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Abstract: The micro-physical characteristics of a typical sea of clouds process in Jiuxian Mountain
are investigated by comprehensively analyzing parameters that delineate the micro-physical char-
acteristics of clouds and atmospheric stratification based on data from a cloud radar, wind profiler,
meteorological gradient observation in high mountains, and other observations. The results show
that water vapor condenses into cloud particles via an entrained and mixing process accompanied
by an updraft originating from orographic uplift. During the thickening stage of the sea of clouds,
atmospheric motion within the clouds is featured as “downdraft on the top—updraft on the bottom”.
The zero vertical velocity area is located closely to the maximum of liquid water content. The thermal
inversion layer is formed during the maintenance stage; however, the enhancement of inversion on
the cloud top could suppress updraft in areas with a high liquid water content. The values mainly
concentrate on the cloud top, and repetitively lifting and falling processes caused by the atmospheric
upward and downward motion are in favor of the coalescence growth of cloud particles, which
result in the persistence of strong radar echo. At the dissipation stage, warming on the cloud top
is greater than that on the cloud bottom due to the short-wave absorption of clouds as the solar
radiation enhances. As a result, the inversion layer thickens and elevates, evaporation caused by
heating outweighs the condensation caused by cooling, a strong radar echo band descends from the
top to the middle part of clouds, a sea of clouds dissipates gradually as cloud particles evaporates,
and the particle size and concentration number of cloud particles decrease simultaneously.

Keywords: multiple source observations; sea of clouds in high mountains; micro-physicalcharacteristics;
cloud radar

1. Introduction

Climatic resources in mountainous areas are one of the most important climatic
resources for tourism. Jiuxian Mountain in Dehua County is a famous and historic tourist
resort in the south of Fujian Province. Statistically, the average number of foggy days
in a year is about 300, and the relative humidity is around 87%. Because of the constant
change in weather conditions in mountainous areas, magnificent sceneries, such as seas of
clouds and waterfalls of clouds, emerge frequently, which are of great value to the tourist
industry [1–4].

The classification of seas of clouds in high mountains and their characteristics have
been widely investigated by previous studies [5,6]. However, those studies mainly fo-
cused on the influence of large-scale atmospheric circulations and weather conditions
on the sea of clouds, due to the lack of more detailed observations like meteorological
gradient observation [7]. The phenomenon of a sea of clouds is closely related to local
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atmospheric stratification structure; the formation and dissipation of a sea of clouds can
be explained more thoroughly by investigating the cloud micro-physical condition and
related formation mechanism.

The formation and evolution of clouds are closely related to cloud micro-physical
processes [8,9]. Initially, water vapor molecules turn into condensation nuclei through
diffusion and evaporation; particles aggregate by coalescence afterwards, and moist air that
contains these particles is carried upwardly by atmospheric convection. If the upward air
cools down adiabatically in the presence of suitable aerosol particles (condensation nuclei),
water vapor would condense or sublimate into liquid or solid cloud particles if the air is
supersaturated. Aggregation is the main process that leads to the further growth of cloud
particles, which could occur among particles with the same or different thermodynamic
phase states [10,11].

The wavelength of HMB-KPS cloud radar is comparable to the scale of cloud particles,
with high-level sensitivity and resolution, which could detect the inner structure of the
cloud body and is an ideal tool to observe and study non-precipitation clouds, weak
precipitation clouds, or fog. The wavelength of cloud radar ranges from 1–10 mm, with
a 30–300 GHz frequency. Cloud radar has been used to observe the temporal and spatial
evolution of cloud structure and obtain cloud macro-features, such as cloud top, cloud
thickness, cloud form, cloud coverage, etc. [12]. Furthermore, the inversed variables, size of
cloud particles, number concentration, liquid (ice) water content, etc., can be derived from
cloud radar data [13,14], which could be useful to distinguish sea of clouds phenomena
in high mountains. In addition, data from wind profilers and meteorological gradient
observations also play important roles in studying the change in boundary layer height and
turbulence within the boundary layer [15]. They could be used to reveal the distribution
characteristics of temperature, humidity, wind speed, and liquid water boundary; compare
them with profiles of atmospheric temperature, humidity, and clouds; establish vertical
structural models of seas of clouds; etc.

