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Abstract: We performed continuous long-term measurements of PM2.5 mass, comprehensive chemical
composition, and optical properties, including scattering and absorption coefficients, from March
2011 to December 2020 at the Metropolitan Air Quality Research Center in Seoul, South Korea. PM2.5

peaked at 38 µg/m3 in 2013 and has been declining steadily since then, reaching 22 µg/m3 in 2020.
The extinction coefficients also decreased with the decline in PM2.5, but the correlation between
the two factors was not as pronounced. This deviation was mainly attributed to the rapid changes
in the chemical composition of PM2.5 over the same period. The mass contribution of sulphate to
PM2.5 decreased from 33.9 to 24.1%, but the fraction of nitrate and organic carbon increased from 23.4
and 20.0 to 34.1 and 32.2%, respectively, indicating that sulphate has been replaced by nitrate and
organic carbon over the past decade. To assess the effect of changing aerosol chemical compositions
on light extinction, we compared the measured extinction coefficients with those estimated via the
various existing light extinction approaches, including the revised IMPROVE algorithm. We found
that the simplified linear regression model provided the best fit to our data, with a slope of 1.03 and
R2 of 0.87, and that all non-linear methods, such as the IMPROVE algorithms, overestimated the
observed long-term light extinction by 23 to 48%. This suggests that the simple linear regression
scheme may be more appropriate for reflecting the varying aerosol conditions over long periods of
time, especially for urban air. However, for conditions where the chemical composition does not
change much, non-linear methods such as the IMPROVE scheme are likely to be more appropriate
for reproducing light extinction.

Keywords: PM2.5; chemical composition; extinction coefficients; revised IMPROVE algorithm;
first-order linear regression

1. Introduction

Visibility is defined as the maximum horizontal distance at which a target object can
be perceived by the human eye [1] and is an important indicator of urban air quality, which
is closely related to aerosols in the atmosphere [2]. Visibility can be assessed through
visual observations, direct measurements of scattering and absorption, and the calculation
of light extinction coefficients from aerosol chemical composition. In particular, light
extinction coefficients derived from chemical composition can be used to assess visibility in
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conditions where human observation or direct measurement is difficult and can quantify
the contribution of chemical components to visibility degradation [3–6].

Visibility degradation occurs primarily through the scattering and absorption of light
by particles and gaseous pollutants in the atmosphere [7]. Several studies have reported
that fine particles, mainly those with aerodynamic diameters of 2.5 µm or less (PM2.5),
contribute significantly to visibility deterioration through light scattering and absorption [8].
The extinction of light by PM2.5 is more pronounced than Reyleigh scattering and NO2
absorption by gases. The chemical composition of PM2.5 consists of three components:
water-soluble inorganic ions, carbon, and trace elements [9]; the main chemical components,
sulfate, nitrate, organic matter, and elemental carbon, are known to contribute significantly
to light scattering and absorption [10]. In particular, the optical properties of light scattering
and absorption by particles can vary depending on the size distribution, mass concentration,
and chemical composition of particles [11]. In order to evaluate the impact of aerosols on
visibility, several studies have been actively conducted to identify the characteristics and
causes of light extinction due to aerosol chemical compositions and to determine a light
extinction coefficient suitable for regional characteristics [12–19].

The U.S. Environmental Protection Agency (EPA) has identified PM2.5 as a source
of visibility degradation since the 1970s through its Interagency Monitoring of Protected
Visual Environment (IMPROVE) program as a network of visibility [3]. The EPA IMPROVE
Network has presented a total of five studies (EPA IMPROVE Network Reports I~V) on the
phenomenon of visibility deterioration in relation to chemical composition. Malm et al. [3]
presented the initial formula, called the IMPROVE algorithm, which is a calculation formula
for the light extinction coefficient for aerosol chemical composition. In the Grand Canyon
and Great Smoky regions of the United States, the proposed equation mainly applied
sulfate and nitrate, organic matter, carbon matter, soil matter, and the humidity fraction to
calculate the light extinction coefficient. However, the equation tended to underestimate
peak extinction coefficient values and overestimate trough values, so Pitchford et al. [4]
developed a new algorithm to complement the equation by Malm et al. [3]. The revised
IMPROVE algorithm takes into account an increase in the ratio of organic matter to organic
carbon from 1.4 to 1.8, the addition of sea salt, the use of site-specific Rayleigh scattering, the
application of NO2 in areas where it is available, and humidity fractions based on the size
distribution of the main chemical components: sulfate, nitrate, and organic matter. Recently,
Lan et al. [20] and Hu et al. [21] applied multiple linear regressions between directly
measured extinction coefficients and the main chemical components of PM2.5 to quantify
the chemical components that contribute to visibility attenuation and to determine whether
the chemical components involved in light extinction fit well with the IMPROVE algorithm.

