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Abstract: Madden–Julian Oscillation (MJO) modulates the generation of typhoons (TYs) in the
western North Pacific (WNP). Using IBTrACS v04 tropical cyclone best path data, ERA5 reanalysis
data, and the MJO index from the Climate Prediction Center (CPC), this paper defines an index to
describe the persistent anomalies of the MJO and to examine the statistical characteristics of TYs over
44 years (1978–2021), focusing on the analysis of major differences in environmental conditions after
the removal of the ENSO signal over the WNP. The results indicate that the persistent anomalous
state of the MJO influences the change in large-scale environmental factors, which, in turn, affects the
generation of TYs, as follows: (1) For the I high-value years, the center of the MJO stagnates in the
Indian Ocean–South China Sea (SCS), the monsoon trough retreats westward, the warm pool becomes
warmer, and the Walker circulation is enhanced. There is stronger upper-level divergence and low-
level convergence, larger low-level relative vorticity, higher mid-level relative humidity, and smaller
vertical wind shear in the SCS and the seas near the Philippines. Consequently, these conditions foster
a conducive environment for TY genesis in the SCS and the seas near the Philippines. (2) For the I
low-value years, the center of the MJO stagnates in the WNP–North America region, the monsoon
trough extends eastward, the warm pool becomes colder, and the Walker circulation is weakened.
Consequently, these conditions are more likely to facilitate TY genesis in the central–eastern WNP. The
results show that persistent anomalies in MJO active centers can effectively improve the predictive
ability of TY frequency.

Keywords: Madden–Julian Oscillation; typhoon frequency; monsoon trough; warm pool; the
Walker circulation

1. Introduction

Tropical Cyclones (TCs) are among the most destructive natural disasters [1]. The
western North Pacific (WNP) is the world’s most active region of TCs. Approximately
26 named TCs per year over the WNP basin often cause extreme events, such as violent
winds and heavy rains, resulting in unquantifiable property damage and human casualties
in coastal countries [2–4]. Given the context of global warming, studying the long-term
variations in TC activity in the WNP is significant [5,6].

Previous studies have shown that the El Niño Southern Oscillation (ENSO) is the
strongest interannual signal from tropical air–sea systems, modulating TC activity by
changing large-scale circulation [7,8]. Ramage et al. suggest that the eastward movement of
tropical cyclone position in El Niño years and the opposite in La Niña years may be related
to the equatorial east–central Pacific Sea Surface Temperature (SST) [9]. Chan et al. also
found that tropical cyclone activity was more active and stronger in El Niño years [10].

TC activity is characterized by multiple time scales. The Madden–Julian Oscillation
(MJO), with a period of 30–90 days, significantly influences TC activity [11]. Gray et al.

Atmosphere 2024, 15, 373. https://doi.org/10.3390/atmos15030373 https://www.mdpi.com/journal/atmosphere

https://doi.org/10.3390/atmos15030373
https://doi.org/10.3390/atmos15030373
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://orcid.org/0009-0007-6478-8916
https://orcid.org/0009-0002-6631-5665
https://doi.org/10.3390/atmos15030373
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos15030373?type=check_update&version=3


Atmosphere 2024, 15, 373 2 of 13

found, for the first time, that global TC activity exhibits a prominent cluster and periodicity,
showing that TCs typically occur in concentrated periods of 1–2 weeks, followed by rare
occurrences in the subsequent 2–3 weeks [12]. Subsequently, numerous studies have shown
that TCs in different global seas are prone to be generated during the convectively active
phase of the MJO [13,14]. Liebmann et al. indicated that when the convective center of the
MJO is in the fifth and sixth phases (the western equatorial Pacific), the frequency of TCs in
the WNP is greater [15]. Li et al. found that when the convection center of the MJO was in
the second and third phases, the dynamic factors in the WNP showed a trend of inhibiting
convection and TC development, whereas when the center is in the fifth and sixth phases,
the factors show a tendency to promote convection and favor TC development [16]. Zhou
et al. further analyzed the large-scale circulation field at different phases of the MJO and
found that the large-scale circulation field is significantly different at different phases of the
MJO, thus affecting the generation and development of TCs [17].