Therefore, based on artificial observation records of the sea of clouds from the Jiuxian
Mountain national meteorological station and data from cloud radar, wind profilers, and
meteorological gradient observations in high mountains, characteristics of cloud micro-
physics and the atmospheric stratification structure of the sea of clouds are exhibited and
summarized as meteorological indicators to provide useful guidance for tourism service.

2. Data and Methods

A case of a sea of clouds with wide coverage occurred in Jiuxian Mountain at 0600–0900 Bei-
jing time (BJT) on 10 March 2021. Data adopted in this study are from HMB-KPS (Ka-band)
cloud radar (Tables 1 and 2), LC wind profilers, and meteorological gradient observations
in high mountains. The locations of these devices and their altitudes are shown in Figure 1.

Table 1. Major performance parameters for HMB-KPS (Ka-band) cloud radar.

Parameter Value

Operating frequency 35 GHz ± 500 MHz
Beamwidth 0.4◦

Pulse repetition rate 5988~16,666 Hz
Peak power 20 W

Detection range 0.12 km~20.07 km
Azimuth angle 0◦

Pitch angle 90◦

Spatial resolution 30 m
Temporal resolution 1 min

Scan mode (4) Boundary mode
Mid-cloud mode

Cirrus mode
Precipitation mode
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Table 2. Major parameters of 4 detection modes.

Parameter Boundary Mode Mid-Cloud Mode Cirrus Mode Precipitation Mode

Pulse width (µs) 0.2 8 24 0.2
Pulse repetition rate (Hz) 16,666 8333 5988 5988

Number of coherent accumulations 4 2 1 1
Number of incoherent accumulations 16 32 32 32

Effective height detection (km) 0.12~7.5 1.47~7.5 3.87~20 0.12~20
Maximum no-blur speed (m/s) 8.93 8.93 12.83 12.83

Velocity resolution (cm/s) 6.98 6.98 10.02 10.02
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indicate automatic weather stations (altitude: A, 1654 m; B, 1552 m; C, 1336 m; D, 1092 m; E, 920 m;
F, 690 m), wind profiler, and Ka-band cloud radar (altitude: G, 645 m).

The temporal resolution of Ka-band cloud radar data is minute-by-minute, the vertical
resolution is 30 m, and the maximum height of detection is 20.07 km. The variables directly
observed by cloud radar include reflectivity factor Z, Doppler velocity V, velocity spectral
width Sw, and so on. The inversed variables are vertical velocity ω, effective radius of
cloud particles Re, number concentration N, and liquid water content LWC. The inversion
method is described by Equation (1) [8,16]:

β =

{
α2

v

S2
w

[
Γ(2bv + 7)

Γ(7)
−

(
Γ(bv + 7)

Γ(7)

)2
]}1/(2bv)

(1)

Among which, Sw is the velocity spectrum width; β is the slope factor; Γ is the gamma
function, defined as Γ(n) =

∫ ∞
0 xn−1e−xdx. Given a positive integer, Γ(n) = (n− 1)!, Γ(1) = 1.

In stratiform clouds, αv = 3.26 × 107m−1·s−1, bv = 2 [17,18].
The number concentration N, median radius R0, and liquid water content LWC can

further be derived from Equations (2)–(4):

N =
Z × β6

Γ(7)
(2)

R0 =
3.67
2β

(3)
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LWC =
πρcβ

3Z·Γ(4)
6Γ(7)

(4)

where ρc is cloud water density, which is set at 106 g/m3.
Doppler velocity V detected by cloud radar is equal to the sum of the mean falling

velocity Vm of cloud particles in the stationary atmosphere and the vertical velocity of the
ambient atmosphere ω, which can be presented as Equation (5).

V = Vm +ω (5)

In stratiform clouds, the mean falling velocity of cloud particles is approximately
equal to Equation (6).

Vm =
αv·Γ(bv + 7)

βbv Γ(7)
(6)

Re can be derived from R0 [13,19], as shown in Equation (7).

