2122 0.4784 0.7003 0.772 0.0324 0.1163 0.3607 0.8035 0.8052
2 0.1995 0.538 0.7178 0.8958 0.0396 0.1123 0.4516 0.8104 0.9071
3 0.2142 0.4846 0.5639 0.8045 0.0351 0.1127 0.3832 0.6435 0.8262
4 0.2233 0.4343 0.5737 0.758 - - - - -
5 0.1817 0.4678 0.6911 0.8221 0.0479 0.0936 0.3885 0.7413 0.8376
6 0.2769 0.3842 0.6852 0.7606 0.1265 0.0815 0.3178 0.683 0.7777
7 0.2041 0.4737 0.7516 0.7846 0.0518 0.0969 0.4094 0.8466 0.7992
8 0.1672 0.527 0.6562 0.8933 0.0733 0.0728 0.4662 0.7124 0.9003
9 0.1825 0.4718 0.6701 0.7713 −0.0453 0.1738 0.2741 0.9689 0.8673

10 0.3103 0.4191 0.852 0.6359 0.1515 0.0821 0.3388 0.8233 0.665
11 0.2171 0.3681 0.9748 0.6563 0.0794 0.0846 0.3203 1.25 0.6658
12 0.2159 0.4893 0.7101 0.8452 0.1109 0.0687 0.4474 0.7844 0.852
13 0.197 0.494 0.6848 0.8221 0.1327 0.041 0.4448 0.6997 0.8263
14 0.2113 0.494 0.6286 0.887 0.1042 0.0718 0.4294 0.6683 0.8954
15 0.2355 0.4382 0.6629 0.8081 0.0935 0.0862 0.36 0.6808 0.8256
16 0.2055 0.5173 0.6947 0.9029 0.1331 0.0499 0.4823 0.7233 0.9068
17 0.1968 0.4229 0.7587 0.794 0.0487 0.0876 0.3483 0.8363 0.8065
18 0.278 0.4029 0.6001 0.8422 0.2053 0.045 0.4053 0.6424 0.8477
19 0.2549 0.3692 0.778 0.6905 0.123 0.0836 0.3203 0.9069 0.7108
20 0.2453 0.4656 0.7138 0.8429 0.1176 0.0766 0.4036 0.7679 0.8503

Met.
Stations

Model 45

a b c d e R2

1 7.1 −0.413 −13.02 6.47 0.3146 0.6513
2 18.05 −1.06 −32.94 16.11 1.08 0.7264
3 6.68 −0.3971 −13.03 6.39 1.04 0.7197
4 4.56 −0.2595 −8.59 4.26 0.4144 0.6825
5 12.48 −0.7875 −23.28 11.62 0.7932 0.7007
6 10.72 −0.5403 −18.54 8.83 0.3082 0.6095
7 14.57 −0.8666 −26.66 13.08 0.8747 0.6124
8 13.14 −0.9469 −25.69 13.19 1.17 0.7341
9 1.52 −0.0997 −3.45 1.84 0.4104 0.8

10 7.33 −0.3692 −12.76 6.12 0.2696 0.4998
11 13.04 −0.6702 −22.98 10.87 0.8086 0.4661
12 - - - - - -
13 2.93 −0.2 −6.02 3.16 0.3889 0.629
14 13.7 −0.8282 −25.04 12.42 0.5538 0.6981
15 5.06 −0.3339 −9.95 5.1 0.4996 0.6639
16 27.61 −1.71 −50.07 24.76 1.09 0.6741
17 13.64 −0.6925 −23.86 11.31 0.5745 0.6767
18 −33.41 1.81 55.84 −26.79 1.72 0.3738
19 - - - - - -
20 11.07 −0.5971 −20.36 9.72 1.17 0.7435

The statistical performance of the empirical models was represented in boxplots,
grouping all the meteorological stations (Figure 5). Analyzing the models in group I, more
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significant improvements need to be made when comparing the polynomial changes of the
traditional Angstrom–Prescott model (model 1). Overall, for this group, the values of the
coefficient of determination (R2), relative error (MBE), spread (RMSE), and fit (d) were, on
average, 0.7780, −0.01 MJ m−2 d−1, 2.09 MJ m−2 d−1, and 0.9310, respectively. In this group,
model 11 [Hg/H0 = a(1/(f(S)/S0))] presented the worst statistical performances, with
the R2, MBE, RMSE, and average d being 0.4980, −0.329 MJ m−2 d−1, 3.34 MJ m−2 d−1,
and 0.9140, respectively. Furthermore, when comparing the models that present the same
analytical basis, it is observed that model 10

