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Abstract: Based on the daily maximum and minimum temperature observational data during
1971–2020, the variabilities of the maximum and minimum temperature of Mount Qomolangma
are analyzed. The daily maximum temperature is 25.8 ◦C and the daily minimum temperature
is −31.4 ◦C during the study period in Mount Qomolangma. Overall, there has been an upward
trend with decadal laps for both maximum and minimum temperature. On monthly, seasonal,
and annual scales, neither maximum temperature nor minimum temperature time series exhibit an
increasing trend from 1971 to 2020. The increasing trends in monthly minimum temperature are
even more pronounced than those in maximum temperature. Abrupt changes are noted in both
monthly, seasonal, and annual maximum and minimum temperature time series. Specifically, an
abrupt change in annual maximum temperature occurred in the 1980s, while an abrupt change
in annual minimum temperature occurred in the 1990s. Differences between the north and south
slope of Mount Qomolangma are evident, with temperature fluctuations of the north slope being
more extreme than those of south slope. The seasonal and annual maximum temperature of the
north slope is higher than that of the south slope, except for winter, and the seasonal and annual
minimum temperatures of the north slope are all lower than those of the south slope. The tendences
of maximum and minimum temperatures in the north slope are more dominant than those in the
south slope. The findings are beneficial for understanding the characteristics of local climate change
on the Tibetan plateau and to underscore the significant role of Mount Qomolangma in the context of
global warming.

Keywords: climate change; mount Qomolangma; maximum temperature; minimum temperature;
trend test

1. Introduction

The Intergovernmental Panel on Climate Change (IPCC) reported that the global mean
surface temperature increased by 0.85 ◦C between 1880 and 2012 [1]. Based on the IPCC
Sixth Assessment Report (AR6), the global mean surface temperature increased by 1 ◦C
between 1850 and 1900 at present [2]. The year 2021 was the sixth global warmest year since
1880 [3]. The China Meteorology Administration (CMA) issued that the annual average
temperature was 1.0 ◦C above the climatology of 1981–2010 in 2021 around China, and its
warming broke the historical record since 1951 [4]. In 2022, the annual mean temperature
was 10.51 ◦C over China, which was 0.62 ◦C above the climatology of 1991–2020 and was
the second highest annual mean temperature in history. Despite the low temperatures in
winter, the temperatures in spring, summer, and autumn broke the historical record in
China [5]. Thus, global warming is a certain fact for concern, which reveals a potential
hazard for human socio-economic systems and lifestyle [6].

Global warming and its impacts have become a significant subject within the field of
climate change. The variation in extreme temperature, including maximum and minimum
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temperature, constitutes one of the important contents for climate study. Karl et al. [7] found
the dependency of global warming on the difference between maximum and minimum
temperature. Easterling et al. [8] and Vose et al. [9] revealed the space distribution of
maximum and minimum temperature trends for the globe. Navarro-Serrano et al. [10]
assessed the maximum and minimum temperature lapse rates in the Andean region of
Ecuador and Peru for the first time. Bubathi et al. [11] found the worsening situation of
accelerated climate change on the maximum temperature differences in western Sydney
compared with coastal Sydney. Curado et al. [12] studied the annual behavior of the
maximum, mean, and minimum temperatures for all regions of Brazil. Yaya et al. [13]
found that the understanding of trend changes for the annual mean, maximum, and
minimum temperature was very important for predicting and mitigating the impacts of
climate change in Africa. In China, studies on the maximum and minimum temperature
are also highlight issues and attract widespread attention. For example, Zhai and Ren [14]
revealed the spatiotemporal changes of China’s maximum and minimum temperatures.
Ma [15] analyzed the asymmetric characteristics of maximum and minimum temperatures
in northwest China. Du [16] analyzed the asymmetric change in maximum and minimum
temperatures in the Tibetan Plateau (TP). Wang et al. [17] studied the variation and its
impact of maximum and minimum temperatures in northern China. Zhou et al. [18] studied
the changes of minimum temperature in different climatic zones of east China in winter.
Dong and Huang [19] studied the relations between elevation and variation in maximum
and minimum temperatures in China.

