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Abstract: Against the backdrop of intensified global climate change, the frequency and intensity
of extreme weather events in mainland China continue to rise due to its unique topography and
complex climate types. In-depth research on the trends and impacts of climate extremes can help
develop effective adaptation and mitigation strategies to protect the environment and enhance
social resilience. In this research, temperature data from 2029 meteorological stations for the period
1961–2021 were used to study 15 extreme temperature indices and 3 extreme composite temperature
indices. Linear propensity estimation and the Mann–Kendall test were applied to analyze the spatial
and temporal variations in extreme temperatures in China, and Pearson’s correlation analysis was
used to reveal the relationship between these indices and atmospheric circulation. The results
show that in the past 60 years, the extreme temperature index in China has shown a trend of
decreasing low-temperature events and increasing high-temperature events; in particular, the increase
in warm nights is significantly higher than that of warm days. In terms of spatial distribution,
daily maximum temperature less than the 10th percentile (TX10P) and daily minimum temperature
greater than the 90th percentile (TN90P) increased significantly in the warm temperate sub-humid
(WTSH) region, north subtropical humid (NSH) region, and marginal tropical humid (MTH) region,
whereas frost days (FD0) and diurnal temperature range (DTR) decreased significantly. In the
extreme composite temperature index, extreme temperature range (ETR) showed a downward
trend, while compound heatwave (CHW) and compound heatwave and relative humidity (CHW-
RH20) increased, with the latter mainly concentrated in the WTSH and NSH regions. Correlation
analysis with climate oscillation shows that Arctic Oscillation (AO), Atlantic Multiannual Oscillation
(AMO), and El Niño–Southern Oscillation (ENSO) are positively correlated with extremely high
temperatures, whereas North Atlantic Oscillation (NAO) and Pacific Decadal Oscillation (PDO) are
negatively correlated.

Keywords: extreme composite temperature index; China region; space–time change; climate oscillation;
Mann–Kendall test

1. Introduction

Climate change is currently a serious challenge for humankind, with extreme weather
being one of the most significant risks facing the world in both the short and long term [1].
The report of the 20th Party Congress pointed out that timely and accurate analysis and
prevention of extreme weather and the all-round protection of people’s lives and safety
are the primary tasks of high-quality meteorological development [2]. The United Nations
Intergovernmental Panel on Climate Change (IPCC) outlined in its Sixth Assessment Report
that the occurrence of various extreme weather events has caused water and food crises
for millions of people, with such phenomena being extremely prominent in Asia, Africa,
and other regions [3]. Under the dual background of the impacts of human activities and
global warming, extreme climate events have shown new trends of increasing frequency,
increasing harm, and growing time, which have posed great challenges to the production
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and development of human societies, the safety of life and property, and the stability of
ecosystems [4–6]. A developing country with a population of 1.4 billion, China has complex
and diverse topography and climate types, making it a sensitive and significant impact
area of global climate change. This has deeply affected agricultural development, food
security, infrastructure security, water resources, and natural ecosystems [7–9].

Extreme-temperature events are usually defined as low-probability events with sig-
nificant damage that occur when the daily maximum or minimum temperature exceeds
a specified threshold within a certain period of time, mainly including extremely high
temperatures and extreme cold waves [10]. Since 2008, a number of relevant studies have
proved that the morbidity and mortality caused by extreme-temperature events have con-
tinued to increase [11–13]. Long-term exposure to extremely high temperatures not only
causes the most common symptoms of heat stroke, such as fainting, vomiting, and shock,
but also leads to decreased attention and short-term memory impairment, accompanied
by acute heart failure, chronic cardiovascular and cerebrovascular diseases, and respira-
tory diseases [14]. Long-term exposure to low-temperature and cold-wave environments
causes the body to dissipate more heat than the body produces, which results in heat loss
and increases the occurrence of low back pain, arthritis, rheumatism, and frostbite, and
indirectly induces hypertension, pneumonia, myocardial infarction, and other diseases [15].
In addition, extreme-temperature events can cause a series of serious consequences such
as increased power loss, infrastructure disruptions, food supply difficulties, paralysis of
medical systems, communication signal failure, and even global economic crises [16–18].

Extreme-temperature events have attracted widespread attention from governments
and meteorologists worldwide, becoming a current research hotspot. The research scales
include the global, national, and watershed levels, among which the 16 extreme temperature
indices recommended by the World Meteorological Organization (WMO) are the most
widely used [19–23]. Zhang et al. found that in the past 50 years, over 70% of the global
land area has experienced a significant increase in the number of warm nights and days,
while the number of cold days and nights has significantly decreased, with the reduction
in the extreme cold index being greater than the increase in the extreme warm index [24].
Lucas et al. studied the extreme climate index of the Xingu River Basin in Brazil and found
that its extreme temperature index showed a significant upward trend [25]. Brown et al.
showed that since 1950, global nighttime extreme high-temperature events have increased
significantly, while extreme low-temperature events have decreased significantly, and the
average daily temperature difference has been in a decreasing trend [26]. Kalyan et al. found
that the extreme temperatures in the Gomati River basin in northern India have generally
risen [27]. At the regional scale, there is significant consistency in extreme temperature index
changes in regions such as the Asia–Pacific region, Saudi Arabia, Central and North South
America, the Middle East, and Canada [28–30]. Many scholars in China have conducted
extensive research on the Yangtze River Basin, Yellow River Basin, and provinces and
municipal administrative regions. Zhang Ning et al. studied meteorological data from
234 stations in China from 1955 to 2005, and the results showed a clear upward trend in
China’s annual and seasonal extreme low temperatures, with the increase in extreme low
temperatures being significantly larger than that of extreme high temperatures [31]. The
extreme temperatures in all four seasons had varying degrees of warming trends, with the
warming amplitude being particularly acute in winter. Chen et al. quantified the detectable
impact of extreme summer heat in China based on data from 372 stations from 1960 to
2016, against the backdrop of global warming of 0.5 ◦C in the past [32]. The research results
indicate that global warming has contributed to the emergence and prevalence of complex
extreme high temperatures (continuous hot day and night). In southeastern China, the
lower reaches of the Yangtze River, and northern China, the frequency of extreme high
temperatures has increased by 2–4 times, and the duration and intensity have increased by
2–3 times. Zheng et al. investigated the spatiotemporal variations in heatwaves in northern
China over the past 60 years, focusing on the heatwave events that occurred from 1961 to
2020 [33]. The results indicate that, on a time scale, the frequency, duration, and intensity
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of heatwaves have shown a significant increasing trend. From the perspective of the spatial
distribution, heatwave-prone areas are concentrated in the central and northern parts of the
study area, with a greater increasing trend in Inner Mongolia, Gansu, and Xinjiang, while
heatwave events rarely occur in Anhui and northern Jiangsu. Over the past half a century,
heatwave events in northern China have shown an increasing trend year by year with a
high degree of consistency in both time and space. Zhang et al. established a temperature
series dataset for 10 cities in the Yangtze River Basin from 1901 to 2020 based on daily
meteorological records from the early 20th century [34]. Research has found that in the
past 40 years, the annual average temperature in these cities has significantly increased.
In the past 120 years, the temperature rise trend in Chongqing and Shanghai has been
particularly significant, with Shanghai experiencing greater warming than Chongqing,
and the trend of change in Shanghai over the past 40 years is even more pronounced. In
addition, the changes in regional extreme-temperature events are not only affected by
global warming but are closely related to the urbanization process and the multi-annual
variability of the East Asian monsoon. Zhang et al. found that extreme high-temperature
events have increased significantly in most areas of the Yangtze River Basin over the past
60 years, especially since the 21st century, and the comprehensive risk of extreme climate
events has continued to rise [35]. Sun et al. analyzed the spatial and temporal distribution
characteristics of extreme-temperature events in Sichuan Province, and the research showed
that their extreme value index and the numbers of high-temperature days, warm days,
and warm-night days in Sichuan Province all showed a significant upward trend, while
the numbers of frost days, cold days, and cold-night days showed a gradual downward
trend [36]. Gegen et al., using temperature and precipitation data from the Qaidam Basin
from 1960 to 2014, found that the extreme temperatures generally exhibited a significant
warming trend, with the magnitude of change gradually decreasing from west to east [37].
Significant periods of freezing and growing season days also showed a lengthening trend.
Overall, the extreme warm index showed a clear upward trend, while the extreme cold
index showed a downward trend, but there were still significant spatial differences in
different regions.