Researchers in Korea have also continued to conduct studies on the chemical and
physical properties of aerosols, as well as their optical properties. Kim et al. [22] proposed
an experimental equation considering the correlation between aerosol mass concentration,
sulfate, and nitrate. In addition, Kim et al. [23] proposed a light extinction coefficient
equation suitable for air quality in Seoul by modifying the coarse particle size in the
IMPROVE algorithm. Previous studies have mainly focused on interpreting relationships
and calculating extinction coefficients using relatively short-term measured data. In this
study, however, we compared the extinction coefficient directly measured over a long
period of time with the extinction coefficient calculated from various equations proposed
in previous studies using aerosol chemical composition, and proposed a new equation that
reflects aerosol composition changes over a long period of time.

2. Materials and Methods
2.1. Sampling Site and Period

The research site is located at the Seoul Metropolitan Air Quality Research Center
(SMAQRC: 37.61◦ N, 126.93◦ E, 67 m asl), a division of the National Institute of Environ-
mental Research (NIER) under the Ministry of Environment of Korea in Bulgwang-dong,
Eunpyeong-gu, Seoul, Republic of Korea. Geographically, SMAQRC is located in a residen-
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tial complex bounded by Mt. Bukhansan to the northeast, public facilities to the southeast,
and a mixture of commercial and residential structures from the southwest to the north-
west (see Figure 1). In addition, within a 0.1 km radius of the SMAQRC, Jinheung Road
and Tongil Road, both six-lane thoroughfares, run from Gugi Tunnel in the northeast to
Yeonsinnae in the northwest and from Yeonsinnae in the northwest to Hongeun Crossroads
in the southeast. Data were systematically collected at hourly intervals from March 2011 to
December 2020.
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2.2. Chemical Analysis

Mass concentrations of PM10 and PM2.5 were measured with a BAM1020 (MetOne
Inc., Grant Pas, OR, USA) instrument using the β-ray absorption method. The chemical
composition of PM2.5 was measured in three major categories: inorganic ions, carbon, and
metals. Inorganic ions were analyzed via ion chromatography (IC) using Ambient Ion
Monitors (URG Co., Chapel Hill, NC, USA). Carbon was analyzed via thermal/optical
transmittance (TOT) and non-dispersive infrared (NDIR) using a semi-continuous carbon
aerosol analyzer ( Sunset Laboratory Inc., Tigard, OR, USA) according to NIOSH5040
protocol. Trace elemental components were analyzed using online XRF (Sailbri Cooper
Inc., Tigard, OR, USA) with X-ray fluorescence spectroscopy. The measurement methods
for the major chemical components are described in detail in a previous study [6]. The
meteorological data were obtained from Bulgwang measurement station, operated by the
Korea Ministry of Environment, located at the SMAQRC.

2.3. Optical Analysis

We analyzed the directly measured scattering and absorption coefficients using a
Nephelometer (TSI Co., Shoreview, MN, USA) and an Aethalometer (Magee Sci., Berkeley,
CA, USA), without the sample dryer, respectively, to calculate the light extinction coefficient
of the particles. The scattering coefficient of particles was measured by collecting aerosols
at a flow rate of 5 L/min, using LED light source for the sample injected into the integrat-
ing cell, and measuring the intensity of the scattered light. The measuring wavelengths
are 450 nm (blue), 525 nm (green), and 635 nm (red), with a measuring range of 0.25 to
2000 Mm−1 and a detection limit of 0.3 Mm−1. The sample injected in the nephelometer
was RH-controlled with a Nafion dryer and heater. The absorption coefficient of particles
was measured by continuously sampling aerosols through a PM2.5 impactor at a flow rate
of 5 L/min onto a quartz-based tape. The collected sample was irradiated with a laser in
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seven wavelength regions (370, 470, 520, 590, 660, 880, 950 nm), from the near infrared
to the near ultraviolet, on the accumulated spot. The amount of light transmitted was
calculated based on the analysis time, and the amount of light attenuation was analyzed at
5 min intervals.