[
Hg/H0 = a + b(S/S0)

c] presented a superior
statistical performance to the remaining models dependent on insolation (S) with the R2,
MBE, RMSE, and average d being 0.7990, 0.017 MJ m−2 d−1, 1.95 MJ m−2 d−1, and 0.9400.
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Figure 5. Boxplots of statistical performance indicators (R2, MBE, RMSE, and d) for 87 simplified
Hg estimation models, considering the grouped values of 20 meteorological stations of the Brazilian
Amazon biome. Coefficient of determination, R2; mean bias error, MBE; root mean square error,
RMSE; and Willmott’s concordance index, d (for each boxplot of each model, the median, mean,
maximum, and minimum limits of the daily values are represented).
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Regarding the simplified models of group II (based on air temperature), model
23 [Hg/H0 = a + b ∗ Tmin] was dependent only on Tmin, and H0 was NS for all the
meteorological stations evaluated. This behavior is expected because the minimum
air temperature is not simultaneous with the incidence of solar radiation. Model 24
[Hg/H0 = a + b ∗ Tmax], dependent on Tmax and H0, was the only model with signifi-
cant coefficients in all the meteorological stations evaluated; however, it did not present the
best statistical performance indicators on average. In general, of the 32 models evaluated
in this group (involving air temperature), model 17 [Hg/H0 = a + b/H0 + cTmed/H0]
represented the worst statistical performance, with an R2, MBE, RMSE, and Wilmott’s d
average of 0.3520, 0.099 MJ m−2 d−1, 3.43 MJ m−2 d−1, and 0.6930, respectively; model 45[
Hg/H0 = a + b∆T + c∆T0.25 + d∆T0.5 + e(Tmed/H0)

]
presented the best performance

with an R2, MBE, RMSE, and average d of 0.6430, 0.056 MJ m−2 d−1, 2.68 MJ m−2 d−1, and
0.8730. However, these models did not present significant adjustments for the meteorologi-
cal stations located in Cametá and Tucuruí.

Empirical models that employ the thermal amplitude [∆T = Tmax− Tmin] as an input
variable present a better estimate. Comparing the performance of model 14

[
Hg/H0 = a∆T0.5

]
and model 16

[
Hg/H0 = a+ b∆T0.5

]
, it is observed that the insertion of the linear coefficient

significantly improves the statistical performance, since the R2 values varied from 0.4420
to 0.5150, with a reduction in the MBE from 0.154 to −0.003 MJ m−2 d−1 and in the RMSE
from 3.33 to 3.05 MJ m−2 d−1 and also with an increase in the adjustment index (d) from
0.7312 to 0.8257.

The simplified models of group III (based only on the average daily relative
humidity—RHmed) did not present significant coefficients by the t-test at the meteoro-
logical stations of Eirunepé, São Gabriel da Cachoeira, and Sinop. As a rule, the statis-
tical performances of the models in group III were worse when compared to the mod-
els in the other groups. In this case, the best estimates in this group were generated by
model 46 [Hg/H0 = a/H0 + b(RHmed/H0)], with R2, MBE, RMSE, and d values of 0.4130,
0.034 MJ m−2 d−1, 3.38 MJ m−2 d−1, and 0.7420, respectively. As for the models in group
IV (based on astronomical variables), none presented statistical significance for any of the
meteorological stations evaluated. In group V (the hybrid models), the best estimates of Hg
were generated by model 62

[
Hg/H0 = a + bln∆T + c(S/S0)

d
]
, with mean values of R2,

MBE, RMSE, and d of 0.8170, 0.008 MJ m−2 d−1, 1.86 MJ m−2 d−1, and 0.9460, respectively.
Considering only the models that presented the best statistical performances in each

group (Figure 6), it is observed that, in most meteorological stations, the best Hg es-
timates were generated by models 62 and 10. In this case, model 62 presented val-
ues ranging from 0.6714 to 0.9137 for R2, from −0.112 to 0.154 MJ m−2 d−1 for MBE,
from 1.22 to 2.46 MJ m−2 d−1 for RMSE, and from 0.8921 to 0.9772 for the adjustment in-
dex (d). Model 10 presented variations in R2 from 0.6549 to 0.9091, MBE from −0.103
to 0.115 MJ m−2 d−1, RMSE from 1.26 to 2.58 MJ m−2 d−1, and the “d” index from
0.8793 to 0.9760.