Previous studies have primarily concentrated on the effects of the MJO phases on
TCs, with less emphasis on the impact of MJO center positions on TC genesis. Therefore,
this paper focuses on the modulation of TYs by MJO activity centers in specific regions,
following the removal of ENSO signals, to provide a reference for TY prediction on a
seasonal scale.

2. Data and Methods
2.1. Data

We extracted the TC information from the International Climate Management Best
Track Archive (IBTrACS v04) [18]. The data had a temporal resolution of 6 h and contained
the central position and the central maximum wind speed. ERA5 provided monthly
mean atmospheric reanalysis data for the period 1940–2021, with a horizontal resolution
of 0.25◦ × 0.25◦, including 850 hPa relative vorticity and 600 hPa relative humidity [19].
Global monthly mean SST data for 1870–2021 were provided by the Hadley Centre, with
a spatial resolution of 1.0◦ × 1.0◦ [20]. The Climate Prediction Center (CPC) provided
the MJO index for 1978–2021 [21]. The MJO index from the CPC had a time resolution of
five days. Based on the extended empirical orthogonal function (EEOF) of the velocity
potential at 200 hPa, 10 MJO indices were defined by projecting the data onto the 10 spatial
fields of the first mode of the EEOF, corresponding to the locations of the 10 MJO centers
of convective activity (80◦ E, 100◦ E, 120◦ E, 140◦ E, 160◦ E, 120◦ W, 40◦ W, 10◦ W, 20◦ W,
and 70◦ W) [22]. Thus, the MJO index from the CPC represents the variation of MJO
convective activity centers in different regions, including the tropical Indian and western
Pacific oceans. The Real-time Multivariate MJO (RMM) index focuses more on the process
of MJO propagation and is only an approximate indication of the location of its center of
activity [23]. Compared to the RMM index, the MJO index from the CPC is more reliable in
characterizing the active status of the MJO at specific locations [24].

2.2. Method

According to the criteria defined by Joint Typhoon Warning Center (JTWC), the time
and location of the central wind speed of TCs ≥ 34 m/s (64 kn) are defined in this paper
as the time and location of typhoon (TY) genesis. Wang et al. define the season of TY
occurrence in the WNP as May to November; therefore, this paper focuses on the MJO
activity from May to November [25].

To preserve the periodic oscillation characteristics of the large-scale environmental
fields at intra-seasonal time scales, while simultaneously isolating most of the ENSO signals,
a 30–60 d Lanczos band-pass filter was applied to all large-scale environmental factors. The
Lanczos time filtering method is a widely used band-pass filter in meteorology [26]. It is a
time series x(t) at time t, which is transformed into a time series y(t) by linear processing,
and the expression is as follows:

y(t) = w(t)× x(t) = ∑n
k=−n w(k)× x(t − k) (1)
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To filter out the frequency band [f1, f2], the weighting factor w(t) needs to be calculated
as follows:

w(t) =
sin(πt

n )
πt
n

(
sin 2πf2t

πt
− sin2πf1t

πt
) t = −n, . . . , 0, . . . , n (2)

In this study, we defined an index that expresses the activity of the MJO from May to
November in the WNP. As shown in Equation (3), the I index that describes the persistent
anomalies of the center of the MJO is calculated from the IMJO index from the CPC, and the
expression is as follows:

I =
1
7 ∑11

i=5(IMJO160◦ E − IMJO120◦ E). (3)

We selected the CPC-MJO daily data for May to November of a specific year to
calculate the I index. Then, we averaged the I index from May to November to obtain the
average I value for that specific year. IMJO120◦E and IMJO160◦E represent the active degree of
the MJO in the South China Sea (SCS) and the WNP. The negative value of the MJO index
from the CPC indicates the MJO convective active phase, and the positive value indicates
the MJO convective inhibited phase. Therefore, if I is positive, the MJO is more active in
the SCS than the MJO in the WNP, and if I is negative, the MJO is more active in the WNP
than the MJO in the SCS. The larger the absolute value of I, the more significant the MJO
activity. In addition, the statistical tests used were Student’s t-tests.