2.4. Light Extinction Metrics

The extinction coefficient (Bext) serves as a comprehensive metric that captures the
collective effect of both scattering and absorption coefficients from particles and gases, as
defined in Equation (1).

Bext = bp_scat + bp_abs + bg_scat + bg_abs [Mm]−1 (1)

In this equation, “p” and “g” stand for particles and gases, respectively, while “scat”
and “abs” stand for scattering and absorption, respectively. The particle scattering coeffi-
cient (bp_scat) can be derived from the particle mass and its composition, including nitrate,
sulfate, and organic components. Simultaneously, the particle absorption coefficient (bp_abs)
can be determined from elemental carbon concentrations. Gaseous components are charac-
terized by the Rayleigh scattering coefficient (bg_scat), which is fixed at (0.120 × 10−4 m−1)
and the absorption coefficient (3.3 × [NO2] ppm × 10−4) derived from the NO2 gas con-
centration (bg_abs). Traditionally, the total extinction coefficient is obtained by summing the
contributions from both particles and gases. In our study, however, we focus only on the
particle-related extinction coefficient, as given in Equation (2).

Bp_ext = bp_scat + bp_abs [Mm]−1 (2)

This choice stems from our ability to directly observe particle extinction coefficients
(Bp_ext) by combining particle scattering and absorption measurements obtained from the
nephelometer at 550 nm and the aethalometer at 520 nm, respectively. This straightforward
approach allows for comprehensive understanding of changes in extinction coefficients
related to changes in particle mass and composition. By focusing on direct measurements,
we increase the precision and depth of our insights into the complex dynamics of aerosol
light extinction coefficients.

Using the various light extinction coefficient algorithms that have been studied, we
attempted to determine the algorithm that most accurately captures long-term variations
in chemical composition (Table 1). Park et al. [6] proposed an expression that modified
the coefficient for the carbon component of the revised IMPROVE algorithm [4] using
non-linear regression analysis, and other previous studies [13,21,24] presented expressions
that emphasized the differences in the coefficients for each component and the fractional
coefficient of moisture in contrast to the original IMPROVE algorithm expression [3]. Using
equations derived from these previous studies, including the IMPROVE algorithm, we
performed estimates for particle light extinction coefficients. We then compared these
estimates to directly measured values over a 10-year period.

We introduced a novel algorithm aimed at enhancing the simulation of particle light
extinction based on long-term aerosol chemistry data. Our approach employs a simple
linear regression model, distinct from previously presented algorithms, as it incorporates
all available aerosol chemistries. Implementation of this model utilized the Python pro-
gramming language (version 3.8.8) along with a statistical inference technique employing a
BayesianRidge module from the sklearn package (version 1.3.2) [25]. The objective was to
identify the optimal functional relationship between measured aerosol light extinction and
chemical variables. In this context, the independent variable encompassed all measured
chemical compositions, while the directly measured light extinction coefficient served as
the dependent variable [26]. Consequently, this methodology facilitated accurate modeling
and prediction of the intricate relationship between chemical composition and the light
extinction coefficient [20,21,27].
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Table 1. Light extinction calculation schemes in published studies.

Bext Reference

2.2fS (RH)[SS] + 4.8fL (RH)[LS] + 2.4fS (RH)[SN] + 5.1fL (RH)[LN] +
2.8[SOM] + 6.1[LOM] + [FS] + 1.7fSS (RH)[SSa] + 0.6[CMa] + 10[EC] Pitchford et al. [4]

2.2fS (RH)[SS] + 4.8fL (RH)[LS] + 2.4fS (RH)[SN] + 5.1fL (RH)[LN] +
8.4[SOM] + 9.6[LOM] + [FS] + 1.7fSS (RH)[SS] + 0.6[CMa] + 21[EC] Park et al. [6]

4.4f1 (RH)[AM-SUL] + 5.2f2 (RH)[AM-NIT] + 6.1f3 (RH)[OM] + 3.2[FS]
+ 0.6[CMa] + 6.74[EC] Valentini et al. [24]

9.7f (RH)[AM-SUL] + 5.2f (RH)[ AM-NIT] + 6.5[OM] + 5.5[Others] +
0.6[CMa] + 10[EC] Hu et al. [21]

3f (RH)[AM-SUL] + 3f (RH)[AM-NIT] + 4[OM] + 10[EC] Yu et al. [13]
fS, L, SS, 1~3(RH): relative humidity function; SS, SN, SOM: small size mode (sulfate, nitrate, organic mass). LS, LN,
LOM: large size mode (sulfate, nitrate, organic mass); FS: fine soil, SSa: sea salt, CMa: coarse mass (PM10–PM2.5);
EC: elemental carbon; AM-SUL: ammonium sulfate, AN-MIT: ammonium nitrate.

