A Study on the Leaf Retention Capacity and Mechanism of Nine Greening Tree Species in Central Tropical Asia Regarding Various Atmospheric Particulate Matter Values
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Location
2.2. Sampling Collection
2.3. Mass Measurement of the PM on the Leaves
2.4. Observation of Foliar Microstructure
2.5. Data Analysis
3. Results
3.1. Dust Retention Ability Analysis
3.2. Characteristics of the per Leaf Area Accumulation and Retention of TSP, PM10, and PM2.5 in Different Living Types
3.3. Electron Microscope Scanning of the Leaf Surface of Different Green Plants
3.4. Relationship between Foliar Microstructure and Dust Retention Ability
4. Discussion
4.1. Leaf Surface Microstructure
4.2. Particulate Retention Capacity of the Leaf Surface
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bui, H.T.; Odsuren, U.; Kim, S.Y.; Park, B.J. Particulate Matter Accumulation and Leaf Traits of Ten Woody Species Growing with Different Air Pollution Conditions in Cheongju City, South Korea. Atmosphere 2022, 13, 1351. [Google Scholar] [CrossRef]
- Łukowski, A.; Popek, R.; Karolewski, P. Particulate matter on foliage of Betula pendula, Quercus robur, and Tilia cordata: Deposition and ecophysiology. Environ. Sci. Pollut. Res. 2020, 27, 10296–10307. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, X.; He, G.L.; Lin, S.B.; Liu, Z.; Xu, D.Q. Study on Characteristics of Elements in PM2.5 during Haze-Fog Weather in Winter in Urban Beijing. Spectrosc. Spect. Anal. 2013, 33, 1441–1445. [Google Scholar]
- Li, Q.Y.; Huang, Y.Q.; Liu, Y.; Wang, L.; Zhang, J.; Song, Y.; Wu, L.S.; Li, J.H.; Liao, J.Y. The effect of particulate matter retention by common green plants in central Tropical Asia. J. Northwest For. Univ. 2021, 36, 79–84. [Google Scholar]
- Fang, Y.Y.; Fiore, A.M. Using synthetic tracers as a proxy for summertime PM2.5 air quality over the Northeastern United States in physical climate models. Geophys. Res. Lett. 2013, 40, 755–760. [Google Scholar] [CrossRef]
- Shao, F.; Wang, L.H.; Sun, F.B.; Li, G.; Yu, L.; Wang, Y.J.; Zeng, X.R.; Yan, H.; Dong, L.; Bao, Z.Y. Study on different particulate matter retention capacities of the leaf surfaces of eight common garden plants in Hangzhou, China. Sci. Total Environ. 2019, 652, 939–951. [Google Scholar] [CrossRef]
- Bell, M.L.; Morgenstern, R.D.; Harrington, W. Quantifying the human health benefits of air pollution policies: Review of recent studies and new directions in accountability research. Environ. Sci. Policy 2011, 14, 357–368. [Google Scholar] [CrossRef]
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Hoehn, R. Modeled PM2.5 removal by trees in ten US cities and associated health effects. Environ. Pollut. 2013, 178, 395–402. [Google Scholar] [CrossRef]
- Wang, L.; Gong, H.L.; Liao, W.B.; Wang, Z. Accumulation of particles on the surface of leaves during leaf expansion. Sci. Total Environ. 2015, 532, 420–434. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.X.; Liu, C.M.; Zhang, L.; Zou, R.; Zhang, Z.Q. Variation in tree species′ ability to capture and retain airborne fine particulate matter (PM2.5). Sci. Rep. 2017, 7, 3206. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, D.; Aguilar, B.; Fuentealba, R.; Préndez, M. Environmental studies in two communes of Santiago de Chile by the analysis of magnetic properties of particulate matter deposited on leaves of roadside trees. Atmos. Environ. 2017, 152, 617–627. [Google Scholar] [CrossRef]