The main difference between the input variables of these two models is the addition
of the Naperian logarithm (ln) in the thermal amplitude (Tmax - Tmin) in model 62, which
did not significantly improve the model’s predictive capacity. However, it is noteworthy
that these two models (62 and 10) are based on sunlight; therefore, in cases of minimum
data availability, model 45, which depends only on air temperature, should preferably be
used since it generates better responses than the models associated with relative humidity.

Figure 7 presents the dispersions of Hg measured and estimated by models 10, 45, and
62 for the three aforementioned meteorological stations that represent the latitude variation
in the Amazon biome (Boa Vista, Manaus, and Sinop). In this case, four different classes of
atmospheric transmissivity were considered, which represent the conditions of a cloudy sky
(0 < Kt < 0.35), partly cloudy with a predominance of diffuse radiation (0.35 < Kt < 0.55),
partly open with a predominance of direct radiation (0.55 < Kt < 0.65), and an open sky
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(Kt > 0.65), as recommended by Escobedo et al. [73] and Souza et al. [15]. Almost always,
the global radiation estimated by models 10 and 62 were similar and followed close to
the reference line (1:1), with a greater dispersion of the estimated values when Kt was
below 0.55.
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Figure 7. The dispersion between the global radiation measured and estimated by models 10, 45,
and 62 for the meteorological stations of Boa Vista (RR), Manaus (AM), and Sinop (MT) in different
classes of atmospheric transmissivity. The gray line represents the relationship 1:1 or y = x.

The absolute accumulated errors in the frequency of occurrence (Figure 8) up to the
value of 2.0 MJ m−2 d−1 in the Hg estimate using models 10, 45, and 62 at the meteorological
stations of Boa Vista and Sinop was 84, 83, and 85% and 67, 68, and 68%, respectively;
however, in Manaus, there was a significant difference in the values, with values of 75,
64, and 82%. Depending on the city evaluated, the frequency of the accumulated error
up to 2.0 MJ m−2 d−1 can be high (Boa Vista) or low (Sinop); that is, local meteorological
conditions directly influence the error.
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models 10, 45, and 62 and different atmospheric transmissivities.

The reduction in the accumulated absolute error by up to 2.0 MJ m−2 d−1 in mete-
orological conditions of low atmospheric transmissivity (0 < Kt < 0.35) is more efficient
in hybrid model 62 (55 to 85%) when compared to model 10 (33 to 80%) and model 45
(38 to 74%), following the same trend in the meteorological conditions of high atmospheric
transmissivity (Kt > 0.65), with accumulated frequencies for model 62 of 82 to 93%, model
10 of 78 to 87%, and model 45 of 32 to 71%. In the condition of partially cloudy skies
with a predominance of diffuse radiation (0.35 < Kt < 0.55), when comparing model 10
(67 to 81%) and model 62 (67 to 79%), there was no difference in the accumulated error;
however, model 45 (60 to 70%) had the greatest possibility of errors above 2.0 MJ m−2 d−1.
This pattern was repeated in the condition of partially open skies with a predominance of
direct radiation (0.55 < Kt < 0.65) with model 10 (87 to 93%), model 62 (88 to 92%), and
model 45 (71 to 84%).

To allow the applications and estimates of Hg, the adjusted coefficients are presented
only for these three simplified models (10, 45, and 62), in the 20 meteorological stations
evaluated in the Amazon biome (Table 7). The calibrated coefficients for each model and
weather station are presented as supplementary materials to the article. In some cities, models
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45 and 62 were NS (not significant). For group II (based on air temperature), model 65 is
recommended for the cities of Cametá [Hg = (−0.0942+ (−0.2688+ 0.0179Tmed)∆T0.5)H0]
and Tucuruí [Hg = (0.0655+ (−0.1478+ 0.0108Tmed)∆T0.5)H0 ] , and, in group V (the
hybrid combination), model 72 presented the best performance for the city of Eirunepé
[Hg = (−0.0947 − 0.0077Tmin + 0.0188Tmax + 0.3163(S/ S0))H0 ].

4. Discussion

The results found in this study provide details of the local calibration and statistical
significance of the coefficients of 87 models for the daily estimation of global radiation
in tropical climate regions, having as input variables meteorological data that can easily
be made available by routine measurements at meteorological stations. Determining the
significance of the coefficients of each model is relevant information in the modeling since
the lower P-value of the t-test at the α significance level (5%) indicates that, in the region
evaluated, the meteorological and environmental conditions may be complex and cause
greater uncertainties in the Hg estimate [35]. This can be observed by the large number of
models with locally calibrated NS coefficients. As observed in Figures 2–4, insolation (S)
and global radiation (Hg) incidence in the Amazon biome are significantly influenced by
atmospheric components, such as the emission of aerosols into the atmosphere through the
burning of vegetation in the dry season of the Amazon basin [19] or the presence of clouds
due to high rainfall in the rainy season [63,74].