3. Results and Discussion
3.1. Aerosol Mass Concentrations and Chemical Composition of PM2.5

The annual average maximum concentrations for PM10 and PM2.5 were 59 µg/m3 in
2014 and 38 µg/m3 in 2013, respectively, while the annual average minimum concentrations
reached 38 µg/m3 for PM10 and 22 µg/m3 for PM2.5 in 2020 (Figure 2a). Over the last
decade, both PM10 and PM2.5 have shown a consistent decreasing trend since the maximum
in 2014 [28]. The PM2.5/PM10 ratio decreased by about 11%, from about 68% in 2013 to about
57% in 2020 (see Figure 2a). To understand these changes, an analysis of the concentrations
of chemical constituents was conducted. The annual average concentration of ammonium
sulfate (AM-SUL), a major ionic component, steadily decreased from 12.2 µg/m3 in 2013
to 4.2 µg/m3 in 2020, mirroring the decreasing trend in PM2.5 concentration. Conversely,
ammonium nitrate (AM-NIT) decreased from 12.0 µg/m3 in 2013 to 6.0 µg/m3 in 2020,
but remained constant between 2015 and 2020, showing periodic increases and decreases
(Figure 2b).
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The annual average concentrations of organic carbon (OC) and elemental carbon (EC)
both showed a decreasing trend. OC decreased from 3.8 µg/m3 in 2013 to 3.0 µg/m3 in
2020, while EC decreased from 1.8 µg/m3 in 2013 to 0.7 µg/m3 in 2020. In addition, the
OC/EC ratio increased from 2.2 in 2013 to 4.3 in 2020, reflecting the decrease in EC at a lower
concentration level (Figure 2c). This can be attributed to a reduction in primary emissions
as part of South Korea’s air quality management policies. The crustal mass (CMb: 3.73[Si] +
1.63[Ca] + 2.42[Fe] + 1.94[Ti]) showed a similar pattern to PM10, peaking in 2014 (4.0 µg/m3)
due to frequent yellow dust events and decreasing steadily until 2020 (0.9 µg/m3). The trace
metal (TM: [V] + [Cr] + [Mn] + [Co] + [Ni] + [As] + [Se] + [Pb]) followed a similar trend to
the main chemical components, including PM2.5 (Figure 2d), peaking in 2013 (0.07 µg/m3)
and decreasing until 2020 (0.03 µg/m3). In summary, the concentrations of sulfate, nitrate,
organic carbon, and elemental carbon show a consistent decrease over time, indicating a
reduction in the concentration of particulate matter primarily of anthropogenic origin.

3.2. Aerosols and Measured Extinction Coefficients

Figure 3a shows the annual variation in the directly measured extinction coefficient
and PM2.5 mass. The data show a robust positive correlation (R2: 0.84) between the
extinction coefficient and PM2.5, although some exceptions are observed, especially in
recent years. Figure 3b shows the annual contribution of chemical components to the
PM2.5 mass. Predominantly, AMSUL, AMNIT, and OM (organic mass) emerge as the major
species, which together contribute about 80% and show temporal variations. To assess the
concentration of OM, we deviated from the previous study [6], which used an OM/OC
ratio of 1.4. Instead, our study uses a value of 1.9, which is consistent with the current
oxidation state in Seoul [29]. The significant increase in OM/OC and OC/EC ratios over
the past decade indicates changes in the emissions, chemical composition, and oxidation
state of carbonaceous compounds in Seoul, including the mixing state of soot, and, in
turn, the aerosol extinction coefficients [30]. Among these major species, AMSUL had the
highest contribution of 33.9% in 2013, which decreased by approximately 10% to 24.1%
in 2020. Conversely, AMNIT, with the lowest distribution of 23.4% in 2015, increased by
approximately 10% to 34.1% in 2020. In addition, OM will increase by 12% from 20.0% in
2013 to 32.2% in 2020. Our estimation suggests a shift in the contribution of major chemical
components in PM2.5 from AMSUL to AMNIT and OM over time. This shift may have
implications for the annual characteristics of light extinction.