3. Results
3.1. MJO Activity Characteristics

The calculated index was used to make a time evolution chart from 1978 to 2021
(Figure 1). The years with greater than 0.5 standard deviations were selected as the I
high-value years, i.e., the years where the MJO was mainly active in the SCS, and the years
with less than −0.5 standard deviations were selected as the I low-value years, i.e., the
years where the MJO was mainly active over the WNP. The years with high and low values
are shown in Table 1.
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Figure 1. Time series I during the period of 1978–2021. The blue line represents 0.5 (−0.5) standard
deviations.

Table 1. Years with high and low values (I).

I High-Value Years (11a) I Low-Value Years (12a)

1988, 1989, 1995, 1996, 1998, 1999, 2007, 2008,
2010, 2020, 2021

1978, 1980, 1982, 1986, 1991, 2001, 2002, 2009,
2012, 2014, 2015, 2019

From May to November in the I high-value years, the MJO stagnated in the Indian
Ocean–SCS region (80◦ E–120◦ E) (Figure 2a). The activity center of the MJO stagnated in
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the Indian Ocean–SCS region from May. Subsequently, the intensity of the MJO increased,
and the range of the center expanded. A brief weakening in the intensity of the MJO center
occurred at the end of July. The MJO intensity (−1) in August was the strongest of the
year and began to move eastward, and the MJO moved eastward to the eastern Pacific
Ocean (120◦ W) in November. The MJO stagnated in WNP–North America (160◦ E–40◦ W)
from June to November in the I low-value years (Figure 2b), and the intensity (−0.5) of the
center throughout the year was weak. The center of MJO activity stagnated in the Pacific
region from June. From July to August, the range of the MJO center narrowed, and the
intensity remained the same. The MJO center started moving eastward in September, and
the MJO center returned to the Pacific region in November. From the composite plot of
the differences between the MJO index from the CPC in the I high- and low-value years
(Figure 2c), the index defined in this paper reflects the persistent stagnation of the MJO
from May to November, and it corresponds well with the two key zone ranges (120◦ E
and 160◦ E) for index selection. The center of the negative difference was located in the
Indian Ocean–SCS region (80◦ E–120◦ E), and the center of the positive difference was
located in WNP–North America (160◦ E–40◦W). The intensity of the MJO varied inversely
in two key areas: when the center of MJO activity was stagnant in the SCS, i.e., the
MJO was continuously active in the SCS, the intensity of the MJO over the WNP was
continuously weak, whereas when the center of MJO activity was stagnant over the WNP,
i.e., the MJO was continuously active in the WNP, the intensity of the MJO in the SCS was
continuously weak.
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3.2. Statistical Characteristics of TYs in the WNP

The average frequency of TYs in the I low-value years (15.1 per year) was greater than
that of TYs in the I high-value years (13 per year). The annual tropical cyclone frequency
was generally above the average in the I low-value years, whereas it was below the average
in almost half of the I high-value years (Figure 3).The location of TY genesis in Figure 4
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shows that a significant number of TYs were generated in the range of 140◦ E–180◦ E in the
I low-value years, whereas TYs in the I high-value years were generated in the area west
of 140◦ E. According to statistics, there were 137 TYs in the I high-value years, of which
106 TYs (77% of the total) were produced between 100◦ E and 140◦ E, and 31 TYs (23% of
the total) were produced between 140◦ E and 180◦ E. There were 181 TYs in the I low-value
years, of which 101 TYs were produced between 100◦ E and 140◦ E, accounting for 56% of
the total, and 80 TYs were produced between 140◦ E and 180◦ E, accounting for 44% of the
total (Table 2). Compared to the I high-value years, the proportion of TYs generated east of
140◦ E increased in the I low-value years.
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Figure 4. Spatial distribution of TY generation points for I high- and low-value years. The blue
dots represent the TYs for I high-value years, and the orange triangles represent TYs for the I
low-value years.

Table 2. Total number of TYs in different longitude ranges for the I high- and low-value years.