The TP, known as the third pole, is one of the most sensitive regions to global climate
change [20,21]. The increasing of temperature over TP is the most obvious of global
warming, and the study on the temperature change in TP has become one of the more
attentive hotspots under the background of global warming [22,23]. Mount Qomolangma
(MQ), as the most important part of TP and the highest peak on Earth, exhibits unique
climatic variations distinct from other regions worldwide. For example, the increasing
temperature rate in MQ is higher than that of the global mean temperature change, and the
time of onset of warming in MQ is earlier than that of the other places around the word [24].
The response to temperature change in MQ from global warming has become a significant
scientific interest [24,25]. Yang et al. [24] analyzed the spatial and temporal patterns
of the mean, maximum, and minimum temperatures in MQ region from 1971 to 2004.
According to the extreme temperature indices recommended by the World Meteorological
Organization, Du et al. [26] and Wang [27] studied the spatiotemporal changes of extreme
temperature events in MQ during 1971–2012 and 1971–2020, respectively.

However, there is little research on the variation in maximum and minimum tem-
perature of MQ up to now. The results of the existing literatures included some studies
focused on the mean, maximum, and minimum temperature [24], while others used the
extreme temperature indices method to study the extreme temperature events [26,27]. In
this study, according to the new daily maximum and minimum temperature observational
data during 1971–2020 in MQ, using the Mann–Kendall (MK) test, linear trend test and the
departure accumulation method, the variabilities of maximum and minimum temperature
are analyzed, including the general characteristics, trend test, and abrupt diagnosis for the
first time, which is beneficial for the comprehending of the temperature change features in
MQ under the background of global warming.

2. Data and Methodology

In this study, the two national meteorological stations, Nielamu station (hereinafter
referred to as Nielamu) and Dingri station (hereinafter referred to as Dingri), are the nearest
meteorological stations with long-term observations and available data around MQ. So, the
observed daily maximum and minimum temperature data from the two stations from 1971
to 2020 are selected to study the variations in the maximum and minimum temperature
in MQ. Nielamu, located at 28◦11′ N and 85◦58′ E, being in south slope of MQ, is at an
elevation of 3810.0 m. It lies in the main water vapor transport path of the southwest
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monsoon. Dingri, located at 28◦38′ N and 87◦05′ E, being in north slope of MQ, is at an
elevation of 4301.7 m. It sits between the Himalayas and the Gangdis Mountains [27–30].
Figure 1 shows the location of Nielamu, Dingri, and MQ.
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The observed daily maximum and minimum temperature of Nielamu and Dingri is
obtained by CMA, which has been checked by the primary quality control. In this research,
the daily maximum and minimum temperature (hereinafter referred to as Tmax and Tmin
for short) in the course of a continuous time interval of 24 h, are the highest and lowest
temperatures of a day. That is to say, monthly, seasonal, and annual Tmax or Tmin indicate
the monthly, seasonal, and annual daily highest or lowest temperature in the period from
1971 to 2020.

This research uses the meteorological season and year, namely, spring (March to
May), summer (June to August), autumn (September to November), and winter (December
through February of the following year).

The MK test is adopted to detect the time series trend, and a positive or negative
value of the trend estimator (Z) indicates an increasing or decreasing trend for the test time
series [31–37]. When the absolute value of Z is greater than 1.96 or 2.576, the test time series
can be regarded as a statistically significant trend at 95% or 99% confidence level [33,38,39].
The Sen’s slope (β) is used to denote the rate of trend change [31,40]. The time series abrupt
change is identified by using departure accumulation [27] and the MK–Sneyers test [41].

3. Results
3.1. General Characteristics

During 1971–2020, at Nielamu, the Tmax of 22.4 ◦C was recorded on 31 July 1983, while
the Tmin of −21.7 ◦C occurred on 29 January 2019. At Dingri, the Tmax of 25.8 ◦C occurred
on 25 July 2009, and the Tmin of −31.4 ◦C occurred on 21 December 2018.