Among the different types of extreme-temperature events, the frequency and intensity
of extreme heat events have significantly increased globally, closely related to anthropogenic
global warming [38]. The above conclusions regarding changes in extreme heat were
mainly based on univariate indices. Extreme heat usually refers to events where the
maximum temperature during the day or the minimum temperature at night exceeds the
90th percentile [39]. According to this definition, hot days and hot nights should only
occur during the day and night, respectively. However, definitions based on a single
variable may not be able to identify the expected hot days and nights. If the maximum
and minimum temperatures on a certain day exceed the set threshold, then that day can
be defined as an extreme high-temperature day, more precisely a compound of daytime
and nighttime heat [40]. There are significant differences in the mechanisms and impacts of
similar compound extremes and independent hot days or nights, with individual daytime
extreme high temperatures interfering with the normal functioning of human society and
ecosystems, which may be mitigated by the arrival of subsequent cool nights. Even when
the temperature is lower during the day, extremely hot nights can still cause an imbalance
in human temperature regulation [41]. Compound extremes combine and amplify the
adverse effects of day and night extremes, which may pose a serious threat.

China has a vast territory, covering various landforms and climate types from the cold
northeast to the hot south, as well as plateaus and plains. Studying extreme temperatures
in the region can help to understand the challenges and impacts of different regions
when facing extreme weather events. Although a large number of studies have been
conducted, most of them are limited to local areas and conventional extreme temperature
indices, and the research results cannot accurately reflect the complex climate change
characteristics of the entire study area. Therefore, this study used 15 extreme temperature
indices from the 27 extreme climate indices released by the WMO to analyze the entire
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Chinese mainland region. On this basis, three composite extreme temperature indices
were also proposed. Careful classification can provide a more detailed assessment of
changes in extreme temperatures and further improve and enrich previous conclusions.
The research results not only comprehensively reveal the characteristics of and trends in
extreme-temperature events on the Chinese mainland but also have practical significance
for predicting and preventing climate disasters.

2. Materials and Methods
2.1. Overview of the Study Area

China is located in the eastern part of Asia, at longitudes 73◦33 E to 135◦05 E and
latitudes 18◦03 N to 53◦33 N, with a total land area of approximately 9.6 million km2. The
eastern part of the country is bordered by the sea, the western part is characterized by
mountainous and highland terrain, the central part has plains, the southern part has a
tropical and subtropical climate, and the northern part has a temperate and cold climate.
This geographical and climatic diversity causes China to show significant differences in its
extreme temperatures.

The whole Chinese mainland can be divided into seven major climatic regions to
analyze the temperature changes and trends in different regions in more detail. These
include the middle temperate arid (MTA) region, plateau temperate semi-arid (PTSA)
region, middle temperate semi-arid (MTSA) region, middle temperate semi-humid (MTSH)
region, warm temperate semi-humid (WTSH) region, northern subtropical humid (NSH) region,
and marginal tropical humid (MTH) regions. These regions have different climate characteristics.

The middle temperate arid region is mainly characterized by low annual precipitation
and high evaporation. The climate is characterized by cold winters and hot summers, with
large temperature differences between day and night and between years. They are mainly
distributed across northern Xinjiang and western Inner Mongolia.

The plateau temperate semi-arid region refers to a relatively high plateau area with
a mild but dry climate and moderate but unevenly distributed annual rainfall, mainly
distributed in some areas of the Qinghai–Tibet Plateau, such as the eastern part of the
Qaidam Basin and the Qiangtang cold desert area.

The middle temperate semi-arid region is mainly distributed in the middle east of the
Inner Mongolian Plateau and parts of the Loess Plateau with less annual precipitation. The
climatic characteristics of these areas vary from dry to wet. The annual precipitation is less
but relatively uniform, and the vegetation is dominated by grasslands and shrubs.

The middle temperate semi-humid region is mainly distributed in the eastern part of
the Inner Mongolian Plateau, where the annual precipitation is between 400 and 800 mm.
The climate in these areas is characterized by four distinct seasons, cold winters, warm
summers, relatively moderate precipitation, and neither extreme drought nor extreme humidity.

The warm temperate semi-humid region has a mild climate, moderate annual pre-
cipitation, and a relatively uniform seasonal distribution, which is conducive to agricul-
tural production, mainly in eastern and central China, such as the North China Plain in
northern China.

The northern subtropical humid region has a warm and humid climate, rich annual
precipitation, and clear seasonal changes. It is characterized by evergreen broad-leaved
forest and deciduous broad-leaved forest and is located in the south of the Qinhuai Line,
including the Hanjiang River basin in Shaanxi, the Middle and Lower Yangtze Valley Plain,
and most areas of the Jianghuai Plain.

The marginal tropical humid region is hot and rainy, with high and evenly distributed
precipitation, mainly consisting of tropical rainforests and monsoon forests, mainly dis-
tributed in the southernmost areas of China, such as Hainan Island, Leizhou Peninsula,
and southern Taiwan Province.

East and South China experience high-temperature heatwave events in summer,
while Northwest China may also experience extremely high temperatures, and North,
Northeast, and Northwest China may experience low-temperature cold waves, even in
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winter. The frequent occurrence of extreme-temperature events has become a problem
that cannot be ignored, not only posing a serious threat to China’s industrial layout and
urban development but also directly affecting people’s health and wellbeing. Therefore,
understanding China’s geographical and climatic diversity is crucial for analyzing changes
in extreme temperature indices and regional differences.