- Chen, B.; Wang, X.P.; Chen, J.Q.; Zhu, J.G.; Liu, J.L. Forestry strategies against PM2.5 pollution in Beijing. For. Chron. 2015, 91, 233–237. [Google Scholar] [CrossRef]
- Zhang, Z.D.; Cao, Z.G.; Jia, L.M. Regulation of four typical scenic recreational plantationstost and PM2.5 concentration in Beijing, China. Chin. J. Appl. Ecol. 2015, 26, 3475–3481. [Google Scholar]
- Chen, L.X.; Liu, C.M.; Zou, R.; Yang, M.; Zhang, Z.Q. Experimental examination of effectiveness of vegetation as bio-filter of particulate matter in the urban environment. Environ. Pollut. 2016, 208, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Klingberg, J.; Broberg, M.; Strandberg, B.; Thorsson, P.; Pleijel, H. Influence of urban vegetation on air pollution and noise exposure–a case study in Gothenburg, Sweden. Sci. Total Environ. 2017, 599, 1728–1739. [Google Scholar] [CrossRef] [PubMed]
- Cavanagh, J.A.E.; Zawar-Reza, P.; Wilson, J.G. Spatial attenuation of ambient particulate matter air pollution within an urbanised native forest patch. Urban For. Urban Green. 2009, 8, 21–30. [Google Scholar]
- Mcdonald, A.G.; Bealey, W.J.; Fowler, D.; Dragosits, U.; Skiba, U.; Smith, R.I.; Donovan, R.G.; Brett, H.E.; Hewitt, C.N.; Nemitz, E. Quantifying the effect of urban tree planting on concentrations and depositions of PM10 in two UK conurbations. Atmos. Environ. 2007, 41, 8455–8467. [Google Scholar]
- Prajapati, S.K.; Tripathi, B.D. Seasonal variation of leaf dust accumulation and pigment content in plant species exposed to urban particulates pollution. J. Environ. Qual. 2008, 37, 865–870. [Google Scholar] [CrossRef]
- Weerakkody, U.; Dover, J.W.; Mitchell, P.; Reiling, K. Evaluating the impact of individual leaf traits on atmospheric particulate matter accumulation using natural and synthetic leaves. Urban For. Urban Green 2018, 30, 98–107. [Google Scholar] [CrossRef]
- Liu, J.Q.; Cao, Z.G.; Zou, S.Y.; Liu, H.H.; Hai, X.; Wang, S.H.; Duan, J.; Xi, B.Y.; Yan, G.X.; Zhang, S.W.; et al. An investigation of the leaf retention capacity, efficiency and mechanism for atmospheric particulate matter of five greening tree species in Beijing, China. Sci. Total Environ. 2018, 616–617, 417–426. [Google Scholar] [CrossRef]
- Perini, K.; Ottelé, M.; Giulini, S.; Magliocco, A.; Roccotiello, E. Quantification of fine dust deposition on different plant species in a vertical greening system. Ecol. Eng. 2017, 100, 268–276. [Google Scholar] [CrossRef]
- Leonard, R.J.; McArthur, C.; Hochuli, D.F. Particulate matter deposition on roadside plants and the importance of leaf trait combinations. Urban For. Urban Green 2016, 20, 249–253. [Google Scholar] [CrossRef]
- Zhang, T.; Hong, X.L.; Sun, L.W.; Liu, Y.J. Particle-retaining characteristics of six tree species and their relations with micro-configurations of leaf epidermis. J. Beijing For. Univ. 2017, 3, 70–77. [Google Scholar]
- Weerakkody, U.; Dover, J.W.; Mitchell, P.; Reiling, K. Particulate matter pollution capture by leaves of seventeen living wall species with special reference to rail traffic at a metropolitan station. Urban For. Urban Green 2017, 27, 173–186. [Google Scholar] [CrossRef]
- Steinparzer, M.; Schaubmayr, J.; Godbold, D.L.; Boris, R. Particulate matter accumulation by tree foliage is driven by leaf habit types, urbanization- and pollution levels. Environmental 2023, 335, 122289. [Google Scholar]
- Ghosh, S.; Dutta, R.; Mukhopadhyay, S. A Review on Seasonal Changes in Particulate Matter Accumulation by Plant Bioindicators: Effects on Leaf Traits. Water Air Soil Pollut. 2023, 234, 529. [Google Scholar] [CrossRef]