These conditions are the main factor in attenuating Hg and the increase in uncertainty
in the insolation values due to the sensitivity to heliograph burning and maintenance. Ac-
cording to the results (Figure 5), the best statistical performance was obtained by modifying
the Angstrom–Prescott linear model to a model that uses power in its explanatory variable[
Hg/H0 = a + b(S/S0)

c]. According to Almorox and Hontoria [34] and Bakirci [35], de-
pending on the atmospheric transmissivity conditions, the relationship between S and Hg
can be better represented by linear, polynomial, logarithmic, exponential, or hybrid correla-
tions. For Santos et al. [30], even in conditions where there is an absence of cloudiness (an
open sky), the elements present in the Earth’s atmosphere can attenuate solar radiation by
diffusion (scattering) and influence Hg.

When evaluating the different models of group I under the climatic conditions of
Turkey, Bakirci [35] did not observe significant differences in the statistical performances of
the linear, exponential, and logarithmic models, obtaining coefficients of determination (R2)
greater than 0.96, MBE values ranging from 0.20 to 0.24 MJ m−2 d−1, and RMSE values from
1.31 to 1.35 MJ m−2 d−1. Almorox and Hontoria [34], in sixteen cities in Spain, evaluated
linear and polynomial models of the second- and third-degree, as well as logarithmic and
exponential models, based on insolation (S), and concluded that all statistical models could
be used to estimate Hg with good precision; however, they recommended the linear model
due to its simplicity and because it presents a better statistical performance.

It was observed that the performance of models 8, 9, and 11, which do not have a
linear coefficient (a), was lower in all cities. According to Prieto and García [11], this coeffi-
cient represents the minimum transmissivity of the region’s atmosphere and is associated
with diffuse radiation. In the Amazon, this condition represents a considerable part of
global radiation due to the seasonality of rainfall and changes in the composition of the
atmosphere [15], and, therefore, models that do not present coefficients that characterize
days with low atmospheric transmissivity can generate larger errors for adjustments in an-
nual or seasonal groupings; in cases of monthly adjustments, these models can potentially
present good estimates for dry months (with an absence of cloudiness) in some regions
of the Amazon.

Nevertheless, regarding interference, in some regions, climate change can increase
precipitation, which results in a reduction in atmospheric transmissivity and, consequently,
in the adjustment of models, as is the case in the city of Boa Vista, where, according to
Araújo et al. [74], analyzing the period of meteorological data from 1961 to 2020 and the
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variations between the two climatological models, there was an increase in precipitation
from 1420.4 to 1761.8 mm year−1 and in the average air temperature from 27.4 to 28.2 ◦C.

For the group II models (based on air temperature), the best estimates of daily
global radiation were obtained with a certain model [Hg/H0 = a+ b(Tmax − Tmin) +
c(Tmax − Tmin)0.25 +d(Tmax − Tmin)0.5 + e(Tmed/H0)], corroborating the results found
by Qiu et al. [1]. These authors evaluated 78 models based on air temperature for
105 meteorological stations in China and concluded that models that relate thermal am-
plitude [∆T = Tmax − Tmin] and maximum, mean, and minimum temperatures (Tmax,
Tmed, and Tmin) present better estimates. In models based on air temperature, ∆T is
related to several local factors that directly influence the radiation and energy balance, such
as latitude, rainfall, current water vapor pressure, atmospheric transmissivity (cloudiness),
and proximity to large free water surfaces, among other factors [30]. This is an essential
parameter in models based only on air temperature when the aim is to improve predictive
capacity, since ∆T has a good correlation with Hg [1].

It is also worth noting that the statistical performance of the empirical models of
groups I and II in estimating Hg in the Amazon can be considered satisfactory. Sometimes,
depending on the study region and the input variables, an empirical model may present a
variable performance depending on the climatic conditions of the region; for example, in
this study under tropical conditions, model 37 [Hg/H0 = a + bH0Tmc] presented the worst
performance in group II with coefficients of determination ranging from 0.2765 to 0.4000.
In these cases, the adjusted coefficients were insignificant in 55% of the meteorological
stations evaluated. However, for the Cairo region (Egypt) with its dry and desert climate,
Hassan et al. [12], evaluating 20 models based on air temperature, found that this same
model (37) presented the best statistical performance in daily Hg estimates, with an RMSE
of 0.5813 MJ m−2 d−1 and an R2 of 0.9897.