2.2. Data Sources

This study focuses on extreme-temperature events in China, using meteorological data
sourced from the China Meteorological Data Network (http://data.cma.cn/ accessed on
4 July 2024), with the daily measured maximum and minimum temperatures at each station
from 1961 to 2021 serving as the dataset. To further ensure the accuracy and reliability
of the data, the dataset was first preprocessed: (1) the time scale of the selected site data
was not less than 61 years; (2) if the Tmax or Tmin data of a site were missing more than
5% of the total or if data were lost for 30 consecutive days, the site was not selected;
(3) data quality control was conducted using the RclimDex1.1 editor program [42], and
unreasonable data, such as multiple consecutive days with the same temperature, cases
where the lowest temperature exceeded the highest temperature, and recorded values
seriously deviating from the actual meteorological conditions of the region (i.e., values
exceeding 3 times the standard deviation, defined as out-of-bounds values), were treated
as missing measurement values. Linear interpolation was used to interpolate outliers and
missing values for a very small number of sites. A total of 2029 meteorological stations
with good spatial representativeness, consistent data age, and high data completeness were
selected from seven climate regions within the study area (Figure 1).
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Figure 1. Climate zoning and distribution of meteorological stations on the Chinese mainland.

To further explore the relationship between extreme temperature indices and climate
oscillations, this study focused on analyzing a variety of representative large-scale climate
indices. These indices include the Arctic Oscillation (AO), Atlantic Multiannual Oscillation
(AMO), El Niño–Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), and

http://data.cma.cn/
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Pacific Decadal Oscillation (PDO). These climate indices quantify changes in atmospheric
circulation patterns, with the relevant data obtained from the National Weather Service
Climate Prediction Center (https://www.cpc.ncep.noaa.gov/products/precip/CWlink/
MJO/climwx.shtml accessed on 21 July 2024). The data contained detailed climate data
and a trend analysis, as listed in Table 1. By analyzing the correlation between indices, we
can gain a more comprehensive understanding of the interrelationships between extreme
temperatures and these large-scale climate factors and reveal their mechanisms of action
under different climate conditions.

Table 1. Details of data for different large-scale climate indices.

Climatic Index Index Code Time Span (Year-Month) Description

Arctic Oscillation AO 1961.01–2021.12
The dominant mode of atmospheric ring
rheology in the tropical outer regions of

the Northern Hemisphere

Atlantic Multiannual Oscillation AMO 1961.01–2021.12
Annual mean of sea surface temperature

anomalies in the region (75–7.5◦ W,
0◦–60◦ N)

El Niño–Southern Oscillation ENSO 1961.01–2021.12
Average sea surface temperature

anomaly in the
region (5◦ N–5◦ S, 120◦ W–170◦ W)

North Atlantic Oscillation NAO 1961.01–2021.12 Normalized sea level pressure difference
between the Azores and Iceland

Pacific Decadal Oscillation PDO 1961.01–2021.12
Time coefficient of the first mode after

EOF of monthly SST north of 20◦ N
Pacific Ocean

2.3. Research Methods

To quantitatively characterize the spatial and temporal characteristics of extreme-
temperature events in mainland China, this study selected 15 widely used extreme temper-
ature indices from the 27 extreme climate indices recommended by the International Panel
on Climate and Indicators (ETCCDI) and proposed 3 new extreme composite temperature
indices [43]. The definitions and codes of each index are listed in Table 2. Each index
was calculated using the clinmDex1.1 package of RStudio software (version R 4.4.1. lnk).
The linear tendency estimation method was used to calculate and analyze the trend of
extreme-temperature events in the time series. The Mann–Kendall (M-K) statistical test
was used to test the significance of the indices, and ArcGIS technology was incorporated to
visualize the spatial trend of extreme-temperature events. Finally, the correlation between
the extreme temperature index and atmospheric circulation was explored to reveal its
potential impact and mechanism.

Table 2. Definition and classification of extreme temperature indices.

Classification Name Description Index Code Units

Relative index

Cool days Percentage of time when daily min
temperature < 10th percentile TX10P d

Cool nights Percentage of time when daily min
temperature < 10th percentile TN10P d

Warm days Percentage of time when daily max
temperature > 90th percentile TX90P d

Warm nights Percentage of time when daily min
temperature > 90th percentile TN90P d

https://www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/climwx.shtml
https://www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/climwx.shtml
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Table 2. Cont.

Classification Name Description Index Code Units

Absolute Index

Frost days Annual count when daily minimum
temperature < 0 ◦C FD0 d

Ice days Annual count when daily maximum
temperature < 0 ◦C ID0 d

Summer days Annual count when daily max
temperature > 25 ◦C SU25 d

Tropical nights Annual count when daily min
temperature > 20 ◦C TR20 d

Extreme Value Index

Hottest day Monthly and annual highest value of
daily max temperature TXx ◦C

Warmest night Monthly and annual highest value of
daily min temperature TNx ◦C

Coldest day Monthly and annual lowest value of daily
max temperature TXn ◦C

Coldest night Monthly and annual lowest value of daily
min temperature TNn ◦C

Other index

Warm spell duration index
Annual count when at least six

consecutive days of max
temperature > 90th percentile

WSDI d

Growing season length

Annual (1 January to 31 December in
Northern Hemisphere, 1 July to 30 June in

Southern Hemisphere) count between
first span of at least 6 days with TG > 5 ◦C

and first span after 1 July (1 January in
SH) of 6 days with TG < 5 ◦C (where TG is

daily mean temperature)

GSL d

Diurnal temperature range
Annual mean difference between daily

max
and min temperature

DTR ◦C

Complex index

Extreme temperature range The difference between TXx and TNn ETR ◦C

Compound
heatwave

Percentage of time when daily max
temperature and daily min

temperature > 90th percentile
CHW d

Compound
heatwave and relative

humidity

Percentage of time when daily max
temperature and daily min

temperature > 90th percentile and relative
humidity > 20th percentile

CHW-RH20 d

2.3.1. Linear Tendency Estimation Method

The linear tendency estimation method is an analysis of changes in climate factors that
show a continuous increase or decrease over a long time series [44]. It uses the tendency
rate of a univariate linear regression equation to study the change trend of the climate
index, which is calculated as follows:

S = ax + b (1)

where S is the extreme climate element, x refers to time, a is the slope of the linear fitting
curve (which is the interannual tendency rate), and b is the constant term of the linear
regression curve. When a > 0, the larger a is, the more obvious the upward trend; conversely,
when a < 0, the smaller a is, the more obvious the downward trend.
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2.3.2. Mann–Kendall Test

The Mann–Kendall (M-K) test is a non-parametric test method that is recommended
by the World Meteorological Organization and has been widely used. Its advantages stem
from its ability to process a variety of complex data and its flexibility to adapt to constantly
changing environmental conditions. It is currently widely used in both hydrology and
meteorology [45]. Assuming a set of time series x1, x2, x3. . . xn, the M-K trend test is
calculated as follows:

Sk =
n=1

∑
k=1

n

∑
j=k+1

sgn
(
xi − xj

)
(2)

sgn
(
xi − xj

)
=


1, xi − xj > 0
0, xi − xj = 0
−1, xi − xj < 0

(3)

Var(Sk) =
n × (n − 1)(2n + 5)

18
(4)

Z =


S−1√
Var(S)

, i f S > 0

0 , i f S = 0
S+1√
Var(S)

, i f S < 0
(5)

where Sk is the cumulative total number of events in the time series x, i is greater than j, sgn is
a sign function, and Var (Sk) is the variance of the test statistic Sk. When Z > 0, the sequence
exhibits an increasing trend, and when Z < 0, the sequence exhibits a downward trend. At
the given alpha confidence level, if |Z| < 1.96, the index shows an insignificant trend of
change; if 1.96 ≤ |Z| < 2.56, it shows a significant trend of change (0.05 significance level);
and if 2.56 ≤ |Z|, it shows a highly significant trend of change (0.01 significance level).