Re = R0 exp
(

5
2
σ2

)
(7)

where σ is the standard deviation of spectral width, which sets as 0.35.
In addition, the temporal resolution of LC wind profiler data is a 6 min interval;

the main data products are wind direction and wind speed; the initial detection height
is 150 m; and the vertical resolution is 120 m below 4.1 km. The temporal resolution of
meteorological gradient observation is a 5 min interval; the observed variables include
several meteorological elements such as atmospheric temperature, humidity, wind direction
and speed, amount of precipitation, etc.

The atmospheric circulation background of the process was analyzed by using Euro-
pean Centre for Medium-Range Weather Forecasts Reanalysis v5 data, which is the fifth
generation ECMWF atmospheric reanalysis of the global climate covering the period from
January 1940 to the present. It mainly includes geopotential height, temperature, sea level
pressure, relative humidity, wind field, etc., with hourly temporal resolution and spatial
resolution of 0.25◦ × 0.25◦.

3. Inversion of Micro-Physical Parameters of the Sea of Clouds

According to records of the Jiuxian Mountain meteorological station, the sea of clouds
case that occurred at 0600-0900BJT on 10 March 2021 has wide spatial coverage with a
magnificent viewing effect. The sea of clouds accounts for 80% of the total sky cover,
and the cloud top presents a wave-like shape that is 150 m lower than the altitude of the
meteorological station. Hereinafter, the micro-physical parameters of the sea of clouds are
derived from data from Ka-band cloud radar during the period of time mentioned above.

Figure 2 presents the evolution of the vertically averaged reflectivity factor and liquid
water content of the sea of clouds. It can be seen that the overall tendency can be summa-
rized as “thickening–maintenance–dissipation”; hence, this sea of clouds process is divided
into the thickening stage (0620-0707BJT), the maintenance stage (0708-0804BJT), and the
dissipation stage (0805-0850BJT).

Figure 3 presents the reflectivity factor, Doppler velocity and velocity spectral width,
and inversed parameters such as liquid water content, atmospheric vertical velocity, effec-
tive radius, and number concentration of cloud particles. During the thickening stage, the
echo band greater than −25 dBZ expands gradually (Figure 3a) and liquid water content
increases (Figure 3d); meanwhile, uniform updraft changes into a “downdraft on cloud
top—updraft at cloud bottom” pattern (Figure 3e), and the effective radius (Figure 3f) and
number concentration at the middle part of the cloud body reach their peaks (Figure 3g).
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content (blue line, unit: g/m3) during the sea of clouds process from 0600 to 0900 BJT on 10 March.
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From the 10 min averaged profiles of directly observed and derived variables (Figure 4),
the reflectivity factor in the stratiform cloud is about −30~−20 dBZ, a strong echo zone
concentrates at the middle and bottom of the clouds, and the velocity spectral width at
1000 m reaches a maximum of 0.18 m/s and reduces to around 0.05 m/s with elevation
(Figure 4a). Atmospheric motion within clouds exhibits a “downdraft at cloud top-updraft
at cloud bottom” pattern; the high-velocity area at the lower part of the clouds corresponds
to the high-velocity spectral width area, which means the updraft at the bottom of the
boundary layer is profound and probably results from the turbulence induced by surface
friction. Updraft turns into downdraft above 1150 m, and the zero-velocity area is close
to the maximum liquid water content (Figure 4b). Strong vertical motion at the boundary
layer carries cloud particles upward, which increases the radii of cloud particles through
coalescence; thus, the increased gravity partially counteracts the updraft, which weakens
the upward motion and results in cloud particles concentrating at this specific height
(Figure 4c). At the upper part of the cloud body, the effective radius and liquid water
content decrease, presumably because of the entrainment of dry air, whereas the liquid
water content slightly increases at the cloud top due to the uplift condensation of small
cloud particles with high concentrations.
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Figure 4. Profiles of averaged reflectivity factor and velocity spectral width (a), vertical velocity
and liquid water content (b), and cloud effective radius and number concentration (c) during the
thickening stage of the sea of clouds process.