The significance of regionally calibrated empirical models can be considered the com-
bination of two factors: the first related to the input meteorological variables representing
the location’s environmental conditions, and the second due to the empirical model’s struc-
ture. The lowest performances in the estimation of Hg were obtained with the empirical
models based on relative humidity (group III). The group III models generally presented
good estimates in arid regions with low annual rainfall totals, such as Nigeria [29,49],
Bahrain [39], and Turkey [55].

The five models in group IV were NS for all 20 meteorological stations evaluated. The
astronomical input variables, such as solar declination, photoperiod, and Julian day, are
variables that do not consider local factors related to atmospheric and geographic condi-
tions, which can directly interfere with global radiation incidence on the surface, where
the use of radiometric fractions aims to minimize these effects [15,73]. Group IV models
are used in countries with arid regions, low rainfall, and high atmospheric transmissivity,
such as Saudi Arabia [50] and Jordan [56]. Although the statistical performances of hybrid
models (group V) are better when compared to simplified models with air temperature
(group II) and relative humidity (group III), these differences are reduced when compared
to models based on insolation (group I) (Figure 6). Several studies report considerable
differences in the performance of simplified models compared to hybrid models in different
climatic regions [2,9–11,21,30].

When analyzing the variations in estimates at meteorological stations at different
latitudes in the Amazon (Figure 7), it is again observed that, in general, the models have
greater difficulty in estimating days and times of the year with intermediate atmospheric
transmissivity (partly cloudy or partially clear skies). According to Santos et al. [30],
different combinations of cloud cover can result in the same ∆T value, but each combination
of cloud cover results in a single Hg value.

Another point to be highlighted is that using models based on air temperature gener-
ally leads to overestimations of Hg [2,10,23,30]. This behavior occurs because air temper-
ature depends on surface heating processes, energy balance, and heat transport, which,
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in turn, can reflect levels of sensible heat higher than those that would potentially be
generated exclusively by Hg incidence.

Models 10, 45, and 62 presented consistencies in Hg estimates, each with its input
variables (from the groups). Due to the spatial distribution of the 20 meteorological stations
evaluated, they can be used in the Brazilian Amazon. Despite the good adjustments
of the empirical models found in this work, according to Prieto and García [11], after
reviewing articles published in the last 100 years on this topic, they found that none of the
165 empirical models with different input variables were consistent and presented good
performances in the different climatic regions. This becomes more worrying with climate
change scenarios, which predict rising air temperatures and changes in rainfall patterns
and gas concentrations, which will directly interfere with the radiation balance [2,18].
This climate change scenario has also been observed in the Amazon biome region, with
increased rainfall and air temperature [74,75]. Therefore, it is essential to understand
and make available as many models for estimating meteorological variables as possible,
allowing regional calibrations and applications in large databases to fill gaps and generate
long and consistent databases.

Finally, the empirical models must be recalibrated when these climate change con-
ditions materialize. New studies, mainly in smaller data groups (seasonal and monthly),
must be conducted to update the coefficients and maintain the predictive capacity of the
different empirical models.

5. Conclusions

The most accurate empirical models for estimating global radiation (Hg) for the
Brazilian Amazon biome were, first, the hybrid model based on insolation and air tem-
perature, represented by

[
Hg/H0 = a + bln∆T + cS/S0

d
]
, followed by the model based

on insolation [Hg/H0 = a + bS/S0
c], and, finally, the model based on air temperature[

Hg/H0 = a + b∆T + c∆T0.25 + d∆T0.5 + eTmed/H0

]
.

It is not recommended to use simplified models based solely on relative humidity or as-
tronomical variables to estimate Hg in the Amazon in annual data groupings; these models
may present better statistical performances if they are locally calibrated for meteorological
stations with well-defined dry and rainy seasons.

Cloudiness and rainfall seasonality affect atmospheric transmissivity and estimates of
global radiation. In this case, future updates of these analyses should consider the models
that generated the best estimates and seek analyses in seasonal (year or water seasons)
and monthly database groupings. The recommendation of simplified models that produce
good Hg estimates will also allow comparisons with other methodologies, such as machine
learning and reanalysis.

Therefore, generating conditions that bring about the knowledge of global radiation
will contribute to numerous agricultural and environmental applications, providing a
comprehensive context for applying these estimates on larger spatial and temporal scales.
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