2.3.3. Pearson Correlation Coefficient

Correlation analysis refers to the analysis of two or more variable elements with
correlations to measure the degree of correlation between the two factors. This study used
the Pearson correlation coefficient, which is widely used in the field of data analysis, to
measure the linear relationship between atmospheric circulation and different extreme
temperature indices [46]. The Pearson correlation coefficient can intuitively measure the
strength and direction of the linear relationship between different variables, and its formula
is as follows:

rij =
∑k

n=1 (xin − xi)
(
xjn − xj

)√
∑k

n=1 (xin − xi)
2∑k

n=1
(
xjn − yi

)2
(6)

where k is the length of the sequence of the study time; n is the year; xi is the sample mean
of variable xi; xj is the sample mean of variable xj; rij is the correlation coefficient, and
its value range is (−1, 1). rij greater than 0 indicates a positive correlation, rij less than
0 indicates a negative correlation, and rij equal to 0 indicates zero correlation. A greater
absolute value of rij indicates a higher degree of correlation.

3. Results and Analysis
3.1. Temporal and Spatial Variation Characteristics of Extreme Temperature Index
3.1.1. Temporal Trends in Extreme Temperature Index

The characteristics of the extreme temperature index changes on the Chinese mainland
from 1961 to 2021 are shown in Figure 2. From the relative index trend chart (Figure 2a–d),
the cold indices TX10P and TN10P increased at a rate of 0.17d/(10a) and 0.15 d/(10a),
respectively, with an average annual occurrence of approximately 31d and 30d. The warm
indices TX90P and TN90P increased at a rate of 1.39d/(10a) and 2.47d/(10a), respectively,
with average annual occurrence days of approximately 11d and 13d. The growth rate of
the warm indices was much faster than that of the cold indices, and the warming rate at
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night was almost twice as high as during the day. From the absolute index trend chart
(Figure 2e–h), FD0 and ID0 showed decreasing trends, with interannual tendency rates
of −2.91d/(10a) and −0.98d/(10a), respectively. The average number of days with a
temperature increase over the years was about 79d and 23d, while SU25 and TR20 showed
a significant upward trend, increasing at rates of 3.02d/(10a) and 2.72d/(10a), respectively.
The average number of days with a temperature increase over the years was about 131d
and 65d, indicating that the number of days with a temperature increase has been gradually
increasing across the country, with the largest increase in summer. From the trend chart
of the extreme value index (Figure 2i–l), TXx, TNx, TXn, and TNn all showed an upward
trend, with interannual trend rates of 0.17 ◦C/(10a), 0.23 ◦C/(10a), 0.23 ◦C/(10a), and
0.43 ◦C/(10a), respectively. The high temperature index had average annual temperatures
of 35.8 ◦C and 24.6 ◦C, and the low temperature index had average annual temperatures of
−3.1 ◦C and −12.1 ◦C, indicating that the maximum and minimum temperatures in the
country are both increasing year by year, and the minimum value of the lowest temperature
had the largest growth rate. From the other index trend charts (Figure 2m–o), WSDI showed
an insignificant downward trend with an interannual tilt rate of −0.03d/(10a), and GSL
showed a significant upward trend with an interannual tilt rate of 2.6d/(10a), indicating that
the growing season length increased with the increase in temperature across the country,
with DTR showing a downward trend with an interannual tilt rate of −0.08 ◦C/(10a),
indicating that the difference between the maximum and minimum daily temperatures is
decreasing. Overall, the cold indices FD0 and ID0 showed a significant downward trend,
which may be due to the increases in TX10P, TN10P, TNx, and TNn leading to a decrease
in the number of freezing and frost days. The WSDI and DTR showed a slow downward
trend, and all other indices showed an increasing trend, indicating that the occurrence
of extreme cold events gradually decreased over the past 60 years. Overall temperatures
continued to increase, with the daily increase at low temperatures being greater than that
at high temperatures.