3.3. Assessment of Light Extinction Algorithms

In this study, we evaluated the effectiveness of different algorithms in calculating the
light extinction coefficient, taking into account the long-term variations in the chemical
composition in Seoul. A comparative analysis was performed between the calculated
light extinction values derived from established algorithms (see Table 1 for previous stud-
ies [4,6,13,21,24]) and the directly measured extinction coefficients. Figure 4a illustrates
the correlation between the extinction coefficient calculated using the revised IMPROVE
algorithm and the directly measured extinction coefficient. While there is a strong cor-
relation (slope: 0.77, R2: 0.78), the calculated extinction coefficient is overestimated by
approximately 22%.

Similarly, other modified IMPROVE algorithms from previous studies showed reason-
able correlation with the directly measured extinction coefficient (R2: 0.75 to 0.82). However,
significant overestimation ranging from 29 to 48% was observed (see Figure 4b–d). These
results suggest that modified IMPROVE algorithms, including the revised IMPROVE algo-
rithm, may not adequately capture the measured light extinction coefficients over rapidly
changing aerosol chemical compositions over long periods of time.
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Atmosphere 2024, 15, 320 8 of 11

It is noteworthy that the extinction coefficient using the simple linear scheme of
Yu et al. [13] shows a better correlation with the directly measured extinction coefficient,
albeit with a slight underestimation of about 7% (see Figure 4e). This underestimation can
be attributed to the use of a constant moisture fraction for the main chemical components
and the exclusion of certain variables such as soil composition and chlorine content. To
refine the Yu scheme, a similar linear regression model was applied, including moisture
and additional factors such as crustal mass and chlorine.

3.4. A Modified Yu Scheme

Unlike the equations found in the revised IMPROVE algorithm and most previous
studies, which include various variables and nonlinear relationships between them, such
as chemical component specific coefficients, moisture growth factors, and chemical com-
ponent concentrations, our approach adopted a simplified first-order equation, similar
to the Yu scheme. However, our equation included almost all chemical constituents as
independent variables within the IMPROVE scheme, with the directly measured extinction
coefficient as the dependent variable. In this study, we used a Bayesian model within a
linear regression framework for all variables to derive best-fit coefficients tailored to the
long-term measurement data.

The best-fit coefficients for all variables (such as SS, LS, SN, LN) are detailed in
Equation (3). It is noteworthy that the inclusion of CM as an independent variable had no
effect on the light coefficient values due to its zero value. In addition, FS, Cl, and humidity
had minimal effects on the extinction coefficient. Nevertheless, the coefficients of sulfate
and nitrate exceeded those of the revised IMPROVE algorithm. Conversely, the coefficient
of EC was approximately 2.4 times greater than its counterpart in the revised IMPROVE
algorithm equation. This observation led to the conclusion that sulfate, nitrate, and EC play
a more significant role in light extinction in the Seoul area than suggested by the revised
IMPROVE algorithm. The aethalometer used in this study was not equipped with a sample
dryer, which may have caused moisture to accumulate in the sample, thereby reducing
the light absorption coefficient [31,32]. There is a possibility that the absorption coefficient
may have been underestimated due to this problem, suggesting that the EC coefficient in
Equation (3) could potentially be larger than estimated.

Bext ≈ 9.5 × [SS] + 9.5 × [LS] + 7.3 × [SN] + 6.9 × [LN] + 3.6 × [SOM] + 5.2
×[LOM] + 23.8 × [EC] + 0.6 × [FS] + 0.5 × [Cl] + 0.0 × [CM] + 0.4 × [RH]

(3)

In Figure 5, we performed a comparative analysis using the directly measured ex-
tinction coefficient, the extinction coefficient derived from the equation proposed by
Yu et al. [13], and our Equation (3). The fit with our new scheme (slope: 1.03, R2: 0.87)
showed favorable performance compared to the results of Yu et al. [13] (slope: 1.07, R2:
0.80), demonstrating a significant reduction in scatter in the scatter plot.

