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Abstract: Predicting streamflow is essential for managing water resources, especially in basins and
watersheds where snowmelt plays a major role in river discharge. This study evaluates the advanced
deep learning models for accurate monthly and peak streamflow forecasting in the Gilgit River Basin.
The models utilized were LSTM, BiLSTM, GRU, CNN, and their hybrid combinations (CNN-LSTM,
CNN-BiLSTM, CNN-GRU, and CNN-BiGRU). Our research measured the model’s accuracy through
root mean square error (RMSE), mean absolute error (MAE), Nash–Sutcliffe efficiency (NSE), and
the coefficient of determination (R2). The findings indicated that the hybrid models, especially
CNN-BiGRU and CNN-BiLSTM, achieved much better performance than traditional models like
LSTM and GRU. For instance, CNN-BiGRU achieved the lowest RMSE (71.6 in training and 95.7 in
testing) and the highest R2 (0.962 in training and 0.929 in testing). A novel aspect of this research was
the integration of MODIS-derived snow-covered area (SCA) data, which enhanced model accuracy
substantially. When SCA data were included, the CNN-BiLSTM model’s RMSE improved from 83.6
to 71.6 during training and from 108.6 to 95.7 during testing. In peak streamflow prediction, CNN-
BiGRU outperformed other models with the lowest absolute error (108.4), followed by CNN-BiLSTM
(144.1). This study’s results reinforce the notion that combining CNN’s spatial feature extraction
capabilities with the temporal dependencies captured by LSTM or GRU significantly enhances model
accuracy. The demonstrated improvements in prediction accuracy, especially for extreme events,
highlight the potential for these models to support more informed decision-making in flood risk
management and water allocation.

Keywords: streamflow forecasting; long short-term memory; bidirectional long short-term memory;
gated recurrent unit; bidirectional gated recurrent unit; convolutional neural network; moderate
resolution imaging spectroradiometer; snow-covered area

1. Introduction

Streamflow prediction is a critical component of water resource management, par-
ticularly in watersheds and basins where snowmelt significantly contributes to river dis-
charge [1]. The Upper Indus Basin (UIB) of Pakistan, a region dominated by snow and
glacier melt, is a critical water resource for agriculture and hydropower generation in
the country [2]. Understanding and predicting streamflow in this region is crucial for
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effective water resource management, especially in the context of climate change, which
significantly impacts snow cover and glacial melt [3]. The Moderate Resolution Imaging
Spectroradiometer (MODIS), one of the most recent developments in remote sensing tech-
nologies, offers useful information on snow-covered areas (SCAs), facilitating improved
monitoring and analysis of these crucial factors [3,4] (Tayyab et al., 2018; Bilal et al., 2019).
Globally, MODIS snow cover products have been utilized to monitor snow dynamics in
regions like the Tibetan Plateau, where they play a critical role in understanding water
availability for millions of people downstream [5]. Additionally, research utilizing MODIS
data has provided insights into the impacts of climate variability on snow cover persistence
and melt timing in Canada based on surface snow depth observations [6]. Some other
applications of MODIS include assessing snow cover in mountainous regions such as
Turkey [7], Austria [8], the Colorado Rocky Mountains, the Upper Rio Grande, California’s
Sierra Nevada, the Nepal Himalaya [9], China [10], and the Moroccan Atlas Mountains [11].
Considering the combination of meteorological, hydrometrical, and remotely sensed data
leads to building better and more adequate hydrological models.

Traditionally, hydrological models have relied heavily on statistical [12], empirical [13],
Stochastic [14], and physically based [15] models to predict streamflow. However, these
models often struggle to capture the complex and non-linear relationships between various
hydrological variables [16]. Recent advances in machine learning (ML) have significantly
improved the accuracy and reliability of hydrological models. Preliminary results indicate
that ML models consistently outperform traditional approaches in terms of NSE and RMSE,
demonstrating their superior ability to capture non-linear relationships within hydrological
data. For instance, studies have shown that hybrid models incorporating deep learning
architectures yield significantly higher NSE values compared to conventional models when
applied to similar datasets [17–19].

In this respect, AI-based data-driven techniques and ML models have been success-
fully employed in modeling and simulating sophisticated hydrological events, such as
streamflow prediction [17,18]. Among the developed ML models in hydrological appli-
cations, artificial neural networks (ANNs) play an important and dominant role. The
earlier employment of ANNs in stream flow and river flow prediction, like shallow neural
networks, demonstrates their superior capability in capturing the non-linear nature of
surface flow rate compared to conventional conceptual and empirical models due to the
availability of authentic datasets (e.g., hydrometric and meteorological data) [19].

Some researchers have applied shallow learning ANNs and tree-based models for
modeling and predicating streamflow in the UIB and Himalayan basins. Rahman et al. [20]
compared the capability of two different types of hydrological models, such as the empirical
soil and water assessment tool (SWAT) and multi-layer perceptron ANN, to simulate
streamflow in the UIB. The authors claimed the superiority of the applied ANN model
over the SWAT model. In another similar study, Raaj et al. [21] integrated the SWAT
model with some ML models (e.g., ANN and XGBoost) for the estimation of peak flow in
the Himalayan River basin. The general outcome of the study highlighted the successful
integration of SWAT and ML models in achieving promising results for peak flow prediction.
Mushtaq et al. [22] utilized three ML models, including CART (classification and regression
tree), XGBoost (extreme gradient boosting), and RF (random forest), for 10-daily streamflow
prediction in the UIB region. The models were built based on climate data (precipitation,
snow water equivalent, temperature, and evapotranspiration). The findings of the study
demonstrated the significant ability of ML models to predict streamflow.

Over the course of the last decade, with the advent of deep learning, advanced ANN
models such as long short-term memory (LSTM) [23], bidirectional LSTM (BiLSTM) [24],
gated recurrent unit (GRU) [25,26] and convolutional neural networks (CNNs) [27] have
shown great promise in hydrological time series forecasting due to their ability to learn and
model long-term dependencies. Deep learning can be introduced as a subset of ML model-
ing, which utilizes multi-layered neural networks to automatically extract features from
large datasets. By this, in specific cases, deep learning enables ML models to produce more
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accurate predictions without extensive feature engineering. This approach is particularly
advantageous in hydrology, where complex non-linear relationships exist between various
hydrological variables. Several studies have highlighted the effectiveness of deep learning
models in capturing these relationships and improving prediction accuracy compared to
traditional models. For instance, Imran et al. [28] applied stochastic models (e.g., SARIMA)
as well as LSTM models for flood forecasting in the UIB region. It was found that the
LSTM model acted better and provided more accurate forecasting performance than the
stochastic model.

Studies have demonstrated the efficacy of hybrid models that combine different
types of deep learning strategies (i.e., CNN-LSTM, CNN-GRU, CNN-BiLSTM, and CNN-
BiGRU) to enhance predictive performance [17,18,29,30]. According to Thapa et al. [1],
the integration of CNN with LSTM (CNN-LSTM) has been effective in extracting features
from high-resolution hydro-meteorological data for streamflow simulation in mountainous
catchments, significantly improving model performance when combined with the Gamma
test method to select optimal input variables. Wang et al. [31] developed a hybrid CNN-
LSTM model to extract physical and meteorological characteristics from high-resolution
data, significantly improving streamflow simulation accuracy in mountainous catchments.
Similarly, a hybrid CNN-LSTM model introduced by Zhou et al. [32], which integrates
self-attention mechanisms with CNN and LSTM, has shown robust performance in hourly
runoff prediction by effectively considering temporal and feature dependencies. The use of
bidirectional LSTM (BiLSTM) and bidirectional GRU (BiGRU) models, which process data
in both forward and backward directions, could further improve the capture of complex
temporal dependencies in streamflow data [33].

The aforementioned research suggests that current developments in machine learning
and deep learning have transformed methods for predicting streamflow, moving beyond
traditional statistical approaches that often fail to capture the complexities of hydrological
processes. Recent studies have shown that hybrid models combining various ML techniques
and data extracted from MODIS can significantly enhance the predictive performance of
each method [34–37].