Table 1 shows that the monthly occurrences of Tmax and Tmin were in July and January
at Nielamu, while occurring in July and December at Dingri. Notably, the range (the
difference between Tmax and Tmin) of Dingri was greater than that of Nielamu every month.
The biggest or smallest range was 38.2 ◦C or 18.5 ◦C in January or July at Nielamu, which
was 46.0 ◦C or 24.0 ◦C in December or August at Dingri. This indicates that the monthly
temperature fluctuations in Dingri were more prominent than those in Nielamu.

According to Table 1, the seasonal and annual Tmax of Dingri were higher than those of
Nielamu except for in winter, while the seasonal and annual Tmin of Dingri were obviously
lower than those of Nielamu. The seasonal and annual temperature fluctuations in Dingri
were also more prominent than those of Nielamu based on the range values, and the
biggest seasonal fluctuating amplitude took place during winter. At Dingri, the monthly
Tmax appeared in summer, principally in June and July. At Nielamu, the monthly Tmax
mainly occurred in summer, but it occurred once in April in 1985 and November in 2011,
respectively, as well as five times in September and seven times in May. At Dingri, the
monthly Tmin appeared in winter, principally in January. At Nielamu, the monthly Tmin
also mainly occurred in winter, while it occurred twice in spring, namely during May in
1971 and 1990.
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Table 1. Statistics of monthly, seasonal and annual temperature (◦C).

Station January February March April May June July August September October November December Spring Summer Autumn Winter Annual

Tmax
Nielamu 16.5 17.7 17.6 19.2 20.6 21.6 22.4 21.7 19.2 18.4 18.6 18.1 20.6 22.4 19.2 18.1 22.4
Dingri 14.7 15.3 18.7 20.8 23.8 25.1 25.8 23.4 22.9 20.2 17.3 14.6 23.8 25.8 22.9 15.3 25.8

Tmin
Nielamu −21.7 −17.8 −16.8 −12.0 −5.5 −1.3 3.9 2.8 −2.3 −8.9 −14.8 −19.0 −16.8 −1.3 −2.3 −21.7 −21.7
Dingri −27.7 −25.3 −19.0 −14.3 −8.4 −4.0 0.7 −0.6 −4.4 −12.3 −19.0 −31.4 −19.0 −4.0 −19.0 −31.4 −31.4

Range Nielamu 38.2 35.5 34.4 31.2 26.1 22.9 18.5 18.9 21.5 27.3 33.4 37.1 37.4 23.7 21.5 39.8 44.1
Dingri 42.4 40.6 37.7 35.1 32.2 29.1 25.1 24.0 27.3 32.5 36.3 46.0 42.8 29.8 41.9 46.7 57.2
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Tables 2 and 3 show the decadal variation for the monthly, seasonal, and annual
temperature. On the whole, there was an upward trend in monthly Tmax and Tmin into the
21st century, but there are exceptions to this. For instance, the monthly Tmax occurred in
June, July, August, and October in the 1980s at Nielamu, and the monthly Tmin occurred in
December in the 2010s at Dingri.

Table 2. Decadal variation for monthly, seasonal, and annual Tmax (◦C).

1971–1980 1981–1990 1991–2000 2001–2010 2011–2020

Nielamu Dingri Nielamu Dingri Nielamu Dingri Nielamu Dingri Nielamu Dingri

January 11.7 11.3 16.3 13.5 12.2 14.0 15.7 14.7 16.5 14.7
February 11.3 13.9 16.4 14.6 17.7 15.0 15.7 14.0 14.4 15.3

March 13.4 14.7 15.2 16.7 14.3 17.4 17.6 18.7 15.9 16.9
April 16.4 18.7 17.8 17.9 18.0 20.8 17.1 18.6 19.2 18.5
May 18.8 22.0 19.9 22.1 20.6 23.5 19.4 23.8 20.0 23.0
June 19.9 24.0 21.6 24.6 17.5 24.9 20.3 25.1 20.8 24.8
July 19.9 24.5 22.4 24.8 22.1 24.1 19.2 25.8 18.3 25.2