During the maintenance stage, the reflectivity factor persists around −15~−5 dBZ
(Figure 5a), the high liquid water content value mainly concentrates at the cloud top
(Figure 5b), the vertical motion at the cloud top is alternately updraft and downdraft, which
coincides with the wave-like shape of the cloud top, while at the middle part of the cloud
body, the vertical motion is “downdraft–updraft–downdraft” and vertical motion at the
cloud bottom is still updraft (Figure 5d).

It is worth noting that double strong echo bands exist during 0708-0742BJT; the maxi-
mum velocity spectral width at the same time is located at the lower middle part of the
cloud body (Figures 5a and 3c), which corresponds to strong upward motion at the bottom
of the boundary layer. Small particles are carried up to the middle of the cloud body;
therefore, the number concentration in areas with the most intense turbulence significantly
decreases and presents as a weak echo band. Parts of cloud particles are dragged down due
to the downdraft in the middle of the cloud body, form particles with larger radii through
coalescence (Figure 5c) and stagnate at the bottom of the cloud body because of gravity.
Updraft at the lower part of the cloud body enhances after 0728BJT, which carries a large
amount of cloud particles to the upper part. Subsequently, the echo band at the bottom
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of the clouds weakens to −20 dBZ, the vertically averaged reflectivity factor decreases
(Figure 2), while the strong echo band at the upper part of the clouds persists; nonetheless,
the fluctuation at the cloud top significantly weakens.
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Figure 5. Evolution of variables retrieved from Ka-band cloud radar from 0708 to 0804 BJT [reflectivity
factor (a), liquid water content (b), number concentration (c), values are calculated by natural
logarithm] and evolution of the vertical velocity (units: m/s) at different levels within the cloud
during maintenance stage (d): Vertical expansion of the cloud is at the detection depth of 300 to 900 m
of cloud radar, with the cloud top located at 900 m indicated by the green line, the cloud bottom
located at 300 m indicated by the red line, and the middle level of the cloud body located at 600 m.

During the dissipation stage, a moderately strong echo band (greater than −20 dBZ)
descends from the cloud top to the middle part of the cloud body (Figure 6a), the cloud
particle liquid water content reduces to 0.08~0.16 g·m−3, the mean Doppler velocity of
cloud particles is negative, which means that the dominant motion is downward (Figure 6b).
The downdraft in the middle part of the cloud body at this moment is intensified compared
to the thickening and maintenance stages. From 10 min averaged (0810-0820BJT) profiles of
variables both directly detected and derived from cloud radar, reflectivity factor, velocity
spectral width, and others, it can be seen that their features are similar to those of the
thickening stage, but downward motion is more distinct and expands to below 1000 m
(Figure 6d).
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Figure 6. Evolution of variables retrieved from Ka-band cloud radar from 0804 to 0900 BJT. Reflectivity
factor (a), Doppler velocity (b), profiles of averaged reflectivity factor and velocity spectral width (c),
vertical velocity and liquid water content (d), and cloud effective radius and number concentration
(e) during the dissipation stage of the sea of clouds process.

4. Atmospheric Stratification Feature of the Sea of Clouds

Based on the ERA5 (ECMWF Reanalysis v5) reanalysis data, the evolution character-
istics of atmospheric circulation for the sea of clouds case were analyzed from three per-
spectives: the middle–upper atmosphere, the lower atmosphere, and the boundary layer
(Figure 7). From the geopotential height of 500 hPa and the wind field and relative humidity
evolution of 700 hPa, there is an upper-air trough entering the Yellow Sea in the middle
and high latitudes. The southern branch trough at low latitudes moves eastward with
fluctuations, but there is an obvious phase difference with the northern upper-air trough.
A shear line appears and is maintained in the middle and lower reaches of the Yangtze
River at 700 hPa. With the eastward movement of the southern branch trough, the warm
and humid area in the southwesterly airflow in front of the trough gradually expands and
develops eastward (Figure 7a–c), and in the lower atmosphere, the central Fujian region
gradually changes from the influence of westerly winds to the southwesterly airflow, and
with the strengthening of southwesterly airflow, there is a positive temperature change