3.1.2. Spatial Variation Trend in the Extreme Temperature Index

The spatial variation characteristics of the extreme temperature indices in China from
1961 to 2021 were analyzed using the M-K trend test method (as shown in Figure 3).
From the spatial distribution map of the relative indices, the percentage of sites with
decreasing indices was <1%. The TX10P distribution map shows that 48.74% of the sites
had a highly significant upward trend, mainly concentrated in the eastern part of the MTA,
southwestern part of the NSH region, and MTH region. The sites with an insignificant
trend were concentrated in the south–central part of the WTSH region and north–central
part of the NSH region, and the sites with a significant upward trend were distributed
in the central parts of the MTSA, MTSH, and NSH region. The TN10P chart shows that
85.36% of the sites had no significant trend, while the sites with extremely significant and
significant upward trends were distributed in the southern part of the MTH region and
the other seven zones, respectively. The TX90P chart shows that 43.69% of the sites had no
significant trends, mainly distributed in the western part of the MTA region, southwestern
part of the MTSH region, south–central part of the WTSH region, and north–central part of
the NSH region. The sites with a very significant upward trend were mainly concentrated
at the NSH edge and in the MTH region, while the sites with a significant upward trend
were mainly distributed in the middle parts of the MTS, WTSH, and NSH regions. The
TN90P chart shows that 71.76% of the sites showed a significant upward trend, while the
sites with an insignificant trend were distributed in the southern part of the WTSH region
and northern part of the NSH region. The number of sites with a significant upward trend
was half that of sites with an insignificant trend, mainly concentrated in the central areas
of the WTSH and NSH regions. From the spatial distribution diagram of the absolute
index, the cold indices FD0 and ID0 mainly showed a significant downward trend and an
insignificant trend, while the warm indices SU25 and TR20 mainly showed a significant
upward trend. As shown in Figure 3e, 79.65% of the sites showed a significant downward
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trend, mainly distributed in the other six regions except the MTH region, and the sites
with an insignificant trend were concentrated in the MTH region. The ID0 chart shows
that 61.11% of the sites showed no significant trend and were mainly distributed in the
MTA, NSH, and MTH regions. The sites with a significant downward trend were mainly
concentrated in the western part of the MTSA region, eastern and western parts of the
WTSH region, and eastern part of the SU25 chart; 69.39% of the sites showed a significant
upward trend, mainly distributed in the north and south of the WTSH, NSH, and MTH
regions. The sites with an insignificant trend were distributed in the central areas of the
WTSH, NSH, and MTH regions and east of the PTSA region. The sites with a significant
upward trend were distributed throughout the MTSH and WTSH region. According to
the TR20 chart, 71.17% of the sites showed a highly significant upward trend, mainly
distributed in the eastern part of the WTSH region, central and eastern parts of the NSH
region, and MTH region, whereas sites with no significant trends were mainly concentrated
in the western part of the NSH region and central and eastern parts of the PTSA region.
From the spatial distribution map of the extreme value index, the proportion of sites with a
downward trend for each index was the same as that of the relative index, while the growth
trends of TXx and TXn were not significant, and TNx and TNn showed highly significant
upward trends. As shown by the TXx distribution, 57.02% of the sites showed no significant
trend and were mainly distributed in the central areas of the MTSA, MTSH, WTSH, and
NSH regions. The sites with a significant upward trend were mainly distributed at the
NSH edge and in the MTH region, and the sites with a significant upward trend were
distributed in the south of the MTSH and NSH regions. As shown in the TNx chart, 64.91%
of the sites showed a significant upward trend, mainly distributed in the PTAS, WTSH,
NSH, and MTH regions; the sites with an insignificant trend were mainly distributed in
the south–central part of the WTSH region and the north–central part of the NSH region,
while the sites with a significant upward trend were scattered in the MTSH, WTSH, and
NSH regions. As shown in the TXn chart, 73.78% of the sites had an insignificant trend,
mainly distributed in the southern part of the MTSH region, eastern part of the WTSH
region, southern part of the NSH region, and MTSA and MTH regions. The sites with
significant upward trends were mainly concentrated in the NSH region, and the sites with
extremely significant upward trends were mainly distributed at the intersection of the
PTSA, NSH, and WTSH regions. As shown in the TNn chart, 53.87% of the sites showed
a highly significant upward trend, mainly distributed in the eastern part of the WTSH
region and southern parts of the NSH and MTH regions. The sites with an insignificant
trend were mainly distributed in the central and western parts of the WTSH region and
northeastern part of the NSH region, while the sites with a significant upward trend were
distributed throughout the WTSH and NSH regions. From the spatial distribution maps
of other indices, WSDI showed an overall significant trend, with sites accounting for as
much as 94.83%; the sites with a significant upward trend of GSL were the highest, mainly
distributed in the eastern and western parts of the MTSA region, the southwestern part of
the MTSH region, and the WTSH region. The sites with an insignificant trend were mainly
distributed in the central and southern parts of the NSH and MTH regions. The sites with a
significant downward trend in DTR accounted for 59.24%, mainly distributed in the entire
MTSH region and the eastern part of the WTSH region, and sites with an insignificant trend
were mainly concentrated in the central part of the NSH region.
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significant increase, light blue indicates insignificant, dark blue indicates a significant decline, and
green indicates a dramatic decline).

Overall, TX10P, TN90P, SU25, TR20, TNx, TNn, and GSL showed a significant increas-
ing trend during the study period, and these changes were concentrated in the WTSH,
NSH, and MTH regions, indicating that the frequency and intensity of extreme temperature
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events in these regions are increasing. At the same time, TN10P, TX90P, ID0, TXx, TXn,
and WSDI showed no significant trends, with the proportion of stations ranging from
57% to 95%, indicating that there has been no significant change in the performance of
extreme-temperature events in each region. FD0 and DTR mainly showed significant de-
creases, which may indicate that certain regions are experiencing sustained warming. The
trend in the temperature index growth varies in different regions and is closely related to
factors such as geographical location, altitude, and climate conditions in each region. These
results demonstrate the spatial distribution characteristics of extreme temperature indices
in different climatic regions of the Chinese mainland and reveal their complex trends and
features. The trend in the extreme temperature index shows high consistency in both time
and space, indicating that although climate change varies in different regions, there are still
significant similarities in the temporal and spatial changes in extreme climate events at the
macro level.

3.2. Spatiotemporal Variation Characteristics of the Extreme Composite Temperature Index
3.2.1. Time Trend in the Extreme Composite Temperature Index

The trend in the extreme composite temperature index proposed in this study over
the past 61 years is shown in Figure 4. According to Figure 4a, the multi-year mean value
of ETR fluctuated between 45 and 51 ◦C and decreased at a rate of 0.26 ◦C/(10a), indicating
that the temperature difference between day and night has been gradually decreasing.
Although both TXx and TNn showed a continuous upward trend over the past 60 years,
the rate of temperature increase at night was approximately 2.5 times that during the day,
and this uneven heating rate is also directly responsible for the reduction in ETR. Figure 4b
shows that the variation amplitude of CHW was relatively stable before 2000, and the
occurrence of composite high temperature remained for approximately 3 days, but the
growth rate accelerated significantly after this period. This is consistent with the temporal
trend of TX90P and TN90P. Specifically, the frequency of CHW increased year by year at a
rate of 1.02d/(10a). Figure 4c shows the trend of CHW-RH20, which had a significantly
lower growth rate than the first two composite indices. The average number of occurrence
days over the years was 0.5d, and the growth rate was 0.1 days/(10a). This lower growth
rate may be due to the addition of screening conditions, resulting in a trend of growth
in this composite index that is not as significant as that for the other indices. However,
although the growth trend of CHW-RH20 was slightly less than that of other extreme
composite temperature indices, its impact on human life and the ecological environment
was much greater than that of other composite high-temperature events. Overall, the
growth trend of the extreme composite temperature index was significantly lower than
that of the conventional temperature index. This suggests that although the frequency and
intensity of composite high-temperature events have increased, their growth rate is not
as fast as that of single extreme temperatures. Therefore, it is particularly important to
consider changes in these composite temperature indices when assessing the impact of a
changing climate environment on human society.
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3.2.2. Spatial Variation Trend in the Extreme Composite Temperature Index

Figure 5 shows the spatial trends in the extreme composite temperature indices. From
the ETR distribution map, it can be seen that 59.73% of the sites had insignificant increasing
trends, and these sites were mainly concentrated in the western part of the WTSH region
and the entirety of the NSH region. Relatively speaking, the sites with a significant
downward trend were mainly concentrated in the central areas of the WTSH, NSH, and
MTH regions, while the sites with a significant downward trend were distributed in the
MTSH, WTSH, and NSH regions; moreover, the proportion of sites with significant upward
and extremely significant upward trends was less than 2%, and these sites were mainly
located in the northwest of the NSH region. The CHW distribution map shows that 55.54%
of the sites showed a significant upward trend, and these sites were mainly located in the
MTSA, MTH, and PTSA regions, as well as the edge zones of the WTSH and NSH regions.
The sites with a significant upward trend were concentrated in the central areas of the
MTSH, WTSH, and NSH regions, while the sites with an insignificant trend are mainly
located in the south of the WTSH region and north of the NSH region. The percentage of
sites with significant downward and extremely significant downward trends was less than
0.5%. The distribution map of CHW-RH20 shows that 87.93% of the sites had no obvious
change trend, with 6.31% and 4.9% of the sites showing extremely significant upward
and significant upward trends, respectively. They were mainly distributed in the central
and peripheral areas of the NSH region, as well as at the edges of the WTSH and MTH
regions. The proportion of sites showing extremely significant downward and significant
downward trends was <1%. Overall, the spatial variation trends in the three extreme
composite temperature indices were highly consistent with the temporal variation trends,
while the spatial values of ETR and CHW were highly consistent with the conventional
extreme temperature indices; the increasing trend of CHW-RH20 was not significant at the
national level, probably due to the increase in constraint variables.
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[(a) ETR; (b) CHW; (c) CHW−RH20]. (Red indicates a dramatic increase, pink indicates a significant
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a dramatic decline).