August 18.1 21.5 21.7 23.4 19.2 22.5 20.3 22.7 20.4 23.3
September 15.9 20.6 18.9 21.6 18.1 20.5 19.2 22.8 17.8 22.9

October 16.2 19.1 18.4 18.4 15.8 18.0 15.9 19.3 18.1 20.2
November 15.3 15.8 15.0 17.2 14.4 14.3 16.1 15.2 18.6 17.3
December 16.5 12.4 15.1 11.9 13.7 13.4 15.9 13.0 18.1 14.6

Spring 18.8 22.0 19.9 22.1 20.6 23.5 19.4 23.8 20.0 23.0
Summer 19.9 24.5 22.4 24.8 22.1 24.9 20.3 25.8 20.8 25.2
Autumn 16.2 20.6 18.9 21.6 18.1 20.5 19.2 22.8 18.6 22.9
Winter 16.5 13.9 16.4 14.6 17.7 15.0 15.9 14.7 18.1 15.3
Annual 19.9 24.5 22.4 24.8 22.1 24.9 20.3 25.8 20.8 25.2

Table 3. Decadal variation for monthly, seasonal, and annual Tmin (◦C).

1971–1980 1981–1990 1991–2000 2001–2010 2011–2020

Nielamu Dingri Nielamu Dingri Nielamu Dingri Nielamu Dingri Nielamu Dingri

January −20.6 −24.4 −19.1 −27.7 −19.1 −24.1 −17.1 −24.5 −21.7 −23.1
February −17.3 −24.8 −17.0 −25.3 −17.8 −23.5 −17.1 −20.8 −14.4 −22.9

March −16.8 −18.8 −14.3 −18.2 −11.9 −19.0 −10.9 −16.7 −13.4 −18.5
April −9.7 −14.3 −9.5 −13.3 −12.0 −14.0 −9.2 −12.2 −7.8 −11.6
May −4.7 −8.4 −5.3 −8.3 −5.3 −8.0 −4.0 −8.0 −5.5 −8.2
June −0.8 −3.0 −0.5 −2.8 −1.3 −4.0 0.5 −0.4 1.5 −0.4
July 4.5 0.7 4.4 1.4 3.9 2.8 5.3 3.2 5.1 3.4

August 2.8 −0.6 3.0 0.4 4.3 0.2 5.2 0.3 4.4 3.0
September −2.3 −4.4 −2.2 −4.1 −0.4 −2.5 0.5 −2.9 0.1 −2.7

October −8.9 −11.9 −8.3 −11.9 −8.6 −12.3 −6.8 −11.6 −8.3 −11.5
November −14.8 −17.4 −11.6 −19.0 −10.5 −17.1 −9.3 −16.4 −9.5 −15.7
December −19.0 −22.5 −18.2 −27.5 −14.1 −26.5 −11.6 −20.5 −13.7 −31.4

Spring −16.8 −18.8 −14.3 −18.2 −12.0 −19.0 −10.9 −16.7 −13.4 −18.5
Summer −0.8 −3.0 −0.5 −2.8 −1.3 −4.0 0.5 −0.4 1.5 −0.4
Autumn −2.3 −17.4 −2.2 −19.0 −0.4 −17.1 0.5 −16.4 0.1 −15.7
Winter −20.6 −24.8 −19.1 −27.7 −19.1 −26.5 −17.1 −24.5 −21.7 −31.4
Annual −20.6 −24.8 −19.1 −27.7 −19.1 −26.5 −17.1 −24.5 −21.7 −31.4

According to Tables 2 and 3, there was increase for the seasonal Tmax into 21st century
in all locations, but the summer Tmax showed a fluctuant decrease at Nielamu from the 1980s
to 2010s. On the other hand, the changes in seasonal Tmin are more complex. They exhibit
an increasing trend with the decadal lapse at Nielamu in spring and autumn. However, the
winter Tmin occurred during 2011–2020 at both Nielamu and Dingri, with the rest showing
an increase with the decadal lapse.