- Li, G.F.; Li, Q.Y.; Yan, L.H.; Liao, J.Y. Study on the concentration characteristics of air negative oxygen ions in urban forest. Hunan For. Sci. Technol. 2019, 46, 52–56. [Google Scholar]
- Chen, Y.Y. The Main Tree Species in Typical Areas of Beijing Regulate the Air Quality and Ecological Function. Master’s Thesis, Beijing University of Agricultural, Beijing, China, 2019. [Google Scholar]
- Wang, H.; Xing, Y.; Yang, J.; Xie, B.; Shi, H.; Wang, Y. The Nature and Size Fractions of Particulate Matter Deposited on Leaves of Four Tree Species in Beijing, China. Forests 2022, 13, 316. [Google Scholar] [CrossRef]
- Hwang, H.; Yook, S.; Ahn, K. Experimental investigation of submicron and ultrafine soot particle removal by tree leaves. Atmos. Environ. 2011, 45, 6987–6994. [Google Scholar] [CrossRef]
- Zhang, W.K.; Wang, B.; Niu, X. The leaf microstructure of different trees and its impact on air particles-capturing ability. Chin. J. Ecol. 2017, 36, 2507–2513. [Google Scholar]
- Zhang, W.; Zhang, Z.; Meng, H.; Zhang, T. How Does Leaf Surface Micromorphology of Different Trees Impact Their Ability to Capture Particulate Matter? Forests 2018, 9, 681. [Google Scholar] [CrossRef]
- Prigioniero, A.; Postiglione, A.; Zuzolo, D.; Niinemets, Ü.; Tartaglia, M.; Scarano, P.; Mercurio, M.; Germinario, C.; Izzo, F.; Trifuoggi, M.; et al. Leaf surface functional traits influence particulate matter and polycyclic aromatic hydrocarbons air pollution mitigation: Insights from Mediterranean urban forests. J. Clean. Prod. 2023, 4183, 138–158. [Google Scholar] [CrossRef]
- Wang, H.X.; Shi, H. Particle retention capacity, efficiency, and mechanism of selected plant species: Implications for urban planting for improving urban air quality. Plants 2021, 10, 2109. [Google Scholar] [CrossRef] [PubMed]
- Weerakkody, U.; Dover, J.W.; Mitchell, P.; Reiling, K. Quantification of the traffic-generated particulate matter capture by plant species in a living wall and evaluation of the important leaf characteristics. Sci. Total Environ. 2018, 635, 1012–1024. [Google Scholar] [CrossRef] [PubMed]
- Räsänen, J.V.; Holopainen, T.; Joutsensaari, J.; Ndam, C.; Pasanen, P.; Rinnan, Å.; Kivimäenpää, M. Effects of species-specific leaf characteristics and reduced water availability on fine particle capture efficiency of trees. Environ. Pollut. 2013, 183, 64–70. [Google Scholar] [CrossRef]
- Wang, H.X.; Shi, H.; Li, Y.Y.; Yu, Y.; Zhang, J. Seasonal variations in leaf capturing of particulate matter, surface wettability and micromorphology in urban tree species. Front. Environ. Sci. Eng. 2013, 7, 579–588. [Google Scholar] [CrossRef]
- Burkhardt, J.; Koch, K.; Kaiser, H. Deliquescence of deposited atmospheric particles on leaf surfaces. Water Air Soil Poll. 2001, 1, 313–321. [Google Scholar] [CrossRef]
- Nobel, P.S. Physicochemical and Environmental Plant Physiology, 4th ed.; Academic Press: New York, NY, USA, 2009; pp. 228–275. [Google Scholar]
Species | Family | Foliage | Habit | Height (m) | Crown Width (m) |
---|---|---|---|---|---|
Cinnamomum camphora | Lauraceae | Evergreen broad | Arbor | 6.73 ± 0.68 | 4.20 ± 0.36 |
Osmanthus fragrans | Oleaceae | Evergreen broad | Arbor | 5.47 ± 0.25 | 5.10 ± 0.36 |
Magnolia grandiflora | Magnoliaceae | Evergreen broad | Arbor | 7.17 ± 0.35 | 6.23 ± 0.25 |
Pseudolarix amabilis | Pinaceae | Deciduous needle | Arbor | 16.60 ± 0.56 | 7.17 ± 0.35 |
Pinus massoniana | Pinaceae | Deciduous needle | Arbor | 15.57 ± 0.40 | 5.30 ± 0.44 |
Taxodium distichum | Cupressaceae | Deciduous needle | Arbor | 19.33 ± 0.76 | 4.17 ± 0.35 |