The I High-Value Years The I Low-Value Years

100◦ E–140◦ E 106 (77% of the total) 101 (56% of the total)
140◦ E–180◦ E 31 (23% of the total) 80 (44% of the total)
Total 137 181

It is clear that the center of the MJO in the I high-value years stagnated in the Indian
Ocean–SCS, the annual mean TY frequency in the WNP was low, and the genesis location
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was mainly in the region of the SCS and the seas near the Philippine Islands. The center
of the MJO in the I low-value years stagnated in WNP–North America, the annual mean
TY frequency in the WNP was high, and the genesis location was mainly in the region
east of the Philippines in the WNP. This shows that the MJO has an important modulation
effect on TYs in the WNP, and the frequency and position of TYs change with movement
of the MJO active center. The MJO influences the development of TCs by changing the
environmental conditions [27,28]. Therefore, in this paper, we conducted a synthetic
analysis of each element in the I high- and low-value years to explore how the MJO
influences TYs, considering the environmental conditions.

4. Differences in Background Fields between I High- and Low-Value Years
4.1. The Differences in the Warm Pool

Chen et al. found that when the western Pacific warm pool (125◦ E–165◦ E, 0◦–16◦ N)
is in a warm state, it favors for development of the MJO, providing a favorable dynamical
environment for TC formation. Consequently, more TCs are generated on the western side
of the WNP. Conversely, when the WNP warm pool is in a cold state, the MJO activity
is weakened and TC activity is suppressed. Consequently, the number of TCs on the
southeast side of the WNP is higher [29]. Areas with SST above 28.5 ◦C are favorable for
the generation of TCs. Figure 5a,b shows the mean SST distribution for May–November
in the I high- and low-value years, respectively. As seen in Figure 5, the 28.5 ◦C isotherm
was south of 20◦ N in both the I high- and low-value years. The 29.5 ◦C isotherm for the I
high-value years was located south of 18◦ N and west of 150◦ E (Figure 5a), whereas the
29.5 ◦C isotherm for the I low-value years was located near the equator (10◦ N–10◦ S) and
east of 140◦ E (Figure 5b). Compared to the I low-value years, the 29.5 ◦C isotherm covered
a larger area and the location was more westward in the I high-value years. The average
warm pool (125◦ E–145◦ E, 0◦–15◦ N) temperature was generally higher in the I high-value
years (approximately 29.5 ◦C) than in the I low-value years (approximately 28.5 ◦C). This
disparity could be one of the reasons for the more westward genesis position of TYs in the I
high-value years.
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4.2. The Differences in Monsoon Trough

The MJO and the monsoon trough are closely related. The monsoon trough is closely
related to the generation, activity, and path of TCs. When the monsoon trough extends
eastward (retreats westward), the formation of TCs in the southeast of the WNP increases
(decreases) [30,31]. It can be assumed that the MJO has an indirect effect on TCs by
influencing the activity of the monsoon trough. Figure 6 shows the 850 hPa mean streamline
distribution for these two periods. During high-value years, the monsoon trough receded
westward near Luzon, with less pronounced curvature. The southwesterly flow in the
south of 15◦ N was stronger, whereas the southeasterly flow in the north of 15◦ N was
weaker, resulting in weaker shear in the horizontal wind field, with the shear line extending
to only 120◦ E (Figure 6a). In the I low-value years, the monsoon trough exhibited a
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significant northwest–southeast trend, and the southwest monsoon flow gradually changed
to southeast when it reached the middle of the tropical WNP, thus forming a horizontal
shear between the southwest monsoon flow and the southeast flow in the WNP. Finally, the
trough line of the monsoon trough extended to 150◦ E in the southeast direction (Figure 6b).
TY genesis locations (indicated by the blue dots in Figure 6) predominantly occurred in the
monsoon convergence zone at the monsoon trough’s eastern end, with genesis locations
shifting alongside the monsoon trough’s movements. In the I high-value years, retreat of
the monsoon trough caused the generation position of TYs to shift westward, resulting in
an increase in TY generation in the SCS and a decrease in TY generation in the WNP. In the
I low-value years, the monsoon trough extended latitudinally up to 150◦ E, and more TYs
occurred in the eastern part of the WNP.
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4.3. The Differences in the Walker Circulation