3.2. Trends Analysis

The trend results of the MK test for the monthly, seasonal, and annual temperatures
are shown in Table 4. Neither Tmax nor Tmin has a positive trend. Although some series
show nonsignificant increases, the positive Sen’s slope also exhibits an increasing change. It is
consistent with that of extreme temperature events in MQ [26,27]. The increasing trends for
monthly Tmin are even more marked than those of Tmax overall. Yang et al. [29] also indicated
the increasing rates of temperature were larger in winter and spring than those in other seasons.

At Nielamu, the monthly Tmax in March and December has a statistically significant
increasing trend at a confidence level of 95%, and the monthly Tmax in August and Septem-
ber have a statistically significant increasing trend at a 99% confidence level. The monthly
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Tmin in February, June, and September have a statistically significant increasing trend at a
95% confidence level, and the monthly Tmin in April, July, August, and November have
a statistically significant increasing trend at a 99% confidence level. The top three of the
Sen’s slopes for Tmax are in March (0.057 ◦C per year), February (0.056 ◦C per year), and
December (0.056 ◦C per year), and the top three of the Sen’s slopes for Tmin are in November
(0.058 ◦C per year), April (0.056 ◦C per year), and February (0.047 ◦C per year).

Table 4. MK trend test results for monthly, seasonal, and annual temperature.

Tmax Tmin

Z β (◦C/Year) Z β (◦C/Year)

Nielamu Dingri Nielamu Dingri Nielamu Dingri Nielamu Dingri

January 1.63 1.91 0.050 0.044 0.45 1.72 0.009 0.024
February 1.92 1.03 0.056 0.020 2.01 * 2.63 ** 0.047 0.055

March 2.51 * 2.09 * 0.057 0.042 1.47 3.40 ** 0.033 0.056
April 0.12 0.81 0.000 0.012 2.58 ** 3.06 ** 0.056 0.045
May 0.68 0.67 0.016 0.014 0.05 0.65 0.000 0.011
June 0.45 1.73 0.005 0.016 2.20 * 2.79 ** 0.031 0.040
July 0.46 2.38 * 0.005 0.030 4.74 ** 4.02 ** 0.038 0.044

August 2.70 ** 2.64 ** 0.029 0.029 3.43 ** 2.63 ** 0.041 0.045
September 3.10 ** 3.12 ** 0.030 0.038 2.51 * 2.00 * 0.043 0.025

October 0.23 3.15 ** 0.003 0.039 1.56 1.06 0.021 0.013
November 1.55 1.61 0.033 0.034 3.01 ** 3.11 ** 0.058 0.047
December 2.33 * 2.90 ** 0.056 0.063 1.09 2.10 * 0.021 0.035

Spring 1.77 0.67 0.032 0.014 1.7 3.40 ** 0.034 0.056
Summer 1.17 2.36 * 0.017 0.023 2.24 * 3.18 ** 0.032 0.039
Autumn 2.50 * 3.12 ** 0.023 0.038 2.51 * 3.11 ** 0.043 0.047
Winter 2.30 * 3.06 ** 0.063 0.067 1.79 1.75 0.048 0.024
Annual 1.44 2.36 * 0.022 0.025 2.54 * 1.75 0.065 0.024

Notes: * 95% confidence level, ** 99% confidence level.

At Dingri, the monthly Tmax in March and July have a statistically significant increasing
trend at a 95% confidence level, and the monthly Tmax in August, September, October, and
December have a statistically significant increasing trend at a 99% confidence level. The
monthly Tmin in September and December have a statistically significant increasing trend at a
95% confidence level, and the monthly Tmin in February, March, Aprile, June, July, August, and
November have a statistically significant increasing trend at a confidence level of 99%. The
top three of the Sen’s slopes for Tmax are in December (0.063 ◦C per year), January (0.044 ◦C
per year), and March (0.042 ◦C per year), and the top three of the Sen’s slopes for Tmin are in
March (0.056 ◦C per year), February (0.055 ◦C per year), and November (0.047 ◦C per year).