Atmosphere 2024, 15, 207 9 of 14

(Figure 7d–f).But in the boundary layer, due to the influence of cold air over the sea, the
northeast airflow is still dominant, and the surface temperature changes negatively (with
an increase in sea level pressure) (Figure 7g–i). Under this circulation, the atmospheric
stratification in central Fujian during the sea of clouds case is characterized by “middle and
lower atmosphere warming, but boundary layer cooling”. This is also intuitively reflected
in the observation of the meteorological gradient station at Jiuxian Mountain.
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9 March to 20:00 on 10 March): a geopotential height of 500 hPa (black isoline, units: 10 gpm), a wind
field (wind vane units: m/s), and a relative humidity evolution (shading, units: %) of 700 hPa (a–c); a
wind field and variable temperature (isoline, red >0 ◦C, blue <0 ◦C) at 850 hPa (d–f); a wind field
of 925 hPa, variable temperature (isoline, red >0 ◦C, blue <0 ◦C), and variable Sea level pressure
(shading, units: hPa) (g–i). Green dots in (d–i) indicate Jiuxian Mountain.

The characteristics of stratification structure are further analyzed using data collected
from meteorological gradient stations and LC wind profilers.
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From the observation of meteorological gradient stations, during the thickening stage,
a weak thermal inversion layer (lapse rate is about −0.05~−0.21 ◦C/100 m) emerges at
1336–1522 m height (Figure 8a). The bottom of this inversion layer corresponds to the strong
echo band (greater than −25 dBZ, Figure 4a). Meanwhile, uniform southeasterly can be
seen at 1200–1600 m height during the same period of time from the detection of the wind
profiler (Figure 9a). Due to the topography, which is high terrain in the northwest and low
terrain in the southeast, the southeasterly slope of the lower level converges at a windward
slope, and water vapor condenses into cloud particles. In addition, the maximum refractive
index structure constant (hereinafter Cn) usually appears at the cloud top [15,20–23], the
maximum inflection point of the Cn profile indicates the detectable cloud top height. The
maximum inflection point ascends gradually during the thickening stage, which indicates
that the cloud top height increases and the cloud body thickens. Cn reaches its maximum at
the later part of the thickening stage (Figure 9b), which demonstrates that intense turbulent
activity is the main factor that causes the thickening of the cloud body.
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Figure 8. (a) Evolution of thermal inversion layer observed by meteorological gradient observation
station (shadings indicate atmospheric lapse rate, negatives indicate thermal inversion), evolution of
temperature (red line, units: ◦C). (b) Difference between temperature and dew point temperature
(blue line, units: ◦C). The green dashed line is the time node of different phases.

During the maintain stage, the thermal inversion layer at 1336–1522 m height persists
and develops slowly (the lapse rate slowly increases to −0.7~0.8 ◦C/100 m). By this time,
the southeasterly slope in the lower level turns to easterly, and the Cn profile indicates
a double-peak structure (Figure 9a), which corresponds to the double strong echo bands
detected by cloud radar (Figure 4a). The maximum inflection point of Cn descends as a
whole. It is worth noting that the maximum Cn decreases suddenly during the early period
of the maintenance stage. The weakening of turbulent activity cannot lead to the further
development of the cloud body, and, thus, the cloud top is sustained at a certain height.
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Figure 9. (a) Evolution of wind profile detected from wind profiler (barbs, units: m/s) and difference
of refractive index structure constant between two adjacent atmospheric layers (shadings, top layer
minus bottom layer, positive (negative) means refractive index structure constant increasing (decreas-
ing) with height). (b) Evolution of the maximum refractive index structure constant (blue dash line,
filtered by moving average) and inflection height (red line, filtered by moving average). The green
dashed line is the time node of different phases.