Figure 7 shows the differences in the mean vertical velocity between 5◦ N and 15◦ N
in the I high- and low-value years. The figure shows that the SCS and the seas near
the Philippine Islands were dominated by anomalous updrafts, whereas the WNP was
dominated by anomalous downdrafts during the I high-value years. This resulted in an
anomalous situation for the Walker circulation and the Walker circulation was enhanced.
On the contrary, in the I low-value years, the anomalous downdraft was in the SCS and the
sea near the Philippine Islands, and the updraft was in the WNP, creating an anti-Walker
circulation situation, which weakened the Walker circulation. Compared with the I low-
value years, the rising branch of the Walker circulation in the SCS and the seas near the
Philippine Islands was enhanced in the I high-value years, which was favorable for the
formation of TYs in the SCS and the seas near the Philippine Islands. Therefore, the location
of TY formation in the I high-value years was mainly concentrated west of 140◦ E and less
east of 140◦ E (Figure 5).
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5. Differences in Large-Scale Environmental Elements between I High- and
Low-Value Years
5.1. The Differences in Dynamic Factors

High- and low-altitude convergence and divergence are essential dynamical features of
TCs [32]. Figure 8 shows the differences between the wind and divergence fields at 850 hPa
(Figure 8a) and 200 hPa (Figure 8b) for the I high- and low-value years. In I high-value
years, there was upper-level divergence in the SCS, leading to convergence in the lower-
level troposphere and enhanced upward motion, which is conducive to the generation
of TYs (Figure 8a). In I high-value years, there was lower tropospheric convergence and
upper tropospheric divergence in the SCS, which is favorable for the strengthening of
convective activity in this region. Consequently, this was favorable for the generation of
TYs in the SCS (Figure 8b). In terms of the wind field, at 850 hPa, the Walker circulation
caused a low-level easterly wind anomaly in the equatorial western Pacific, which led
to an anticyclonic circulation anomaly in the low-level WNP. At 200 hPa, upper-level
southerly wind anomalies existed in the SCS. Cyclonic circulation anomalies existed in the
upper levels of the WNP. Thus, in I high-value years, anomalous lower-level anticyclonic
circulation and anomalous upper-level cyclonic circulation in the WNP region suppressed
TY genesis; therefore, TYs are prone to be generated in the SCS.
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Figure 8. Differences in composite wind (vector, units: m s−1) and divergence (shading, units:
10−6 s−1) after 30–60-day filtering for (a) 850 hPa and (b) 200 hPa. The arrow areas and the spotted
areas are statistically significant at the 95% confidence level.

The lower-level cyclonic relative vorticity in the troposphere over the WNP can provide
large-scale convergent upward motion for the development of TCs, which plays a crucial
role in the development of TCs [33,34]. Figure 9 shows the mean 850 hPa relative vorticity
differences over the northwest Pacific Ocean. It can be seen that the positive vorticity
anomaly in the SCS was small in extent, whereas the relative vorticity in the western Pacific
was negative. This indicates that the positive relative vorticity in the I high-value years
was mainly distributed in the SCS and the seas near the Philippine Islands at low latitudes
(south of 10◦ N). The distribution of positive relative vorticity in the lower-level troposphere
was more westward in the I high-value years than in the I low-value years. This is one of
the reasons why TYs in I high-value years tend to be generated west of the WNP.

Excessive vertical wind shear inhibits the development of convective activity, which
is detrimental to TC genesis. Thus, TCs tends to be generated in areas with low vertical
wind shear [35]. Figure 10 shows the differences in vertical wind shear between the I high-
and low-value years. In the west–central WNP, the vertical wind shear was significantly
smaller in the I high-value years than in the I low-value years, especially in the 0◦–15◦ N,
120◦ E–150◦ E area. During the I high-value years, the vertical wind shear in the SCS was
smaller, and the larger vertical wind shear in the WNP led to an increased frequency of TC
genesis in the SCS and a decreased frequency in the WNP.
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5.2. The Differences in Thermodynamic Factors