According to the studied literature, the integration of snow cover data from MODIS,
along with advanced DL models like LSTM, GRU, and CNN, offers a robust framework for
accurate and reliable streamflow prediction, essential for effective water resource planning
and flood control. In this study, we aim to leverage these advanced deep learning models
for monthly streamflow prediction in the Upper Indus Basin located in Pakistan. In the
recent literature, CNN-BiGRU and CNN-BiLSTM models have been successfully applied
to predict various hydrological variables [38–41]. However, these models have not been
extensively evaluated or compared for streamflow prediction. Addressing this research
gap motivated us to select CNN-BiLSTM and CNN-BiGRU as the primary deep learning
models in this study for streamflow prediction. Lagged streamflow values and snow
cover area (SCA) data were chosen as inputs in this study. The autocorrelation function
(ACF) feature selection technique was employed to identify key input variables from
these datasets. These inputs were selected based on their proven effectiveness in previous
studies on streamflow simulation [42–45]. The ACF technique was adopted due to its
successful application in identifying influential variables for hydrological modeling [46,47].
By integrating lagged streamflow values identified using autocorrelation analysis with SCA
data derived from MODIS, we propose a novel approach to enhance prediction accuracy.
Specifically, the MODIS MOD10CM remote sensing product was utilized to extract SCA.
This product was selected based on its established effectiveness in deriving SCA for high-
altitude regions, as reported in the literature [48–50]. To evaluate the performance of the
proposed models, statistical metrics such as root mean square error (RMSE), mean absolute
error (MAE), the coefficient of determination (R2), and Nash–Sutcliffe efficiency (NSE)
were used. The selection of these metrics is justified by their frequent and successful
application in hydrological modeling studies [51,52]. The specific objectives of this research
are as follows:
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• To develop and compare the performance of various deep learning models (LSTM,
GRU, CNN, BiLSTM, BiGRU, CNN-LSTM, CNN-BiLSTM, CNN-GRU, and CNN-
BiGRU) for streamflow prediction in the UIB.

• To assess the impact of including SCA data from MODIS on the prediction accuracy of
these models.

• To identify the model that best captures the non-linear relationships between past
streamflow values based on the autocorrelation function (ACF) and SCA data, provid-
ing the most accurate monthly streamflow predictions.

The novelty of this research lies in the integration of MODIS-derived SCA data with
hybrid deep learning models for streamflow prediction, which has not been extensively
explored in existing literature. Previous studies have focused primarily on traditional
hydrological models or have used individual deep learning models incorporating remote
sensing data [34,35]. By combining these advanced methodologies, our research provides a
more robust and accurate prediction framework, which can significantly improve water
resource management. To our knowledge, no previous research has looked at the com-
bined impact of catchment features and climate, specifically snow conditions, on catchment
storage and low flows in the UIB region. In addition, the contributions of this study are
threefold: (i) a comprehensive evaluation of various deep learning architectures for stream-
flow prediction in a snow-dominated basin; (ii) a novel way to incorporate SCA data from
MODIS into hybrid deep learning models (e.g., CNN-BiLSTM and CNN-BiGRU) to en-
hance their prediction capabilities; and (iii) insights into the effectiveness of different model
architectures in capturing the complex dynamics of streamflow in the UIB, contributing to
the broader field of hydrological modeling and management.

2. Study Area

The Gilgit River basin is selected as a case study region, as shown in Figure 1. The Gilgit
River, which flows through the districts of Gupis-Yasin, Ghizer, and Gilgit in Pakistan’s
Gilgit-Baltistan region, is a tributary of the Upper Indus River. Shandur Lake is the source
of the Gilgit River, which flows on to merge with the Indus River close to the villages of
Juglot and Bunji. The Hindu Kush, the Himalayas, and the Karakoram are three notable
mountain ranges that are thought to meet at this confluence. The rugged and mountainous
terrain is traversed by the river. A high range with peaks that include elements of the
Himalayas, the Karakoram Range is characterized by its geology. Limestone and sandstone,
as well as metamorphic rocks like gneiss and schist, make up the majority of the rocks in
the vicinity of the Gilgit River. Giant glacial deposits are also present in the area [53].

River flow rates vary greatly depending on the season because the river is fed by
glacier meltwater from the Karakoram Range. Because of the glaciers melting in the
summer, the flow rose dramatically, and in the winter, it decreased [54]. Several glaciers
and streams nearby have produced tributaries that feed into the river, enhancing its overall
flow. The Gilgit River is vital to the hydrology of the area, sustaining local residents’ access
to water resources and promoting agriculture. Hydroclimatic data from Gilgit station have
been collected for a duration of 50 years from WAPDA, Pakistan, to examine the prediction
accuracy of machine learning models using only streamflow inputs. For the training dataset,
40 years of monthly climatic data are selected, whereas the remaining 10 years of data are
selected as testing datasets. To see the effect of SCA data input, snow cover data from
MOD10CM remote sensing snow cover product is extracted for the recent twenty years
duration and is utilized with the corresponding streamflow data. SCA data inputs with
corresponding streamflow data are partitioned into equal training and testing partitions to
see the effect of SCA input on the prediction accuracy of machine learning models.



Atmosphere 2024, 15, 1407 5 of 25
Atmosphere 2024, 15, x FOR PEER REVIEW 5 of 27 
 

 

 
Figure 1. Location map of the study area. 

3. Methods 
In this study, different standalone improved and hybrid versions of deep learning 

models are utilized to predict the streamflow. A brief description of these deep learning 
models is given below. 

3.1. Long Short-Term Memory (LSTM) 
Based on the idea that recurrent neural networks (RNNs) have the capability to in-

corporate the information gained from previous time steps and to use it as new input, 
long short-term memory deep learning (LSTM) was developed to overcome some prob-
lems related to the long-term dependencies [55]. The LSTM (Figure 2) can capture the 
long-term dependencies in sequence data by introducing “memory units” and “output 
gates” [56]. The LSTM handles the available information from the input to the output using 
three different gates: “forgotten”, “input”, and “output gate”. The “forgotten gate” works as 
follows: 𝑓௧ = 𝜎ൣ𝑊[𝑥௧, ℎ௧ିଵ] + 𝑏൧ (1)

In the previous equation, ft  refers to the forgotten gate state at time t, σ is the sig-
moidal activation function, Wf is the weight matrix, bf is the bias matrix, ht−1 is the hidden 
layer state at time t − 1, and xt is the input variable [57]. 

The “input gate” uses the tanh activation function to provide the candidate values c, 
formulated as follows: 𝑖௧ = 𝜎[𝑊[𝑥௧, ℎ௧ିଵ] + 𝑏] (2)

Figure 1. Location map of the study area.

3. Methods

In this study, different standalone improved and hybrid versions of deep learning
models are utilized to predict the streamflow. A brief description of these deep learning
models is given below.

3.1. Long Short-Term Memory (LSTM)

Based on the idea that recurrent neural networks (RNNs) have the capability to
incorporate the information gained from previous time steps and to use it as new input,
long short-term memory deep learning (LSTM) was developed to overcome some problems
related to the long-term dependencies [55]. The LSTM (Figure 2) can capture the long-term
dependencies in sequence data by introducing “memory units” and “output gates” [56]. The
LSTM handles the available information from the input to the output using three different
gates: “forgotten”, “input”, and “output gate”. The “forgotten gate” works as follows:

ft = σ
[
W f [xt,ht−1] + b f

]
(1)

In the previous equation, ft refers to the forgotten gate state at time t, σ is the sigmoidal
activation function, Wf is the weight matrix, bf is the bias matrix, ht−1 is the hidden layer
state at time t − 1, and xt is the input variable [57].