3.3. Correlation Between Extreme Temperature Index and Atmospheric Circulation Index

Atmospheric circulation is an important factor that affects extreme climate events on a
large scale. To further expand the analysis perspective of extreme temperature indices, this
study divided the entire research area into seven different climate regions for elaboration.
The relationships between Arctic Oscillation (AO), Atlantic Multiannual Oscillation (AMO),
El Niño–Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Pacific Decadal
Oscillation (PDO), and extreme climate indices from 1961 to 2021 were selected for Pearson
correlation analysis. The specific results are shown in Figure 6, which illustrates the complex
relationship more clearly. The fan colors were used to visually present the correlations
between different atmospheric circulation indices and climate indices in various climate
zones. Positive correlations are shown in red, negative correlations are shown in blue,
and the strength of each correlation is reflected by the depth of the color: the stronger the
correlation (i.e., the closer to −1 or 1), the darker the color.
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Figure 6. Correlation coefficients between extreme climate index and atmospheric circulation index
in seven climate regions during 1961–2021.

From the analysis of Figure 6, it can be seen that in the MTA region, there was a
negative correlation between AO and AMO with the extreme temperature indices FD0,
ID0, DTR, and ETR. The correlation coefficient of FD0 reached −0.48, indicating a strong
negative correlation. Meanwhile, TR20 had the highest correlation of 0.44, indicating that
extreme high-temperature events were more significant and extreme low-temperature
events were reduced under the warm phase of AO and AMO. In the negative correlation
between the El Niño phenomenon and these factors, the correlation coefficient of the newly
added TXx was −0.001, indicating that the warm phase of ENSO has some influence
on extreme high-temperature events, but its influence is relatively small. The NAO was
positively correlated with FD0, ID0, TXx, TNn, and the duration of extreme weather, while
it showed a negative correlation trend with other temperature indices, and the correlation
coefficient showed a clear opposing relationship. In the positive correlations between PDO
and TNx, TXn, TNn, CHW, and CHW-RH20, TNn had the highest value of 0.25, while in
the negative correlations with other indices, ETR had the highest correlation coefficient
of −0.24.

In the PSTA region, AO was negatively correlated with FD0, TR20, TXn, WSDI,
DTR, ETR, and CHW-RH20 and positively correlated with other extreme temperature
indices, especially DTR, with a correlation coefficient of −0.2, indicating a decreasing
trend in daily temperature differences as AO increased. The negative correlations between
AMO and ENSO with FD0, ID0, ETR, and DTR were significant, with AMO having the
highest negative correlation coefficient with FD0, reaching −0.49, while ENSO’s impact
was slightly inferior. The correlation coefficients of TX10P, TX90P, TNx, and CHW were all
above 0.4, indicating a strong positive correlation between these indices and AMO. NAO
showed positive correlations with FD0, ID0, TNx, TNn, and GSL, while showing negative
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correlations with other extreme temperature indices. The positive correlations between
PDO and TR20, TXx, TNx, TXn, TNn, WSDI, and CHW-RH20 were significant, while the
negative correlations with other indices were also prominent.

In the MTSA region, AO was negatively correlated with FD0, ID0, TXx, TNx, DTR,
ETR, and CHW-RH20, while it was positively correlated with other temperature indices.
AMO was negatively correlated with FD0, ID0, TXn, and DTR, with a correlation coefficient
of −0.46 for FD0. However, among the positive correlations with other temperature indices,
the correlation coefficients for TX10P, TX90P, SU25, and TR20 were all above 0.4. CHW-
RH20 was excluded from the negative correlation between ENSO and these factors. The
positive correlations between NAO and TXn, TNn, WSDI, GSL, and CHW-RH20 were more
pronounced, while the index positively correlated with POD was less than the WSDI index
in NAO.

In the MTSH region, among the negative correlations between AO and FD0, ID0,
TXx, WSDI, DTR, and ETR, ID0 had the highest value of −0.42, while among the positive
correlations with other indices, GSL had the highest value of 0.42. This indicates that with
the increase in AO, the number of freezing days decreases continuously, while the length
of the growing season continues to increase. Among the negative correlations between
AMO and these factors, TXx was excluded, while FD0 showed a strong negative correlation
with a correlation coefficient of −0.4. Among the positive correlations with other factors,
the correlation coefficients of SU25 and TR20 were above 0.35, indicating that AMO has a
strong impact on extreme thermal events. ENSO was negatively correlated with TN10P,
FD0, ID0, TR20, TXx, WSDI, DTR, ETR, and CHW-RH20, while it was positively correlated
with other factors. NAO was negatively correlated with TN90P, FD0, ID0, SU25, WSDI,
DTR, and ETR, and positively correlated with other factors. PDO was only positively
correlated with TXn and TNn, indicating that as PDO increases, the minimum values of the
daily maximum and minimum temperatures gradually increase.

In the WTSH region, AO was negatively correlated with TN10P, TN90P, FD0, ID0, TXx,
DTR, and ETR, and positively correlated with other temperature indices. In the negative
correlations between AMO and FD0, ID0, WSDI, DTR, and ETR, FD0 had the highest
value of −0.48, while in the positive correlations with other factors, TR20 had the highest
value of 0.46. This indicates that as AMO increases, the overall temperature continues to
rise. Compared with factors that had a negative correlation with ENSO, AMO had less
DTR, indicating that the difference in tomorrow’s temperature continues to increase. NAO
was positively correlated with SU25, TNx, TXn, TNn, WSDI, CHW, and CHW-RH20 and
negatively correlated with other factors. PDO was positively correlated with SU25, TXn,
TNn, GSL, and DTR, and negatively correlated with other factors.

In the NSH region, AO was negatively correlated with FD0, ID0, WSDI, DTR, ETR, and
CHW-RH20 and positively correlated with other factors. Compared with factors negatively
correlated with AMO, AO reduced WSDI, DTR, and CHW-RH20, with the highest value
for FD0 being −0.39. Among other positively correlated factors, the correlation coefficients
of SU25, TR20, and CHW were all above 0.4. ENSO was negatively correlated with
TN10P, TN90P, FD0, ID0, and ETR, and positively correlated with other factors. NAO was
only positively correlated with TNn and GSL, and compared with the factors positively
correlated with PDO, NAO increased SU25, TNx, TXn, and CHW-RH20.