Photinia serratifolia | Rosaceae | Deciduous | Shrub | — | 1.43 ± 0.21 |
Rosa saturata | Rosaceae | Evergreen | Shrub | — | 1.43 ± 0.21 |
Rhododendron simsii | Ericaceae | Deciduous | Shrub | — | 1.53 ± 0.25 |
Species | Total Leaf Area | Species | Total Leaf Area |
---|---|---|---|
Cinnamomum camphora | 0.34 ± 0.01 | Taxodium distichum | 0.09 ± 0.02 |
Osmanthus fragrans | 0.18 ± 0.01 | Photinia serratifolia | 0.11 ± 0.01 |
Magnolia grandiflora | 0.22 ± 0.02 | Rosa saturata | 0.07 ± 0.01 |
Pseudolarix amabilis | 0.11 ± 0.01 | Rhododendron simsii | 0.08 ± 0.01 |
Pinus massoniana | 0.15 ± 0.01 |
Species | TSP (Mean ± SD) | PM10 (Mean ± SD) | PM2.5 (Mean ± SD) |
---|---|---|---|
Cinnamomum camphora | 2.15 ± 0.44 e | 1.34 ± 0.03 e | 0.35 ± 0.04 e |
Osmanthus fragrans | 5.59 ± 1.22 d | 3.44 ± 0.76 c | 0.60 ± 0.04 d |
Magnolia grandiflora | 2.10 ± 0.08 e | 1.13 ± 0.16 e | 0.24 ± 0.04 e |
Pseudolarix amabilis | 8.18 ± 0.72 c | 3.94 ± 0.24 c | 0.98 ± 0.09 c |
Pinus massoniana | 5.01 ± 0.66 d | 3.03 ± 0.44 c | 0.86 ± 0.20 c |
Taxodium distichum | 4.82 ± 0.99 d | 2.24 ± 0.24 d | 0.68 ± 0.07 d |
Photinia serratifolia | 5.29 ± 0.57 d | 3.35 ± 0.24 c | 1.02 ± 0.10 c |
Rosa saturata | 12.69 ± 1.87 a | 4.96 ± 0.53 b | 1.65 ± 0.05 a |
Rhododendron simsii | 11.04 ± 0.47 b | 6.80 ± 0.52 a | 1.39 ± 0.10 b |
Species | Stomata (µm) | Stomatal Density (mm−2) | Stomatal Area (mm2) | |
---|---|---|---|---|
Stomatal Length | Stomatal Width | |||
Cinnamomum camphora | 26.69 ± 0.82 a | 25.69 ± 0.88 c | 175.17 ± 6.69 h | 25.26 ± 1.38 b |
Osmanthus fragrans | 12.54 ± 0.90 b | 15.66 ± 0.82 d | 349.77 ± 7.26 f | 6.26 ± 0.72 b |
Magnolia grandiflora | 29.52 ± 0.66 a | 32.26 ± 1.88 b | 266.40 ± 10.05 g | 30.08 ± 1.93 b |
Pseudolarix amabilis | 18.98 ± 2.12 b | 70.61 ± 4.25 a | 707.47 ± 13.02 c | 63.22 ± 8.88 a |
Pinus massoniana | 14.15 ± 0.46 b | 18.09 ± 1.02 d | 581.33 ± 4.41 d | 8.17 ± 0.67 b |
Taxodium distichum | 4.09 ± 0.22 c | 8.11 ± 0.24 e | 456.37 ± 11.95 e | 1.16 ± 0.08 b |
Photinia serratifolia | 16.71 ± 0.31 b | 19.01 ± 0.64 d | 863.63 ± 9.18 b | 10.01 ± 0.20 b |
Rosa saturata | 15.26 ± 0.90 b | 26.48 ± 1.42 c | 1094.13 ± 12.58 a | 13.69 ± 1.13 b |
Rhododendron simsii | 13.04 ± 1.18 b | 19.88 ± 1.89 d | 966.87 ± 32.24 b | 8.55 ± 1.52 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Liao, J.; Zhu, Y.; Ye, Z.; Chen, C.; Huang, Y.; Liu, Y. A Study on the Leaf Retention Capacity and Mechanism of Nine Greening Tree Species in Central Tropical Asia Regarding Various Atmospheric Particulate Matter Values. Atmosphere 2024, 15, 394. https://doi.org/10.3390/atmos15040394
Li Q, Liao J, Zhu Y, Ye Z, Chen C, Huang Y, Liu Y. A Study on the Leaf Retention Capacity and Mechanism of Nine Greening Tree Species in Central Tropical Asia Regarding Various Atmospheric Particulate Matter Values. Atmosphere. 2024; 15(4):394. https://doi.org/10.3390/atmos15040394
Chicago/Turabian StyleLi, Qiaoyun, Juyang Liao, Yingfang Zhu, Zhiqun Ye, Chan Chen, Yaqi Huang, and Yan Liu. 2024. "A Study on the Leaf Retention Capacity and Mechanism of Nine Greening Tree Species in Central Tropical Asia Regarding Various Atmospheric Particulate Matter Values" Atmosphere 15, no. 4: 394. https://doi.org/10.3390/atmos15040394
APA StyleLi, Q., Liao, J., Zhu, Y., Ye, Z., Chen, C., Huang, Y., & Liu, Y. (2024). A Study on the Leaf Retention Capacity and Mechanism of Nine Greening Tree Species in Central Tropical Asia Regarding Various Atmospheric Particulate Matter Values. Atmosphere, 15(4), 394. https://doi.org/10.3390/atmos15040394