The “input gate” uses the tanh activation function to provide the candidate values c,
formulated as follows:

it = σ[Wi[xt, ht−1] + bi] (2)
∼
c t = tanh[Wc[xt, ht−1] + bc] (3)
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In the previous equations, it and
∼
c t are the remembered information and the candidate

memory unit. Furthermore, Wi is the weight matrix of the input gate, bi is the bias matrix
of the input gate, Wc is the weight matrix of the candidate memory unit, and bc represents
the bias of the candidate memory unit [58].

The output of the model is calculated by the output gate as follows:

ot = σ[W0[xt,ht−1] + b0] (4)

ht = ot • tanh(ct) (5)

where ht is the hidden state at time t, ct is the output of the forgetting gate, the operator • is
the Hadamard product, Ot denotes the output gate value, and W0 and b0 are the output
gate weight and bias [58].

3.2. Bidirectional Long Short-Term Memory (BiLSTM)

According to Figure 3, we can see that the bidirectional long short-term memory model
(BiLSTM) is composed of an ensemble of LSTM models with forward and backward stages.
Overall, the BiLSTM structure is composed of well-known gates: a forget gate, an output
gate, an input gate, and a memory cell [59]. The decision to withhold the information from
the previous past calculation is provided by the “forget gate”, while the “input gate” is used
for updating the available information, finally, the tanh layer is used for generating new
information [44]. The “cell state” plays the role of maintaining information within the cell
and controlling the information flow across the gates. From a mathematical point of view,
the input variable (xt) is used and combined to provide the “hidden state” (ht), which moves
directly to the fully connected layer for providing the final response using the sigmoid
activation function [59,60]. The forward and backward stages can be formulated as follows:

→
h t = LSTM f

(
xt,
→
h t−1

)
(6)

→
h t = LSTMb

(
xt,
→
h t−1

)
(7)

where the LSTM f and LSTMb represent the forward LSTM layer and backward LSTM

layer;
→
h t(i = t− 1, t) and

→
h t(j = t, t + 1) signify the output of the hidden state for the

forward LSTM layer and for the backward LSTM layer, respectively [61].
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3.3. Gated Recurrent Unit (GRU)

The gated recurrent unit (GRU) is a variant of the recurrent neural network (RNN).
According to Cho et al. [62], the gated recurrent unit (GRU) was proposed for improving
the RNN computation and, more precisely, for overcoming the problem of the “vanishing
gradient issue”. Inspired by the original LSTM, for which an individual memory cell is
omitted, the GRU adopts two gates (Figure 4), namely the update and the reset gates, which
are solely responsible for inputting and updating the information and deciding which
information moves to the next stage and which should be stopped [63]. The mathematical
formulation of the GRU can be written as follows:

Rt = σ(Wrxt ⊕Wrht−1 ⊕ br) (8)

Zt = σ(WZxt ⊕WZht−1 ⊕ bZ) (9)

Ct = tanh(Wcxt ⊕Wc(R⊙ ht−1)⊕ bc) (10)

ot = (1− Zt)⊙ Ct−1 + Zt ⊕ ct (11)

where Wr, Wz, Wc, br, bz, and bc are the weights and bias trainable parameters in the
reset and update gates, where Zt and Rt are the outputs of the update gate and reset gate,
respectively, xt is the input vector at the t th time step, ht−1 is the available information’s at
the previous time step, σ is the sigmoid function, ⊕ is an elementary addition operation,
Ot is the hidden state at current time t, and ct is the candidate output state [64,65].

3.4. Bidirectional Gated Recurrent Unit (Bi-GRU)

Bi-GRU can be viewed as a combination of an ensemble of single GRU networks
having two opposed layers. The first layer has a forward direction, while the second layer
has a backward opposed direction [66]. The responses of the two layers are combined
together to calculate the final response of the Bi-GRU network (Figure 5). The main idea
behind the proposition of the Bi-GRU is to help the single GRU in capturing the maximum
of gained information at time step t simultaneously from previous time steps and from the
subsequent steps [66]. From a mathematical point of view, after collecting the information

from the forward and backward layers, the Bi-GRU provides the final hidden state
↔
ht at

time t [67] as follows:
↔
ht = Wt

→
ht + βt

←
ht + bt (12)

where Wt, βt, and bt are the weight of the hidden layer in a forward and backward state,
and bt represents the bias of the hidden layer at time t.



Atmosphere 2024, 15, 1407 8 of 25
Atmosphere 2024, 15, x FOR PEER REVIEW 8 of 27 
 

 

 
Figure 4. The gated recurrent unit (GRU). 

3.4. Bidirectional Gated Recurrent Unit (Bi-GRU) 
Bi-GRU can be viewed as a combination of an ensemble of single GRU networks hav-

ing two opposed layers. The first layer has a forward direction, while the second layer has 
a backward opposed direction [66]. The responses of the two layers are combined together 
to calculate the final response of the Bi-GRU network (Figure 5). The main idea behind the 
proposition of the Bi-GRU is to help the single GRU in capturing the maximum of gained 
information at time step t simultaneously from previous time steps and from the subse-
quent steps [66]. From a mathematical point of view, after collecting the information from 
the forward and backward layers, the Bi-GRU provides the final hidden state ℎ௧ሬ⃖ሬ⃗  at time t 
[67] as follows: ℎ௧ሬ⃖ሬ⃗ = 𝑊௧ℎ௧ሬሬሬ⃗ + 𝛽௧ℎ௧ሬ⃖ሬሬ + 𝑏௧ (12)

where Wt, βt, and bt are the weight of the hidden layer in a forward and backward state, 
and bt represents the bias of the hidden layer at time t. 

σ σ 

tanh 

-1 

Ht  Ht-1 

xt 

Reset Gate  

Rt  Update Gate  

  Zt  

Figure 4. The gated recurrent unit (GRU).

Atmosphere 2024, 15, x FOR PEER REVIEW 9 of 27 
 

 

 
Figure 5. Bidirectional gated recurrent unit (Bi-GRU). 

3.5. Convolutional Neural Network (CNN) 
A convolutional neural network (CNN) is a kind of deep learning architecture mainly 

used for solving various kinds of time series, text, audio, and, more importantly, for han-
dling image data [68]. The CNN works in two distinguished stages: feature extraction and 
classification [69]. The CNN architecture is similar to the standard artificial neural net-
work, for which it is recognized that several layers will be needed to achieve the final task. 
As shown in Figure 6, there is an input layer, an output layer, and an ensemble of hidden 
layers. Beyond the input and output layers, the hidden layers are composed of a convolu-
tional layer, a pooling layer, an activation layer, and finally, a fully connected layer [70]. 
The convolutional layers are used for extracting the probable features from the input 
space. They are considered critical components in the CNN model, and they work as a 
filter, also called kernels. The output of the convolutional layer can be activated using 
various activation functions, i.e., ReLU, Tanh, and sigmoid, for which a high nonlinearity 
can be gained. The pooling layer was introduced for improving the computational of the 
CNN by decreasing the number of features maps by retaining only the essential. In this 
layer, the max pooling is commonly used. The fully connected layer is the last step, and it 
is at the end of the CNN model and used for the final prediction of the model [71–73]. 

Figure 5. Bidirectional gated recurrent unit (Bi-GRU).