On the seasonal scale, Tmax and Tmin are increasing during the period of 1971–2020, but
different patterns of change are found at Nielamu and Dingri (Table 4). At Nielamu, the Tmax
in autumn and winter show a statistically significant increasing trend at a 95% confidence
level, and the trends increase at the rates of 0.063 and 0.023 ◦C per year, respectively. There
is a slight increase with the rates of 0.032 and 0.017 ◦C per year in spring and summer (not
statistically significant at the level of 95%). Tmin has a statistically significant increasing
trend at a 95% confidence level in summer and autumn with the rates of 0.032 and 0.043 ◦C
per year, while an insignificant increasing trend is detected in spring and winter by 0.034
and 0.048 ◦C per year, respectively. On the other side, the seasonal Tmax series at Dingri
exhibit a statistically significant increasing trend at a 95% confidence level, except for spring,
showing a slight and insignificant increasing trend, and increasing trends with a significance
at a 99% confidence level are detected in autumn and winter. At Dingri, the seasonal Tmax
have increased by 0.014, 0.023, 0.038, and 0.067 ◦C per year, for spring, summer, autumn
and winter, respectively. The seasonal Tmin series at Dingri have experienced a statistically
significant increasing trend at the level of 99% in spring, summer, and autumn by 0.056,
0.039, and 0.047 ◦C per year. There is only a winter Tmin at Dingri showing a slight and
insignificant increasing trend with the estimated rates of 0.056 ◦C per year. The greatest
magnitude of the increase for seasonal Tmax occurred in winter at Nielamu and Dingri, while
that for Tmin occurred in winter at Nielamu and in spring at Dingri. The seasonal increasing
trends of Dingri seem more dominant than those of Nielamu, so it is for the increasing
magnitudes, which are consistent with the existing research [24].
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Figures 2–4 show the monthly, seasonal, and annual variations with time for Tmax and
Tmin. The annual Tmax and Tmin time series are the same as those of summer and winter at
Dingri; however, the annual Tmax and Tmin time series show slightly different variations from
the summer and winter at Nielamu. A visual analysis can also evidence the increasing trends
for the Tmax and Tmin series based on the linear trend (see the dash line in Figures 2–4).
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3.3. Abrupt Diagnosis

The abrupt diagnosis results using an MK test for Tmax and Tmin are shown in Table 5.
The abrupt changes of monthly Tmax and Tmin mainly take place during 1980s–2020s, and
the abrupt points occur 2 times in 1970s, 16 times in 1980s, 16 times in 1990s, 13 times in
2000s and 3 times in 2010s, respectively. On the seasonal scale, abrupt changes of Tmax and
Tmin mainly take place in 1980s and 1990s, with only one change each in 1970s, 2000s, and
2010s for the Tmax. The annual Tmax abrupt changes take place in 1980s, while the annual
abrupt change for the Tmin take place in 1990s. Du et al. [26] also found that the maximum
value of the daily maximum temperature had an abrupt change in 1980.



Atmosphere 2024, 15, 358 10 of 16

Table 5. MK abrupt year of temperature.