In the MTH region, AO was negatively correlated with FD0, SU25, WSDI, GSL, DTR,
ETR, and CHW-RH20, and positively correlated with other factors. The factors negatively
correlated with AMO reduce SU25 and increase GSL compared to AO. The correlations
among the positive correlation factors were relatively strong, with TX10P, TX90P, and CHW
all having correlation coefficients of over 0.5. ENSO was negatively correlated with FD0,
ID0, DTR, and ETR, and positively correlated with other extreme temperature indices.
NAO was positively correlated with TX10P, TN10P, TX90P, TN90P, GSL, and ETR. PDO
was negatively correlated with FD0, WSDI, DTR, and ETR and positively correlated with
other factors.



Atmosphere 2024, 15, 1398 17 of 23

In summary, FD0, ID0, DTR, and ETR were generally negatively correlated with vari-
ous atmospheric circulation indices throughout the study area, which indicates a gradual
decrease in the occurrence of extreme low-temperature events. In the MTH region, due
to its abundant uneven precipitation and high temperature, the correlations between the
atmospheric circulation index and extreme temperature index were particularly evident,
showing more significant temperature characteristics compared with other regions. Specifi-
cally, AO, AMO, and ENSO were mainly positively correlated with extreme climate indices,
with AMO having the highest correlation coefficient. This is because the warm phase of
the global atmosphere usually suppresses the southward movement of cold air, leading to
frequent extreme heat events. On the contrary, the relationship between NAO, PDO, and
the extreme climate index showed the opposite trend. When NAO is in the negative phase,
the eastward extension of the North Atlantic jet stream strengthens, leading to anticyclonic
circulation over China and insufficient water vapor transport, thereby reducing the fre-
quency of extreme heat events. The negative phase of PDO usually leads to a decrease in
sea surface temperature in the Pacific region, affecting the climate patterns of surrounding
areas and resulting in a decrease in the frequency of extreme heat events.

4. Discussion

The World Meteorological Organization recently issued a press release officially con-
firming 2023 as the hottest year on record. Climate anomalies have also triggered many
meteorological disasters around the world, including heatwaves, droughts, torrential rains
and floods, typhoons, and forest wildfires [47]. The occurrence of extreme weather in China
has increased in frequency in recent years, affecting a wide range of areas, intensifying,
and setting historical records. There has been an increase in the number of sudden events
without warning signs. In the early summer of 2023, North China and Huang Huai suffered
five consecutive rounds of heatwaves, with a total of 22 national meteorological stations
breaking historical records for the highest temperatures. Specifically, over 70% of areas in
Beijing and Tianjin experienced temperatures above 40 ◦C. Extreme weather undoubtedly
exacerbated living difficulties and economic losses among the people [48]. In December
of the same year, China experienced the strongest cold wave on record during the same
period, with many areas setting new records for low temperatures and snow accumu-
lation. Global warming will affect the atmospheric circulation pattern, and through the
interaction of ocean and land meteorology, it will affect the occurrence patterns of extreme
weather events in different regions. From a long-term trend perspective, the frequency
of extreme high-temperature events is indeed increasing, while the frequency of extreme
low-temperature events has decreased, but their intensity has not weakened. This indicates
that the intensity and impact of extreme weather are highly volatile and severe in the
context of warming.

In order to be able to better cope with and mitigate the challenges posed by extreme
temperature events, this study closely examined the changes in 15 commonly used extreme
temperature indices and 3 extreme composite temperature indices using data from a total
of 2029 meteorological stations in China over the period 1961–2021. This study explored
the temporal and spatial trends in these indices and revealed their complex internal mech-
anisms through correlation analyses with atmospheric circulation. The research results
show that the frequency and intensity of extreme high-temperature events have increased
significantly over the past 60 years, while the number of extreme low-temperature events
has decreased. This finding is consistent with the conclusions of most domestic studies,
that is, that the intensity, frequency, and duration of extreme high-temperature events have
all increased significantly [49]. The trend in the extreme composite temperature index
is similar to that in the extreme temperature index, but the magnitude of the change is
relatively small. Overall, the temporal and spatial variations in extreme temperature indices
show a high degree of consistency, suggesting broad commonality in the variability of
extreme-temperature events. It has been pointed out that the number of warm nights has
significantly increased globally over the past 70 years, while the number of frost and freez-
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ing days has decreased; the daily difference in temperature has also decreased significantly,
and the variability in the rate of regional change is significant [50]. Based on the data after
1961, this study found that FD0 and ID0 showed a significant decreasing trend on a national
scale, while DTR showed a slow decreasing trend, which is in strong agreement with the
results of previous studies. Although some scholars have pointed out that the increase
in extreme low temperatures in China is significantly larger than that in extreme high
temperatures, the study of a single variable has been insufficient to meet the complex needs
of climate change mitigation. Therefore, this paper proposes a new extreme composite tem-
perature index, with the finding that ETR shows a decreasing trend in both time and space,
mainly due to the fact that the increase in temperature at night is greater than that during
the day. Zhang Jiayi et al. analyzed the variation in linear trends in high-temperature
heatwaves in China using data from 1960 to 2018, observing that the numbers of high-
temperature days and heatwaves significantly increased only in the South China region and
Northwest China region, while the trends in the North China region and Northeast China
region were insignificant, and the national average numbers of high-temperature days and
heatwaves significantly increased [51]. In this study, the performances of extreme heat
indices such as TX90P, TXx, SU25, and CHW were found to be different, with TX90P and
TXx showing insignificant trends nationwide but highly significant increasing trends in the
MTH region and at the NSH fringe, and SU25 and CHW showing highly significant increas-
ing trends nationwide but insignificant trends in the NSH region and at the WTSH fringe.
The reason for this difference may lie in the different definitions of extreme temperature
indices and high temperatures, as well as the accelerated rate of extreme climate change in
recent years. Cao Qing et al. used linear fitting, R/S analysis, and other methods to analyze
the trend, spatiality, persistence, and mean cycle length of extreme climatic elements in
China for 58a, and the results showed the following: The temperature extremes, as well as
the frequency and persistence of extreme high-temperature events, showed upward trends,
while the number of low-temperature events showed a decreasing trend, with an overall
warming trend observed across China [52]. Spatially, the extreme temperature indices in
the plateau mountainous areas showed high variation. These results slightly differ from
the results of this study, in which the temperature extremes during the daytime mainly
showed an insignificant trend, and those at night mainly showed a significant upward
trend, indicating that the increase in high-temperature extremes has recently slowed down,
but low-temperature extremes are still growing continuously.