Atmosphere 2024, 15, 1407 9 of 25

3.5. Convolutional Neural Network (CNN)

A convolutional neural network (CNN) is a kind of deep learning architecture mainly
used for solving various kinds of time series, text, audio, and, more importantly, for
handling image data [68]. The CNN works in two distinguished stages: feature extraction
and classification [69]. The CNN architecture is similar to the standard artificial neural
network, for which it is recognized that several layers will be needed to achieve the final
task. As shown in Figure 6, there is an input layer, an output layer, and an ensemble of
hidden layers. Beyond the input and output layers, the hidden layers are composed of
a convolutional layer, a pooling layer, an activation layer, and finally, a fully connected
layer [70]. The convolutional layers are used for extracting the probable features from the
input space. They are considered critical components in the CNN model, and they work as
a filter, also called kernels. The output of the convolutional layer can be activated using
various activation functions, i.e., ReLU, Tanh, and sigmoid, for which a high nonlinearity
can be gained. The pooling layer was introduced for improving the computational of the
CNN by decreasing the number of features maps by retaining only the essential. In this
layer, the max pooling is commonly used. The fully connected layer is the last step, and it
is at the end of the CNN model and used for the final prediction of the model [71–73].
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3.6. Convolutional Neural Network-LSTM (CNN-LSTM)

In the present study, the standard CNN was combined with the LSTM model to
improve its performance, and the CNN-LSTM was introduced. According to Figure 5,
the CNN-LSTM possesses the same architecture as the CNN with a new layer of LSTM
block between the flattened and the fully connected layer [74]. The CNN-LSTM uses the
same learning algorithm for which the convolutional and the pooling layers were used for
capturing the features from the input space, while the LSTM layer captures the nonlinearity
and improves the prediction of the modeled variable [75]. One of the major reasons for
developing the CNN-LSTM is that the CNN is a robust tool for extracting the features, but
it generally fails in handling sequential data [76].

3.7. Convolutional Neural Network–BiLSTM (CNN-BiLSTM)

CNN-BiLSTM (Figure 5) is a combination of the convolutional neural network and
bidirectional long short-term memory. The BiLSTM has a high capability in handling
sequential data in comparison to the LSTM by using the combination of two layers, i.e.,
the backward and the forward hidden layers [77]. Firstly, the CNN-BiLSTM adopts a
CNN in the first stage for capturing the features and improving the generalization ability
of the model, while in the last stage, the BiLSTM is adopted for improving the accuracy
and increasing the speed of the training algorithm [78]. Between different deep learning
layers, various dropout mechanisms are integrated, which help in discarding part of
the updated parameters at each learning step, which significantly helps in avoiding the
overfitting problem, while the CNN significantly decreases the input space by removing
the possible redundant features [78]. The overall CNN-BiLSTM process can be summarized
as follows: (i) splitting the input signal into a one-dimensional dataset to be exploited by
the convolutional layer, (ii) the application of Padding, Relu, max pooling, and dropout
operations for reducing the overfitting problem, (iii) normalization and sending the data to
the BiLSTM layer, and (iv) estimating the output of the model using the fully connected
layer [78].

3.8. Convolutional Neural Network-GRU (CNN-GRU)

CNN-GRU (Figure 5) is a combination of the convolutional neural network and the
gated recurrent unit. According to Figure 5, the output of the CNN is moved directly to
the GRU and presented as the input space, for which the GRU extracts the features and
realizes a non-linear mapping between the input variables and the modeled variable [79].
The GRU stores the information about the most relevant features provided by the CNN
block; this is achieved by passing the output value of the flattened layer to the gate units
for “tracking” the state of the sequence [80]. Finally, the importance of combining the CNN
with the GRU is that the response of both CNN and GRU algorithms were “concatenated” to
provide the final response [81,82].

3.9. Convolutional Neural Network-BiGRU (CNN-BiGRU)

CNN-BiGRU is a combination of the CNN and BiGRU. The selected predictors are
taken as the input variables of the model and the convolutional layers are used for extracting
the features [83]. The pooling layer is used for compressing the high number of parameters,
which significantly contributes to the decrease in the data space dimension. In parallel, the
dropout layer serves as a tool for handling the overfitting problem by a rational selection
of the neurons in the network, taking into account a precise probability. Passing by the
BiGRU layer, the filtered data are then captured, reshaped into a “one-dimensional sequence”,
and moved to the fully connected layer to provide the final response [84].

4. Performance Indicators

The accuracies of LSTM, BILSTM, CNN-LSTM, CNN-BILSTM, GRU, BIGRU, CNN-
GRU, and CNN-BIGRU are compared in monthly streamflow prediction for a high altitude
snow-fed catchment (Gilgit river) of Pakistan using previous values of streamflow selected
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based on auto-correlation function. SCA (snow-covered area) data from MODIS MOD10CM
remote sensing snow cover product and MN (month number) are also used as model inputs.
The outcomes of the benchmark models are compared using the following criteria:

RMSE : Root Mean Square Error =

√√√√ 1
N

N

∑
i=1

[(Q0)i − (QC)i ]
2 (13)

MAE : Mean Absolute Error =
1
N

N

∑
i=1
|(Q0)i − (QC)i| (14)

NSE : Nash− Suutcli f f e = 1− ∑N
i=1[(Q0)i − (QC)i]

2

∑N
i=1

[(
Q0)i −Q0

] 2 , −∞ < NSE ≤ 1 (15)

where QC, Q0, Q0 are calculated, observed, and average streamflow, respectively, and N is
the data quantity.

5. Results

To analyze the performance of LSTM models in streamflow prediction, we compare
the results from both the training and testing stages in Table 1. In this table, Qt-1, SCA,
and MN refer to the streamflow from the previous month, snow cover area, and month
number, respectively. In the training stage, the RMSE values decrease as more input features
are added, from 221.3 with just Qt-1 to 104.1 when all features (Qt-1, Qt-11, Qt-12, SCA,
MN) are included. Similarly, RMSE values decrease from 234.6 with Qt-1 to 132.5 with all
features. The RMSE values are consistently higher in the testing stage than in the training
stage, indicating that the model performs better on the training data. However, the trend
of improvement with additional inputs is consistent in both stages, suggesting that the
model generalizes well. MAE decreases from 164.4 with Qt-1 to 57.4 with all inputs in the
training stage, while the MAE of the testing stage decreases from 167.5 with Qt-1 to 74.5
with all inputs. Like RMSE, the MAE values are higher during testing, but the reduction
in error with more input features remains consistent across both stages. R2 in the training
stage increases from 0.514 with Qt-1 to 0.896 with all inputs, indicating a better fit as more
features are added. The R2 of the testing stage increases from 0.476 with Qt-1 to 0.841 with
all inputs. The R2 values are slightly lower in the testing stage, reflecting a decrease in
model performance on unseen data. However, the overall pattern of improvement with
additional inputs is mirrored in both training and testing, showing that the model’s ability
to explain variance improves with more features. In the training stage, NSE increases from
0.511 with Qt-1 to 0.891 with all inputs, indicating better predictive power. The NSE of the
testing stage increases from 0.465 with Qt-1 to 0.838 with all inputs. The NSE values are also
lower during testing, similar to R2, but the upward trend with additional inputs remains.
This suggests that while the model is not overfitting, there is a slight drop in performance
on testing data. The models consistently improve performance metrics (lower RMSE and
MAE, higher R2 and NSE) as more input features are included in the training and testing
phases. This indicates that the additional input variables (SCA, MN) provide valuable
information for predicting streamflow. There is a noticeable difference between training
and testing results, with training performance being better. This is typical in machine
learning, where the model performs slightly better on the data it was trained on. However,
the consistency in trends across both datasets suggests that the model generalizes well to
unseen data although there is room for improvement.

Table 2 compares the performance of bidirectional long short-term memory (BILSTM)
models during both the training and testing stages. The models consistently improve
predictive accuracy as more features are added. Training RMSE drops from 217.8 with only
Qt-1 to 102.8, while testing RMSE decreases from 225.9 to 125.6. MAE and NSE metrics
follow a similar pattern, with MAE decreasing from 153.2 to 54.07 in training and from 161.5
to 70.62 in testing, and NSE increasing from 0.526 to 0.901 in training and from 0.503 to 0.853
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in testing. R2 improves from 0.529 to 0.908 in training and from 0.509 to 0.859 in testing.
Including SCA and MN consistently enhances model performance, indicating these features
help capture seasonal variations and improve prediction accuracy, even with slightly better
results on training data. The performance of CNN-LSTM models during both the training
and testing stages of streamflow prediction is compared in Table 3. RMSE decreases from
214.6 to 91.4 in training and from 219.6 to 119.5 in testing as more features are included.
MAE follows this trend, dropping from 151.3 to 51.82 in training and from 157.8 to 68.15 in
testing. R2 and NSE also show improvements, with R2 increasing from 0.549 to 0.926 in
training, from 0.526 to 0.87 in testing, and NSE improving from 0.544 to 0.918 in training
and from 0.514 to 0.862 in testing. The consistent improvement across all metrics with
the inclusion of SCA and MN demonstrates the model’s effectiveness in capturing both
seasonal and temporal data despite slightly higher testing errors than training.