Station January February March April May June July August September October November December Spring Summer Autumn Winter Annual

Tmax
Nielamu 1998 2013 2004 2016 1982 1981 1982 1982 1978 1998 2004 1999 1986 1980 1979 2002 1980
Dingri 1988 1997 1982 1988 1987 1989 2000 1982 2013 2001 2000 1998 1987 1982 2013 1992 1982

Tmin
Nielamu 1980 2001 1980 2003 1987 1988 1986 1977 1990 1994 1996 1995 1981 1986 1990 1997 1997
Dingri 2000 1988 1999 2003 2000 1993 1994 2002 1997 1993 1997 1998 1999 1997 1997 1998 1998



Atmosphere 2024, 15, 358 11 of 16

The cumulative departure curves of the Tmax and Tmin time series are shown in
Figures 5–7, which also evidences the abrupt points for the temperature time series.
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4. Discussions and Conclusions

Based on the observational daily temperature data from Nielamu and Dingri, this
study conducts a general characteristic analysis, trend test, and abrupt diagnosis for the
Tmax and Tmin in MQ during the last five decades. The results would be beneficial to
understand the variations in extreme temperature in MQ.

The maximum Tmax was 25.8 ◦C and the minimum Tmin was −31.4 ◦C in MQ, which
all occurred in Dingri. The maximum Tmax appeared in summer, and the minimum Tmin
appeared in winter. The maximum Tmax or minimum Tmin occurred in August or January
at Nielamu, while occurring in July or December at Dingri. The decadal variations for Tmax
and Tmin had upward trend on the whole, but the winter minimum Tmin occurred during
2011–2020 at both Nielamu and Dingri.
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On monthly, seasonal, and annual scales, neither Tmax nor Tmin time series exhibits
a discernible increasing trend. Although some series show a slight and insignificant in-
creasing trend at a 95% confidence level, the positive Sen’s slopes also exhibit an increasing
change during the study period. The increasing trends for monthly Tmin are even more
marked than those of Tmax overall. On the seasonal scale, the greatest increasing magnitude
for Tmax occurred in winter at Nielamu and Dingri, while that for Tmin occurred in winter
at Nielamu and in spring at Dingri. The seasonal increasing trends at Dingri seem more
dominant than those at Nielamu, so it is for the increasing magnitudes.

The monthly Tmax and Tmin abrupt change mainly took place during 1980s–2020s. The
seasonal Tmax or Tmin abrupt change mainly took place in 1980s or 1990s, and only the Tmax
in winter at Nielamu and in autumn at Dingri had an abrupt change that took place in
2000s and 2010s, respectively. The annual Tmax abrupt change took place in 1980s, while
the annual Tmin abrupt change took place in 1990s.

This study found the differences between the north slope (Dingri) and the south slope
(Nielamu) of MQ. For example, the fluctuations in the Tmax and Tmin in the north slope are
more extreme than those of the south slope. On the seasonal and annual scale, the Tmax
in the north slope were higher than those in the south slope, except for in winter. The
seasonal and annual Tmin in the north slope were all lower than those in the south slope.
The tendence of Tmax and Tmin in the north slope was more dominant than those in the
south slope.

The differences in Tmax and Tmin between the south and north slope of MQ are found
in this research, which is consistent with those of existing results. Yang et al. [24] found
the increasing trend for temperature at Dingri is most significant in MQ. Yang et al. [29]
indicates the temperature increasing rate at Dingri is larger than that at Nielamu. Qi
et al. [42] points out the increasing annual mean temperature is mainly due to the increasing
maximum temperature in MQ, while the annual mean temperature increase in the north
slope of MQ is mainly owing to the minimum temperature rise [42]. On the other hand,
studies show the Himalayas barrier is the major contributor to the climate difference
between the north and south slope of MQ [43,44]. Because of the Himalayas barrier, the
Mongolia–Siberia cold air cannot access the south slope, and the warm moisture influence
from the Indian Ocean is waned in north slope. So, the south slope temperature is higher
than that of north slope [27]. It further demonstrates that climate change shows obvious
regional or local difference, which is not neglectable in practice research.

This research shows the spatiotemporal variations in the Tmax and Tmin trend and
abrupt change in MQ on the basis of observation data. However, only two stations with
long-term observations are used. Further analysis is needed to determine whether we can
comprehensively reveal the characteristics of Tmax and Tmin over MQ. It is also necessary
that the conclusion in this study be verified by using other methods and data. At the same
time, the results in this study need further research to reveal the influencing mechanism.
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