To further validate our new scheme, we examined the comparison between our scheme
and those from previous studies [4,6,13,21,24], as detailed for each year in Table 2. With the
exception of 2015, where the data completeness of 8.3% was too low for a meaningful com-
parison, our new scheme outperformed the results of previous studies. The overestimation
of the light extinction coefficient in 2015 (slope 1.58) calculated from the equation provided
in this study might result from the limited dataset, predominantly gathered during the
summer months. Likewise, the overestimation of the light extinction coefficient in 2020
(slope 1.37) derived from the equation presented in this study might stem from alterations
in operating conditions due to the transition between different instruments. Notably, other
schemes in previous studies showed an overall tendency to overestimate light extinction
coefficients [4,21,24]. The two schemes proposed by Park et al. [6] and Yu et al. [13] showed
good linearity with a slope close to 1; however, they had more scattered data with lower
R2 values. Based on these results, we concluded that our new scheme is more robust in
representing the light extinction in rapidly changing air quality in Seoul.
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Table 2. Comparison of directly measured extinction coefficients with optical extinction coefficients
calculated from published schemes.

Year Recovery Rate
(%)

Pitchford et al.
[4] Park et al. [6] Valentini et al.

[24] Hu et al. [21] Yu et al.
[13] This study

Slope R2 Slope R2 Slope R2 Slope R2 Slope R2 Slope R2

2011 47.1 0.92 0.69 1.03 0.73 0.72 0.67 0.56 0.67 1.22 0.72 1.14 0.74
2012 62.7 0.88 0.76 1.03 0.82 0.78 0.76 0.57 0.79 1.20 0.77 1.14 0.83
2013 44.6 0.72 0.83 0.90 0.90 0.66 0.82 0.49 0.85 1.07 0.86 1.00 0.91
2014 24.8 0.76 0.87 0.95 0.93 0.58 0.86 0.51 0.90 1.08 0.89 0.98 0.96
2015 8.3 1.17 0.74 1.31 0.80 0.89 0.74 0.69 0.79 1.24 0.71 1.58 0.85
2016 50.0 0.73 0.82 1.01 0.88 0.64 0.78 0.55 0.80 1.11 0.81 0.97 0.89
2017 38.0 0.61 0.77 0.85 0.89 0.46 0.75 0.46 0.80 0.82 0.79 0.93 0.96
2018 66.9 0.56 0.78 0.84 0.85 0.50 0.76 0.56 0.80 0.90 0.80 0.80 0.88
2019 75.1 0.79 0.86 0.95 0.88 0.62 0.85 0.69 0.87 1.10 0.87 0.97 0.93
2020 70.8 0.95 0.81 1.22 0.91 0.73 0.79 0.78 0.83 1.25 0.84 1.37 0.96

Average 0.77 0.78 0.71 0.81 0.64 0.74 0.53 0.79 1.07 0.80 1.02 0.88

This study establishes a model that minimizes the influence of rapidly changing
chemical variables and allows the reliable calculation of light extinction coefficients. This
model is found to be more suitable for representing changing aerosol conditions over an
extended period of time.

4. Conclusions

In this study, we conducted a comprehensive analysis of the chemical and optical
properties of aerosols from March 2011 to December 2020 in the Seoul region. The mass
concentration of particulate matter (PM) and the PM2.5/PM10 ratio showed a remarkable
decrease over the past decade. At the same time, the major chemical components in
PM2.5, namely, sulfate, organic matter, and elemental carbon, showed an overall decreasing
trend. Conversely, while the extinction coefficient showed a similar pattern to PM2.5, the
correlation between the two was not readily apparent. This discrepancy can be attributed
to the considerable variability in the chemical composition of PM2.5, indicating a transition
in the predominant chemical constituents from sulfate to nitrate and organic components
over time.
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Chemical extinction coefficients were calculated using various light extinction calcu-
lation methods proposed in previous studies, including the revised IMPROVE algorithm.
Comparisons with schemes from previous studies indicated a tendency for the calculated
extinction coefficients to be overestimated by approximately 23% to 48%. As a result, a
new first-order equation was developed using a Bayesian model based on linear regres-
sion analysis. This equation was found to be effective in predicting light coefficients and
included all relevant chemical variables. Through extensive comparison and validation
against the revised IMPROVE algorithm and equations from previous studies for each
year, the first-order equation presented in this study demonstrated improved accuracy
and reliability (slope: 1.03, R2: 0.87). Consequently, the simple linear regression model
proposed here is expected to be well suited to efficiently assess the impact of changes in
aerosol chemical composition on light extinction.
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