Table 1. Training and test statistics of the models for streamflow prediction—LSTM.

Model Inputs Training Period Test Period

RMSE MAE R2 NSE RMSE MAE R2 NSE

Qt-1 221.3 164.4 0.514 0.511 234.6 167.5 0.476 0.465

Qt-1, Qt-11 138.3 85.32 0.814 0.805 141.6 87.6 0.807 0.801

Qt-1, Qt-11, Qt-12 113.4 64.8 0.865 0.858 139.3 81.7 0.819 0.815

Qt-1, Qt-11, Qt-12, SCA 107.3 59.6 0.887 0.881 134.4 78.3 0.826 0.819

Qt-1, Qt-11, Qt-12, MN 105.2 58.5 0.892 0.886 133.8 75.76 0.837 0.831

Qt-1, Qt-11, Qt-12, SCA, MN 104.1 57.4 0.896 0.891 132.5 74.5 0.841 0.838

Mean 131.6 81.67 0.811 0.805 152.7 94.227 0.768 0.762

Table 2. Training and test statistics of the models for streamflow prediction—BILSTM.

Model Inputs Training Period Test Period

RMSE MAE R2 NSE RMSE MAE R2 NSE

Qt-1 217.8 153.2 0.529 0.526 225.9 161.5 0.509 0.503

Qt-1, Qt-11 123.6 72.7 0.851 0.845 133.8 81.6 0.835 0.827

Qt-1, Qt-11, Qt-12 106.5 58.6 0.886 0.881 131.6 74.5 0.839 0.831

Qt-1, Qt-11, Qt-12, SCA 105.3 55.32 0.895 0.891 128.5 72.3 0.845 0.837

Qt-1, Qt-11, Qt-12, MN 103.7 54.61 0.902 0.895 127.2 71.6 0.849 0.843

Qt-1, Qt-11, Qt-12, SCA, MN 102.8 54.07 0.908 0.901 125.6 70.62 0.859 0.853

Mean 126.617 74.750 0.829 0.823 145.433 88.687 0.789 0.782

Table 4 summarizes the performance of CNN-BiLSTM models during the training and
testing stages. The models show significant improvement in accuracy with more features.
Training RMSE decreases from 209.7 to 75.8, while testing RMSE drops from 215.7 to 101.6.
MAE and NSE improvements are also noted, with training MAE reducing from 147.3 to
42.3 and testing MAE from 156.2 to 54.9. R2 increases from 0.565 to 0.952 in training and
from 0.543 to 0.905 in testing. Including SCA and MN results in consistent performance
improvements across all metrics, suggesting these features effectively capture temporal
and seasonal variations, leading to better predictions. Table 5 illustrates the outcomes of
GRU (gated recurrent unit) models during both the training and testing stages. The models
benefit from additional input features, with training RMSE decreasing from 218.3 to 102.7
and testing RMSE from 226.4 to 127.7. MAE shows similar reductions, from 154.42 to 55.03
in training and 162.3 to 74.6 in testing. R2 and NSE improvements are also observed, with
R2 increasing from 0.527 to 0.904 in training and from 0.507 to 0.850 in testing, and NSE
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from 0.524 to 0.897 in training, from 0.501 to 0.844 in testing. The consistent reduction in
errors with the inclusion of SCA and MN highlights their importance in enhancing model
performance by capturing seasonal variations.

Table 3. Training and test statistics of the models for streamflow prediction—CNN-LSTM.

Model Inputs Training Period Test Period

RMSE MAE R2 NSE RMSE MAE R2 NSE

Qt-1 214.6 151.3 0.549 0.544 219.6 157.8 0.526 0.514

Qt-1, Qt-11 111.5 61.4 0.882 0.877 128.2 76.6 0.851 0.846

Qt-1, Qt-11, Qt-12 99.8 55.8 0.908 0.901 125.4 72.6 0.848 0.841

Qt-1, Qt-11, Qt-12, SCA 97.6 54.43 0.911 0.906 124.6 70.831 0.851 0.845

Qt-1, Qt-11, Qt-12, MN 93.3 52.61 0.917 0.914 122.6 69.2 0.861 0.855

Qt-1, Qt-11, Qt-12, SCA, MN 91.4 51.82 0.926 0.918 119.5 68.15 0.87 0.862

Mean 118.033 71.227 0.849 0.843 139.983 85.864 0.801 0.794

Table 4. Training and test statistics of the models for streamflow prediction—CNN-BILSTM.

Model Inputs Training Period Test Period

RMSE MAE R2 NSE RMSE MAE R2 NSE

Qt-1 209.7 147.3 0.565 0.561 215.7 156.2 0.543 0.539

Qt-1, Qt-11 91.2 50.7 0.911 0.906 113.7 68.8 0.868 0.862

Qt-1, Qt-11, Qt-12 86.7 46.7 0.926 0.921 110.2 65.61 0.878 0.873

Qt-1, Qt-11, Qt-12, SCA 82.63 45.7 0.938 0.933 108.3 61.5 0.888 0.883

Qt-1, Qt-11, Qt-12, MN 76.5 44.6 0.946 0.942 104.8 57.2 0.891 0.886

Qt-1, Qt-11, Qt-12, SCA, MN 75.8 42.3 0.952 0.947 101.6 54.9 0.905 0.901

Mean 103.755 62.883 0.873 0.868 125.717 77.368 0.829 0.824

Table 5. Training and test statistics of the models for streamflow prediction—GRU.

Model Inputs Training Period Test Period

RMSE MAE R2 NSE RMSE MAE R2 NSE

Qt-1 218.3 154.42 0.527 0.524 226.4 162.3 0.507 0.501

Qt-1, Qt-11 133.7 82.7 0.832 0.821 136.8 84.6 0.825 0.821

Qt-1, Qt-11, Qt-12 109.9 59.7 0.873 0.867 134.3 77.6 0.826 0.821

Qt-1, Qt-11, Qt-12, SCA 106.6 56.5 0.886 0.881 130.2 76.7 0.836 0.832

Qt-1, Qt-11, Qt-12, MN 104.2 55.63 0.898 0.893 128.2 75.1 0.844 0.839

Qt-1, Qt-11, Qt-12, SCA, MN 102.7 55.03 0.904 0.897 127.7 74.6 0.85 0.844

Mean 129.233 77.330 0.820 0.814 147.267 91.817 0.781 0.776

The performance of BiGRU (bidirectional gated recurrent unit) models during both
the training and testing stages is reported in Table 6. The models show improved accuracy
with added features, with training RMSE decreasing from 215.5 to 97.62 and testing RMSE
from 221.3 to 122.8. MAE follows the same trend, decreasing from 152.6 to 52.45 in training
and from 159.2 to 69.6 in testing. R2 and NSE values increase, indicating better model fit,
with R2 improving from 0.545 to 0.917 in training and from 0.516 to 0.862 in testing, and
NSE from 0.542 to 0.912 in training and from 0.509 to 0.856 in testing. Including SCA and
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MN enhances model performance across all metrics, reflecting the value of incorporating
both temporal and seasonal data for accurate streamflow predictions. Table 7 reports the
performance of CNN-GRU (convolutional neural network–gated recurrent unit) models
in streamflow prediction during the training and testing stages. The models demonstrate
significant accuracy gains with additional features. Training RMSE decreases from 212.7 to
80.24, while testing RMSE reduces from 217.3 to 111.2. MAE decreases from 150.8 to 47.03
in training and 157.4 to 66.32 in testing. R2 and NSE also improve, with R2 increasing from
0.553 to 0.942 in training, from 0.532 to 0.884 in testing, from 0.551 to 0.936 in training, and
from 0.529 to 0.881 in testing. The consistent improvement across all metrics, including SCA
and MN, highlights the model’s ability to generalize well and accurately predict streamflow
variations. Table 8 performs CNN-BiGRU (convolutional neural network–bidirectional
gated recurrent unit) models in streamflow prediction during the training and testing
stages. The models show substantial improvements in performance with more features.
Training RMSE decreases from 207.8 to 71.6, and testing RMSE drops from 213.6 to 95.7.
MAE, R2, and NSE metrics also show consistent improvement, with MAE decreasing from
144.7 to 39.62 in training and from 155.2 to 50.7 in testing, R2 improving from 0.578 to 0.962
in training and from 0.558 to 0.929 in testing, and NSE increasing from 0.574 to 0.957 in
training and from 0.553 to 0.921 in testing. Including SCA and MN significantly enhances
model performance across all metrics, demonstrating their importance in capturing the
temporal and seasonal dynamics of streamflow.