During the dissipation stage, the inversion layer intensifies, the thickness of which
increases to the top of Jiuxian Mountain (1654.6 m), the lapse rate increases to greater
than −1.2 ◦C/100 m, the increase in amplitude of temperature at the mountain peak
reaches 3.8 ◦C, the maximum difference between temperature and dew point reaches 2.6 ◦C
(Figure 8b), and the atmosphere tends to be unsaturated. In the meantime, the easterly
slope in the lower level changes to northeasterly, and the Cn profile exhibits a single peak
structure. The features of the Cn inflection point height and its maximum are similar to
those of the maintenance stage, but with a slightly greater maximum value and a higher
inflection point height, which means that turbulence within the cloud body is slightly
stronger than that of the maintenance stage.

To sum up, the possible formation mechanism of this sea of clouds case could be
concluded as follows: First, at the background of the southeasterly slope, turbulence
intensifies due to orographic uplift; water vapor condenses into cloud particles through the
mixing and entrainment caused by the updraft. As the cloud thickens, the inversion layer
is generated by the cooling of evaporation and radiation at the cloud top [24–26]. In return,
the updraft is suppressed when the inversion layer at the cloud top intensifies to a certain
extent and the vertical motion at the cloud top turns into horizontal advection, which
triggers the mixing and entrainment between dry and moist air at the boundary of the
cloud body. Sensible heat and latent heat at the cloud bottom transfer to the cloud top by
taking turbulence as a carrier, which makes up for the loss of radioactive and evaporative
cooling [11,27–30]. As a result, the sea of clouds is maintained; when the radiation from
the sun gets stronger, the temperature increase at the cloud top is significantly greater than
the cloud bottom because of the absorption of short-wave radiation. The inversion layer
thickens and elevates; although the turbulence could be intensified by the heating from the
surface, the evaporation of heating outweighs the condensation of cooling, which breaks the
balance of compensation, and the cloud body becomes thinner and ultimately dissipates.
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5. Conclusions

Based on cloud radar, wind profiler, meteorological gradient observation in high
mountains, and other data, the micro-physical characteristics of a typical sea of clouds
process in Jiuxian Mountain are investigated by analyzing cloud particle parameters (reflec-
tivity factor, vertical velocity, number concentration, liquid water content of cloud particles,
etc.) and atmospheric stratification (temperature, wind, difference between temperature
and dew point) features.

(1) According to products from cloud radar, it is found that atmospheric motion within
clouds exhibits “downdraft at cloud top-updraft at cloud bottom” during the thicken-
ing stage. The zero vertical velocity area is close to the maximum liquid water content,
and a weak thermal inversion layer emerges at a height of 1336–1522 m; the bottom of
this inversion layer corresponds to the strong echo band. Cloud particles concentrate
in the middle of clouds and make the sea of clouds thicker because of the weakening
of the updraft.

(2) During the maintenance stage, areas with high liquid water content mainly concentrate
at the cloud top, accompanied by alternately upward and downward motion, because
of which little cloud particles aggregate and accumulate into clouds, forming a strong
and persistent echo band. The thermal inversion layer at 1336–1522 m height persists
and develops slowly; by this time, the southeasterly slope in the lower level turns
easterly. The Cn profile indicates a double-peak structure, which corresponds to the
double strong echo bands detected by cloud radar.

(3) During the dissipation stage, the inversion layer intensifies, the thickness of which
increases to the top of Jiuxian Mountain (1654.6 m), a strong echo band descends
from the cloud top to the middle part, and the downdraft intensifies compared to the
thickening and maintenance stage. Exchanging with dry air is profound due to the
unsaturation of water vapor; consequently, the sizes and number concentrations of
cloud particles decrease because of the evaporation of cloud particles; a strong echo
band gradually narrows down, that is, the cloud body descends and becomes thinner.

However, due to the temporal and spatial inconsistency of multiple source observa-
tions and observational devices [31–37] deployed at different locations, this study can only
focus on the sea of clouds process with wide coverage, investigate its micro-physical char-
acteristics, and further propose the possible mechanism of the sea of clouds. In fact, clouds
and fog formed in the morning and at nightfall are often confined to a small area. Devices in
Jiuxian Mountain at present have limited capability to detect a sea of clouds on such a small
scale. In addition, sensible heat and latent heat flux caused by radiation or evaporation
could not be measured directly; therefore, the formation mechanism concluded in this
study may not be suitable for a sea of clouds process occurring under other circumstances.
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