Water vapor is an important environmental factor for TC genesis. Low relative hu-
midity in the middle troposphere of a region hampers the release of latent heat from con-
densation and the strengthening of upward motion, thus inhibiting TC development [36].
Figure 11 shows the differences in relative humidity between the I high- and low-value
years. As depicted in Figure 11, we can see that there was a positive difference area in the
western side of the WNP and the SCS. This indicates that in the seas near the Philippine
Islands and the SCS, the relative humidity in the mid-level troposphere was significantly
higher during the I high-value years than during the I low-value years. Therefore, TYs in
the I high-value years tend to be generated in the western WNP.
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6. Conclusions and Discussion
6.1. Conclusions

In this paper, we first used the MJO index from the CPC to classify I high- and low-
value years using statistical methods. The, we analyzed the MJO activity characteristics
of I high- and low-value years, as well as the statistical characteristics of TYs. The results
show that in the I high-value years, the MJO stagnated in the Indian Ocean–SCS region,
the annual mean TY frequency of the WNP was low, and the TYs tended to occur over
the area from the SCS to the seas near the Philippine Islands. In the I low-value years,
the MJO stagnated in WNP–North America region, the annual mean TY frequency of the
WNP was high, and the TYs tended to occur in the area east of the Philippines on the WNP
(Figure 12).
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Figure 12. Physical mechanisms of interannual variation in the generation of TYs affected by I
high-value years. The black arrow circles indicate cyclonic circulation (anticyclonic circulation). The
solid black lines indicate monsoon troughs. The black dashed lines indicate trough lines. The blue
arrows indicate zonal circulation at 5◦–15◦ N. The white arrows indicate winds. The red symbols
indicate TYs. The orange areas indicate MJO stagnation. The yellow areas indicate positive vertical
wind shear. The green areas indicate positive relative humidity. The purple areas indicate negative
relative vorticity. The red areas represent warm pools.
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This study also used ERA5 reanalysis data to compare the differences in the back-
ground and large-scale environmental fields over the WNP from May to November in
I high- and low-value years. We discussed the possible influence of the location of TY
genesis. We note that the persistent anomalous state of the MJO will influence the change
in large-scale environmental factors, which, in turn, will affect the generation of TYs,
as follows:

(1) In I high-value years, the monsoon trough retreats westward to 120◦ E and the
Walker circulation is enhanced. The enhanced Walker circulation produces low-level east-
erly anomalies in the equatorial western Pacific, which leads to an increased accumulation
of warm water in the western Pacific, resulting in warming of the western Pacific warm
pool. Compared to east of the WNP, the SCS and the seas near the Philippines have stronger
upper-level divergence and lower-level convergence. Additionally, they exhibit larger
lower-level relative vorticity, higher mid-level relative humidity, and smaller vertical wind
shear (Figure 12). Consequently, these conditions foster a conducive environment for TY
genesis in the SCS and the seas near the Philippines.

(2) In contrast, during I low-value years, the monsoon trough extends eastward to
160◦ E and the Walker circulation is weakened. The weakened Walker circulation produces
a low-level westerly anomaly in the equatorial western Pacific, which leads to an eastward
flow of warm water in the west of the Pacific, cooling the western Pacific warm pool.
Therefore, the TYs of I low-value years occur primarily in the eastern part of the WNP.

6.2. Discussion

It should be noted that only the effects of environmental conditions on TYs in I high-
and low-value years were considered in this paper. In fact, there are interactions between
the MJO and TCs. He et al. found that the MJO influences the occurrence of TCs, with
specific phases significantly enhancing or inhibiting the occurrence of TCs [37]. Sun et al.
found that the MJO influences the generation and development of TCs through large-scale
background circulation, whereas the development and westward shift of TCs promote
the gradual entry of the MJO into the dry phase [38]. At the same time, the degree of
the MJO’s influence on tropical cyclone formation varies between El Niño and La Niña
years [39]. Li et al. highlighted that the modulation of tropical cyclone genesis in this
region by the MJO is more pronounced during El Niño years compared to other ENSO
phases [40]. In this study, only the modulation of TYs by the MJO was considered, and the
interaction between ENSO and the MJO and its effect on TYs were not addressed at this
time. Therefore, the interaction mechanisms of ENSO, MJO, and TYs in both I high- and
low-value years requires further research.
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