Table 6. Training and test statistics of the models for streamflow prediction—BIGRU.

Model Inputs Training Period Test Period

RMSE MAE R2 NSE RMSE MAE R2 NSE

Qt-1 215.5 152.6 0.545 0.542 221.3 159.2 0.516 0.509

Qt-1, Qt-11 118.5 65.3 0.869 0.861 131.5 79.6 0.842 0.835

Qt-1, Qt-11, Qt-12 104.3 57.4 0.892 0.886 128.3 73.2 0.844 0.837

Qt-1, Qt-11, Qt-12, SCA 101.6 55.62 0.905 0.901 127.1 71.7 0.849 0.843

Qt-1, Qt-11, Qt-12, MN 98.34 53.64 0.911 0.905 125.2 70.21 0.857 0.851

Qt-1, Qt-11, Qt-12, SCA, MN 97.62 52.45 0.917 0.912 122.8 69.6 0.862 0.856

Mean 122.643 72.835 0.840 0.835 142.700 87.252 0.795 0.789

Table 7. Training and test statistics of the models for streamflow prediction—CNN-GRU.

Model Inputs Training Period Test Period

RMSE MAE R2 NSE RMSE MAE R2 NSE

Qt-1 212.7 150.8 0.553 0.551 217.3 157.4 0.532 0.529

Qt-1, Qt-11 105.3 57.32 0.891 0.886 123.6 73.21 0.854 0.849

Qt-1, Qt-11, Qt-12 95.27 55.62 0.901 0.895 119.8 71.81 0.859 0.852

Qt-1, Qt-11, Qt-12, SCA 85.85 52.33 0.921 0.918 116.9 69.5 0.862 0.855

Qt-1, Qt-11, Qt-12, MN 83.25 50.41 0.932 0.927 114.5 68.91 0.875 0.867

Qt-1, Qt-11, Qt-12, SCA, MN 80.24 47.03 0.942 0.936 111.2 66.32 0.884 0.881

Mean 110.435 68.918 0.857 0.852 133.883 84.525 0.811 0.806

All models show significant RMSE reductions as more input features are added in
the training stage (Tables 1–8). CNN-based models, particularly CNN-BiGRU, achieve the
lowest RMSE, indicating superior training data fitting accuracy. The CNN-BiGRU also
reduces MAE during training, followed closely by CNN-LSTM and CNN-GRU, showing
these models’ precision in aligning predictions with observed values. The CNN-BiGRU
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and CNN-GRU achieve the highest R2 and NSE values during training, indicating robust
model fits and reliable predictions. The CNN-BiGRU maintains the lowest RMSE and
MAE in testing, demonstrating excellent generalization to unseen data. CNN-GRU also
performs well, showing consistency in both training and testing. These models (CNN-
BiGRU and CNN-GRU) also achieve high R2 and NSE in testing, suggesting they effectively
capture the variance and dynamics of streamflow, even with unseen data. The LSTM and
BiLSTM models show solid improvements with added features, particularly in training, but
generally perform slightly lower than CNN-integrated models in testing. They offer good
baseline performance with the advantage of simpler architectures compared to CNN-based
models. GRU models perform comparably to LSTM models, with BiGRU showing slightly
better results due to its bidirectional nature. These models effectively handle temporal
sequences, making them reliable for streamflow prediction but slightly behind CNN-based
models in testing performance. These models benefit from combining CNN’s spatial feature
extraction and LSTM/GRU’s temporal handling. They consistently perform well in both
stages, with CNN-GRU slightly outperforming CNN-LSTM in testing, indicating robust
generalization and strong predictive power. The CNN-BiGRU model stands out across all
metrics in both stages. It combines the strengths of CNN for spatial pattern recognition and
BiGRU for capturing temporal dynamics from both directions, leading to the best overall
performance in accuracy, precision, and generalization. The CNN-BiGRU and CNN-GRU
are the top performers across both training and testing stages, excelling in RMSE, MAE, R2,
and NSE metrics. These models effectively balance spatial and temporal data processing,
achieving high predictive accuracy and reliability. For applications requiring high accuracy
and generalization, CNN-BiGRU is recommended. For a balance between complexity
and performance, CNN-GRU offers strong predictive capabilities with slightly simpler
architecture. While simpler models like LSTM, BiLSTM, and GRU are effective and easier
to implement, including CNN layers significantly enhances performance, especially in
more complex temporal-spatial scenarios like streamflow prediction. The bidirectional
capabilities of BiGRU further boosts model performance, making CNN-BiGRU the most
robust and reliable option among the models evaluated.

Table 8. Training and test statistics of the models for streamflow prediction—CNN-BIGRU.