With the intensification of global warming, hotter weather will evolve into compound
extreme weather, which more severely impacts socio-economic and environmental aspects
compared to single extreme events. Chen Yang et al. used meteorological data from
756 stations between 1961 and 2015 to analyze the frequency, duration, and intensity
of independent hot days, independent hot nights, and composite events in summer in
China [53]. Their research results indicated that, except for in the central and eastern
regions of China, the frequency, duration, and intensity of composite extreme weather
events are higher, while the frequency of independent hot weather events in the central and
eastern to northeastern regions of China shows a significant downward trend. The linear
trend of nighttime hot events is similar to that of composite events. The extreme composite
temperature indices CHW and CHW-RH20 proposed in this article cover daytime high
temperatures, nighttime high temperatures, and relative humidity. Both of these indices
showed an upward trend over time, but their growth rate was lower than that of the
conventional extreme temperature index. In terms of spatial distribution, the CHW index
showed a significant increasing trend, while the change trend of the CHW-RH20 index was
not significant. The reasons for these different research results may include the introduction
of relative humidity variables into the composite index, which has not been fully explored
in previous studies. In addition, research results heavily rely on the choice of start and end
years [54].

The occurrence of extreme weather is influenced by various factors, including alti-
tude, topography, climate environment, human activities, and atmospheric circulation.
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Numerous studies have shown a correlation between the atmospheric circulation index and
extreme climate index [55–57]. Wu et al. explored the relationship between extreme climate
change and atmospheric circulation based on data from 41 meteorological stations in the
Haihe River Basin from 1961 to 2020, and found that the AO has a strong influence, being
generally positively related to the extreme warmth index and negatively related to the
extreme coolness index, with multiple resonant cycles between the AO and extreme climate
index in the Haihe River Basin [58]. Su et al. studied the influence of the seasonal average
maximum temperature and atmospheric circulation in China from 1950 to 2019, finding
that the Pacific decadal oscillation was significantly negatively correlated with summer
high temperatures [59]. The North Atlantic oscillation had a significant positive influence
on high-temperature changes in summer, autumn, and winter, while the Arctic oscillation
had a significant influence on high temperatures in all seasons. The El Niño–Southern
Oscillation had significant positive or negative effects on short-term changes in high tem-
peratures in spring and summer depending on the year of its cause. Gao et al. explored the
relationship between changes in summer high-temperature activity in China and the El
Niño phenomenon and found that the high-temperature weather during El Niño in the
eastern and central Pacific presents different spatial patterns [60]. Among them, the west-
ward and northward movement of anticyclones in the upper troposphere of the western
North Pacific coincides with the anomalous subsidence in southern China. El Niño events
usually increase heatwave activity in southern China. Liu et al. used daily maximum tem-
perature data from 654 observation stations in China and global reanalysis data to analyze
decadal changes in the association between subtropical high pressure and heatwaves in the
western Pacific from 1959 to 2016 [61]. They found that the correlation coefficient between
subtropical high-intensity and heatwave days during the positive phase of PDO was 0.65,
while it was only 0.12 during the negative phase of PDO. Compared with the negative
phase of PDO, the warming of the Indian Ocean in the summer of ENSO attenuation years
is stronger in the positive phase of PDO, which further promotes the strengthening of
anticyclones in the northwest Pacific and is conducive to more heatwaves in eastern China.
On more decadal or long-term scales, high-temperature events are believed to be related to
Atlantic decadal oscillation [62]. This study examined the correlation between the extreme
temperature index and atmospheric circulation indexes at different scales, finding that
there is a generally negative correlation between FD0, ID0, DTR, and ETR and atmospheric
circulation indexes throughout the region. Due to the unique geographical location and
climate characteristics of the MTH region, its correlation is more significant than that in
other areas. Specifically, AO, AMO, and ENSO are positively correlated with the extreme
temperature index, with AMO having the highest correlation coefficient, while NAO and
PDO are negatively correlated with the extreme temperature index.

Extreme climate change is a continuous and complex process, and the limited number
of extreme temperature indices analyzed in this study may have resulted in an insufficient
assessment of extreme temperatures in the overall region. Extreme temperature changes in
the region may lead to changes in the regional radiation energy balance and atmospheric
circulation patterns, thereby affecting the regional climate. The research method in this
study was mainly based on statistical methods, and its results and conclusions need to be
combined with an analysis of physical mechanisms to be more convincing. In addition,
numerous studies have pointed out that urbanization, carbon emissions, and heat island
effects also have a huge impact on extreme climate events, which will become a new hotspot
in future research.

5. Conclusions

This paper presented a comprehensive spatial and temporal analysis of fifteen con-
ventional extreme temperature indices and three extreme composite temperature indices
for seven climatic regions on the Chinese mainland. By using various statistical analyses
and combining several large-scale climate indices, the evolution of these extreme climate
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indices was assessed, and their influencing factors were clarified. The main conclusions are
as follows:

(1) In terms of extreme temperature indices, the cold indices FD0 and ID0 showed a
significant downward trend, while the WSDI and DTR showed a slow downward trend
over time. Other indices generally showed an increasing trend. In the past 60 years, the
frequency of extreme low-temperature events has gradually decreased, while the frequency
of high-temperature events has continued to increase, with the increase on warm nights
significantly outpacing that on warm days. From a spatial distribution perspective, TX10P,
TN90P, SU25, TR20, TNx, TNn, and GSL mainly showed a significant increasing trend
nationwide, especially concentrated in areas such as the WTSH, NSH, and MTH regions.
Relatively speaking, TN10P, TX90P, ID0, TXx, and WSDI were not significant in each region,
while FD0 and DTR each showed a significant downward trend, which is closely related to
the geographical location and climate conditions of each region. Overall, the trends of the
extreme temperature index changes in time and space had a high degree of consistency.

(2) In terms of the extreme composite temperature index, ETR showed a downward
trend over time, while CHW and CHW-RH20 showed an upward trend. Although the
growth trend of the extreme composite temperature index was significantly lower than that
of the conventional temperature index, its potential impact is more severe. From a spatial
perspective, the trend in ETR and CHW-RH20 changes nationwide was not significant,
while the stations that showed a highly significant upward trend were mainly distributed in
the WTSH and NSH regions. CHW showed a significant upward trend, mainly distributed
across the MTSA, MTH, and PTSA regions, as well as the edge zones of the WTSH and NSH
regions. The temporal trends in and spatial distributions of the three extreme composite
temperature indices are highly consistent. The spatial distribution of ETR and CHW is
highly consistent with the conventional extreme temperature index, while CHW-RH20 may
not have a clear upward trend nationwide due to the increase in constraint variables.

(3) In the correlation analysis with atmospheric circulation indexes, FD0, ID0, DTR,
and ETR were generally negatively correlated with various atmospheric circulation indexes
throughout the study area. However, due to the unique geographical location and climate
characteristics of the MTH region, the correlation performance of these indices in this area
differed significantly from that in other regions. Specifically, AO, AMO, and ENSO were
mainly positively correlated with extreme temperature indices, with AMO having the high-
est correlation coefficient. This is mainly due to the warm-phase atmospheric circulation,
which suppresses the southward movement of cold air, leading to an increase in extreme
high-temperature events. Relatively speaking, NAO and PDO exhibited opposite trends
to the extreme temperature indices, as being in a negative phase can cause anticyclonic
circulation and a decrease in sea surface temperature, thereby reducing the frequency of
extreme heat events.
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