Model Inputs Training Period Test Period

RMSE MAE R2 NSE RMSE MAE R2 NSE

Qt-1 207.8 144.7 0.578 0.574 213.6 155.2 0.558 0.553

Qt-1, Qt-11 87.2 48.3 0.922 0.915 114.3 64.4 0.875 0.871

Qt-1, Qt-11, Qt-12 83.6 46.8 0.931 0.925 108.6 61.7 0.881 0.873

Qt-1, Qt-11, Qt-12, SCA 76.7 42.7 0.945 0.939 105.2 58.6 0.894 0.887

Qt-1, Qt-11, Qt-12, MN 73.62 40.74 0.956 0.952 101.2 53.6 0.908 0.901

Qt-1, Qt-11, Qt-12, SCA, MN 71.6 39.62 0.962 0.957 95.7 50.7 0.929 0.921

Mean 100.087 60.477 0.882 0.877 123.100 74.033 0.841 0.834

For a comparison of the model’s prediction performances, a graphical comparison
is also performed. For this purpose, scatter plots, Taylor diagrams, and violin plots are
utilized (Figures 7–9). The scatterplots (Figure 7) demonstrate that hybrid models incorpo-
rating CNN layers, particularly CNN-BiGRU and CNN-BiLSTM, significantly outperform
standalone LSTM, GRU, and BiGRU models. CNN-BiGRU, in particular, shows the highest
R2 value, indicating its strong predictive power and ability to capture complex streamflow
dynamics accurately. The Taylor diagram (Figure 8) shows that CNN-BiGRU outperforms
other models in correlation, variability, and RMSE, followed closely by CNN-BiLSTM. This
diagram confirms that hybrid models incorporating CNN and bidirectional recurrent layers
(GRU or LSTM) offer superior performance for streamflow prediction. The other models,
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such as LSTM, GRU, and BiLSTM, perform moderately well but fall short of the hybrid
CNN models in accurately capturing the observed streamflow characteristics. The violin
plots (Figure 9) highlight that hybrid models with CNN layers, particularly CNN-BiGRU
and CNN-BiLSTM, provide the most accurate representation of observed streamflow distri-
bution. CNN-BiGRU has the best alignment with the observed distribution, capturing both
the variability and extreme values effectively. This visualization reinforces the findings
from previous analyses, suggesting that CNN-BiGRU is the most robust model for accu-
rately predicting streamflow, followed closely by CNN-BiLSTM. In contrast, standalone
GRU and LSTM models show limitations in capturing the full range of streamflow values,
especially for extreme flows.
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Table 9 compares the performance of various models (LSTM, BiLSTM, CNN-LSTM,
CNN-BiLSTM, GRU, BiGRU, CNN-GRU, and CNN-BiGRU) in predicting peak streamflow
values during the testing stage. The key metric for comparison is the relative prediction er-
ror percentage for dates with observed peak streamflow greater than 807. CNN-BiGRU has
the lowest absolute error (108.4), indicating the most accurate peak streamflow predictions.
CNN-BiLSTM follows with an absolute error of 144.1, showing strong predictive accuracy.
CNN-GRU and CNN-LSTM also perform well, with absolute errors of 157.1 and 211.9,
respectively. LSTM and GRU models have higher absolute errors, with LSTM showing the
highest error at 284.8. The performance varies across dates, but CNN-BiGRU consistently
shows lower prediction errors compared to other models, especially in later years (e.g.,
2010–2015). CNN-LSTM and CNN-BiLSTM models also perform well but show higher
errors in some cases, particularly in earlier years (e.g., 2006–2007). Non-CNN models like
LSTM and BiLSTM show higher errors, particularly in cases where observed values are
higher. The trend shows that models incorporating CNN layers (especially in combination
with BiGRU) tend to outperform others, suggesting that the convolutional layers help
capture more intricate patterns in peak streamflow data. CNN-BiGRU is the most effective
model for predicting peak streamflow, with the lowest overall prediction error, indicating
its strength in handling complex patterns in peak data. CNN-BiLSTM and CNN-GRU
also perform well, showing that models combining CNN with either BiLSTM or GRU
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can capture and predict peak streamflow more accurately than traditional LSTM or GRU
models. LSTM and GRU models, while still useful, show higher errors in peak streamflow
prediction, indicating potential limitations in capturing complex temporal patterns without
the added CNN layers. The analysis suggests that for peak streamflow prediction, models
that integrate CNN with BiGRU or BiLSTM provide the most accurate results.

Table 9. The comparison of different models in peak streamflow prediction for the test period.

Date Observed
Values Relative Prediction Error Percentage

Peaks > 807 LSTM % BILSTM % CNN-
LSTM %

CNN-
BILSTM % GRU % BIGRU

%
CNN-
GRU %

CNN-
BIGRU %

7/2006 829.5 −31.1 −24.1 −18.9 4.8 −30.4 −22.1 9.3 0.3

8/2006 872.2 17.2 20.2 2.0 1.8 16.4 5.8 8.7 −0.3

7/2007 905.4 12.0 19.5 −9.7 −6.5 −12.4 3.3 5.6 −4.6

6/2008 810.3 10.5 6.9 8.1 −1.0 17.0 12.0 3.7 −2.2

7/2009 1031.6 28.4 23.0 19.6 15.8 22.6 27.2 10.2 9.8

8/2009 882.9 27.5 23.0 28.1 21.3 29.4 22.0 26.0 17.8

7/2010 842.2 13.3 7.3 1.6 −5.1 10.7 −3.4 3.6 −1.3

8/2010 1233.3 36.3 36.6 36.4 28.2 40.9 33.0 33.0 16.8

8/2013 1102.9 33.3 31.3 34.0 21.2 29.1 34.6 25.4 19.2

7/2014 807.5 6.2 −11.4 −13.0 −9.0 −26.0 5.3 −8.9 −11.3

7/2015 1270.3 44.0 36.6 28.9 22.8 26.3 42.4 19.0 20.0

8/2015 813.5 25.1 15.1 11.6 6.4 7.0 14.2 3.6 4.7

Table 10 presents a seasonal analysis of the streamflow prediction models’ performance,
comparing different metrics across winter, spring, summer, and autumn. the models include
CNN-BiLSTM and CNN-BiGRU, with additional variations incorporating snow-covered
area (SCA) data as an input feature. In winter, The CNN-BiGRU model with SCA data
performs best, with the lowest RMSE (4.268 in training and 4.417 in testing) and highest R2

(0.763 in training and 0.742 in testing). This indicates that the inclusion of SCA data helps
capture wintertime streamflow patterns, which are heavily influenced by snow conditions.
Spring has the highest overall R2 values, with CNN-BiGRU + SCA again showing the best
performance (R2 of 0.941 in training and 0.937 in testing). The MAE and RMSE values
also indicate high accuracy, with CNN-BiGRU + SCA achieving RMSE values of 48.61
in training and 45.64 in testing. This superior performance can be attributed to spring
meltwater dynamics, which the models capture more accurately with SCA data integration.
Summer shows a slight drop in R2 and NSE scores compared to spring, likely due to
increased variability in streamflow from rapid glacial melt and monsoon impacts. The
CNN-BiGRU + SCA model again performs best, with an RMSE of 114.1 in training and
118.9 in testing, indicating it effectively captures the complex summer flow patterns when
SCA data are included. The models maintain high accuracy into autumn, with CNN-BiGRU
+ SCA achieving the best results across all metrics. This model’s RMSE values are 40.19 in
training and 37.84 in testing, and R2 reaches 0.914 in training and 0.908 in testing, suggesting
a reliable fit. The strong autumn performance may reflect lower seasonal variability in
streamflow as snowmelt slows, allowing the model to achieve stable predictions. The
integration of SCA data consistently enhances model accuracy across seasons, especially
with CNN-BiGRU. The seasonal performance variation indicates that snow cover plays a
critical role in predicting streamflow in the Upper Indus Basin, as evidenced by improved
RMSE, MAE, R2, and NSE values with SCA. The CNN-BiGRU model with SCA integration
emerges as the most effective model for seasonal streamflow prediction, reflecting its ability
to generalize across seasonal patterns with high reliability.
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Table 10. Training and test statistics of the best models for streamflow prediction during different
seasons.

Season Model Training Period Test Period

RMSE MAE R2 NSE RMSE MAE R2 NSE

Winter

CNN-BiLSTM 5.109 4.022 0.752 0.748 5.263 4.249 0.731 0.728

CNN-BiGRU 4.942 3.779 0.758 0.755 5.062 3.864 0.735 0.731

CNN-BiLSTM + SCA 4.626 3.587 0.758 0.753 4.785 3.692 0.738 0.735

CNN-BiGRU + SCA 4.268 3.184 0.763 0.761 4.417 3.342 0.742 0.739

Spring

CNN-BiLSTM 56.37 42.09 0.929 0.926 51.18 39.85 0.921 0.920

CNN-BiGRU 53.82 40.72 0.937 0.935 50.49 36.72 0.934 0.932

CNN-BiLSTM + SCA 51.62 39.08 0.934 0.928 48.64 35.42 0.928 0.925

CNN-BiGRU + SCA 48.61 37.47 0.941 0.940 45.64 34.71 0.937 0.935

Summer

CNN-BiLSTM 134.1 93.37 0.704 0.702 139.8 96.48 0.702 0.701

CNN-BiGRU 125.3 86.71 0.719 0.714 122.6 88.34 0.714 0.711

CNN-BiLSTM + SCA 119.8 81.62 0.725 0.722 121.6 84.71 0.722 0.721

CNN-BiGRU + SCA 114.1 72.08 0.738 0.735 118.9 75.91 0.733 0.731

Autumn

CNN-BiLSTM 47.59 30.62 0.901 0.898 45.28 27.61 0.896 0.892

CNN-BiGRU 44.27 28.64 0.903 0.901 40.37 24.71 0.901 0.900

CNN-BiLSTM + SCA 43.68 25.84 0.908 0.905 41.94 22.82 0.904 0.901

CNN-BiGRU + SCA 40.19 22.73 0.914 0.911 37.84 20.67 0.908 0.905

6. Discussion

In this study, LSTM was applied as a baseline model for streamflow prediction. The
results indicated that while LSTM performed reasonably well, its accuracy was surpassed by
more complex models like CNN-BiGRU and CNN-BiLSTM, particularly in peak streamflow
predictions. LSTM models are widely recognized in hydrological studies for their ability
to capture long-term dependencies in time-series data. Studies like Nakhaei et al. [23]
have shown that LSTM models significantly outperform traditional models, particularly in
capturing the non-linear and temporal dependencies of streamflow data. However, these
models can be further enhanced when combined with other deep learning techniques, such
as CNN, to improve feature extraction and overall prediction accuracy. BiLSTM models
have been noted for their superior performance in various hydrological modeling tasks
compared to unidirectional LSTM. Abdoulhalik and Ahmed [24] highlighted that BiLSTM
can better capture the bidirectional dependencies in streamflow data, making it more
suitable for complex hydrological forecasting. However, consistent with our study, the
literature suggests that BiLSTM’s performance can be further improved by integrating CNN
or other deep learning architectures to enhance spatial feature extraction. GRU models are
known for their ability to achieve similar performance to LSTM models but with fewer
parameters and faster training times. Wegayehu et al. [26] and Vatanchi et al. [25] have
demonstrated that GRU is effective for streamflow prediction, particularly in scenarios with
limited data. However, similar to our findings, GRU often benefits from hybridization with
CNN to improve accuracy. The use of CNN in hydrological modeling, especially when
combined with RNN architectures like LSTM or GRU, has been shown to enhance model
performance by effectively extracting spatial patterns from input data [27,31]. Studies such
as those by Wu et al. [30] and Maiti et al. [29] support our findings, demonstrating that
hybrid models like CNN-LSTM excel at handling complex, high-resolution datasets, thereby
improving both accuracy and robustness in streamflow prediction. Similarly, research by
Hassan and Hassan [85] and others highlights the critical role of incorporating remotely
sensed data, such as SCA, into hydrological models to better represent snowmelt dynamics
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and enhance streamflow predictions. The use of MODIS-derived SCA data in our study
aligns with these findings and underscores its importance in improving model performance,
particularly in snow-fed river basins. Our results are consistent with existing literature,
which shows that hybrid models combining CNN with LSTM, BiLSTM, GRU, and BiGRU
outperform traditional and standalone deep learning approaches for streamflow prediction.
This advantage is particularly evident in their ability to capture complex temporal and
spatial patterns, as well as peak streamflow events.

Table 10 reveals distinct seasonal patterns in model performance, highlighting the
critical role of snow cover and seasonal temperature shifts in predicting streamflow in
snow-dominated basins like the Upper Indus Basin (UIB). The CNN-BiGRU model with
SCA data consistently achieved the best performance across all seasons, demonstrating its
capability to capture complex seasonal variations. Notably, model accuracy was highest
in spring, as this period represents a steady increase in snowmelt-driven flow, which the
model successfully predicts. Winter accuracy, although slightly lower, remains robust
due to the model’s integration of SCA data, which helps capture low-flow dynamics.
The summer season presented the greatest challenge due to heightened variability from
glacial melt and monsoon influence, leading to higher RMSE values. Nonetheless, the
CNN-BiGRU model effectively generalized across this variability, maintaining prediction
reliability. This seasonal analysis underscores the added value of incorporating SCA data,
particularly in snow-fed systems, and highlights the importance of model selection based
on seasonal characteristics.

7. Conclusions

This study conducted a comprehensive evaluation of advanced deep learning models
for streamflow prediction in the Upper Indus Basin (UIB), focusing on their ability to
accurately forecast monthly and peak streamflow. The models applied included LSTM, BiL-
STM, GRU, CNN, and their hybrid combinations (CNN-LSTM, CNN-BiLSTM, CNN-GRU,
and CNN-BiGRU). A novel aspect of this research was the integration of MODIS-derived
snow-covered area (SCA) data, which provided critical information on snowmelt dynamics,
a significant contributor to streamflow in the UIB. The hybrid models, particularly CNN-
BiGRU and CNN-BiLSTM, demonstrated superior performance over traditional models
like LSTM and GRU. For instance, CNN-BiGRU achieved the lowest RMSE (71.6 in training
and 95.7 in testing), MAE (39.62 in training and 50.7 in testing), and the highest R2 (0.962
in training and 0.929 in testing) and NSE (0.957 in training and 0.921 in testing). This
significant improvement highlights the efficacy of hybrid models in capturing complex
temporal and spatial patterns in streamflow data.

The integration of SCA data from MODIS was found to enhance model accuracy
substantially. For example, when SCA data were included, the CNN-BiLSTM model’s
RMSE improved from 83.6 to 71.6 during training and from 108.6 to 95.7 during testing. This
indicates that SCA data are a crucial factor in improving the predictive capability of deep
learning models in snow-dominated basins like the UIB. In peak streamflow prediction,
CNN-BiGRU outperformed other models with the lowest absolute error (108.4), followed by
CNN-BiLSTM (144.1). This outcome is significant as it demonstrates the model’s ability to
predict extreme events accurately, which is critical for flood forecasting and water resource
management. The findings are consistent with the broader literature, where hybrid models
integrating CNN with RNN architectures (like LSTM, BiLSTM, and GRU) are shown
to outperform traditional models in hydrological forecasting tasks. This study’s results
reinforce the notion that combining CNN’s spatial feature extraction capabilities with the
temporal dependencies captured by LSTM or GRU significantly enhances model accuracy.

The study’s results underscore the importance of using hybrid deep learning models
for hydrological forecasting in regions like the UIB, where snow and glacier melt sig-
nificantly influence streamflow. By accurately capturing both the temporal dynamics of
streamflow and the spatial characteristics of snow cover, these models provide a robust
framework for water resource management. The quantitative outcomes of this study sug-
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gest that hybrid models could be particularly valuable for operational forecasting in similar
snow-dominated basins globally. The demonstrated improvements in prediction accuracy,
especially for extreme events, highlight the potential for these models to support more
informed decision-making in flood risk management and water allocation. In conclusion,
the integration of advanced deep learning techniques, particularly hybrid models like CNN-
BiGRU and CNN-BiLSTM, with remotely sensed data like SCA offers a powerful approach
for streamflow prediction. The quantitative improvements observed in this study—such
as the reduction in RMSE and MAE and the increase in R2 and NSE—demonstrate the
significant potential of these models to enhance the accuracy and reliability of hydrological
forecasting, ultimately contributing to better water resource management and planning in
the UIB and similar regions.

The seasonal analysis findings underscore the utility of hybrid models, particularly
CNN-BiGRU with SCA integration, in accurately predicting streamflow across distinct
seasonal conditions. The ability of these models to handle complex temporal and spatial pat-
terns was evident in their performance, particularly in the spring and autumn seasons. Al-
though summer predictions were slightly less accurate due to increased flow variability, the
CNN-BiGRU model demonstrated strong generalization capabilities. The seasonal break-
down highlights the importance of integrating snow cover data and supports the adoption
of seasonally responsive models for hydrological forecasting in snow-dominated basins.

The accuracy of the models heavily depends on the quality and resolution of the input
data. While MODIS provides valuable SCA data, the study could be limited by the avail-
ability of high-resolution, continuous datasets for other meteorological and hydrological
variables. The models were trained and tested specifically for the UIB, which has unique
hydrological characteristics. The results may not be directly applicable to other regions with
different climatic and hydrological conditions without further calibration and validation.
To improve model robustness and generalization, future studies should incorporate more
diverse and higher-resolution datasets, including additional remote sensing products and
in situ measurements. Expanding the temporal range of data used for training could also
enhance model accuracy. Given the specific nature of the UIB, applying transfer learning
techniques could allow these models to be adapted and applied to other regions with
different hydrological characteristics, improving their generalizability.
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