The Verification and Fusion Analysis of Passive Microwave Soil Moisture Products in the Three Northeastern Provinces of China
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Satellite Data
2.2.1. SMAP Passive Microwave Soil Moisture Product
2.2.2. AMSR-2 Passive Microwave Soil Moisture Product
2.2.3. ESA CCI Active and Passive Microwave Soil Moisture Product
2.2.4. Satellite Data Preprocessing
2.3. In Situ Observation Data
2.4. Land Use Data
3. Method
3.1. TC Method
3.2. Evaluation Metrics
4. Result Analysis
4.1. Variation Trends of Soil Moisture in Different Land Use Types
4.2. Uncertainty Analysis Based on the TC Method
4.3. Analysis of Fusion Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, W.; Wen, F.; Cai, J. Methods, progresses, and challenges of passive microwave soil moisture spatial downscaling. Natl. Remote Sens. Bull. 2022, 26, 1699–1722. [Google Scholar] [CrossRef]
- Zheng, M.; Liu, Z.; Xu, Z.; Li, J.; Sun, J. Research Progress of Soil Moisture Estimation Based on Microwave Remote Sensing. Acta Pedol. Sin. 2023, 61, 16–28. [Google Scholar]
- Kawanishi, T.; Sezai, T.; Ito, Y.; Imaoka, K.; Takeshima, T.; Ishido, Y.; Shibata, A.; Miura, M.; Inahata, H.; Spencer, R.W. The Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), NASDA’s contribution to the EOS for global energy and water cycle studies. IEEE Trans. Geosci. Remote Sens. 2003, 41, 184–194. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.; O’Neill, P.; Spencer, M.; Jackson, T.; Entin, J.; Im, E.; Kellogg, K. The soil moisture active/passive mission (SMAP). In Proceedings of the IGARSS 2008—2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008; Volume 3, pp. III-1–III-4. [Google Scholar]
- Liu, Y.Y.; Dorigo, W.A.; Parinussa, R.; de Jeu, R.A.; Wagner, W.; McCabe, M.F.; Evans, J.; Van Dijk, A. Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sens. Environ. 2012, 123, 280–297. [Google Scholar] [CrossRef]
- Wang, C.; Gu, X.; Zhou, X.; Yang, J.; Yu, T.; Tao, Z.; Gao, H.; Liu, Q.; Zhan, Y.; Wei, X.; et al. Chinese Soil Moisture Observation Network and Time Series Data Set for High Resolution Satellite Applications. Sci. Data 2023, 10, 424. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Li, Z.; Chen, Q.; Bi, H.; Qiu, J.; Zou, P. Evaluation of remotely sensed and reanalysis soil moisture products over the Tibetan Plateau using in-situ observations. Remote Sens. Environ. 2015, 163, 91–110. [Google Scholar] [CrossRef]
- Cui, C.; Xu, J.; Zeng, J.; Chen, K.S.; Bai, X.; Lu, H.; Chen, Q.; Zhao, T. Soil moisture mapping from satellites: An intercomparison of SMAP, SMOS, FY3B, AMSR2, and ESA CCI over two dense network regions at different spatial scales. Remote Sens. 2017, 10, 33. [Google Scholar] [CrossRef]
- Albergel, C.; De Rosnay, P.; Gruhier, C.; Muñoz-Sabater, J.; Hasenauer, S.; Isaksen, L.; Kerr, Y.; Wagner, W. Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations. Remote Sens. Environ. 2012, 118, 215–226. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Yue, X. Evaluation of satellite-based soil moisture products over four different continental in-situ measurements. Remote Sens. 2018, 10, 1161. [Google Scholar] [CrossRef]
- Zheng, J.; Zhao, T.; Lü, H.; Zou, D.; Rodriguez-Fernandez, N.; Mialon, A.; Richaume, P.; Xiao, J.; Ma, J.; Fan, L.; et al. Use of a new Tibetan Plateau network for permafrost to characterize satellite-based products errors: An application to soil moisture and freeze/thaw. Remote Sens. Environ. 2024, 300, 113899. [Google Scholar] [CrossRef]
- Fu, H.; Zhou, T.; Sun, C. Evaluation and analysis of AMSR2 and FY3B soil moisture products by an in situ network in cropland on pixel scale in the northeast of China. Remote Sens. 2019, 11, 868. [Google Scholar] [CrossRef]
- González-Zamora, Á.; Sánchez, N.; Martínez-Fernández, J.; Gumuzzio, Á.; Piles, M.; Olmedo, E. Long-term SMOS soil moisture products: A comprehensive evaluation across scales and methods in the Duero Basin (Spain). Phys. Chem. Earth Parts A/B/C 2015, 83, 123–136. [Google Scholar] [CrossRef]
- Han, L.; Wang, C.; Liu, Q.; Wang, G.; Yu, T.; Gu, X.; Zhang, Y. Soil moisture mapping based on multi-source fusion of optical, near-infrared, thermal infrared, and digital elevation model data via the bayesian maximum entropy framework. Remote Sens. 2020, 12, 3916. [Google Scholar] [CrossRef]
- Wu, K.; Ryu, D.; Wagner, W.; Hu, Z. A global-scale intercomparison of Triple Collocation Analysis-and ground-based soil moisture time-variant errors derived from different rescaling techniques. Remote Sens. Environ. 2023, 285, 113387. [Google Scholar] [CrossRef]
- Xingwen, L.; Qiaoling, L.; Shuhong, S. Fusion and Downscaling of Multi-Source Remote Sensing Soil Moisture based on 2D Triple-Collocation and Machine Learning Methods. Remote Sens. Technol. Appl. 2024, 38, 1317–1327. [Google Scholar]
- Xie, Q.; Jia, L.; Menenti, M.; Hu, G. Global soil moisture data fusion by Triple Collocation Analysis from 2011 to 2018. Sci. Data 2022, 9, 687. [Google Scholar] [CrossRef]
- Wu, K.; Shu, H.; Nie, L.N.; Jiao, Z. Error analysis of soil moisture based on Triple Collocation method. Remote Sens. Land Resour. 2018, 30, 68–75. [Google Scholar]
- Fascetti, F.; Pierdicca, N.; Pulvirenti, L.; Crapolicchio, R. SMOS, ASCAT, SMAP and ERA soil moisture comparison through the triple and quadruple collocation technique. In Proceedings of the SAR Image Analysis, Modeling, and Techniques XVI, Edinburgh, UK, 26–29 September 2016; SPIE: Bellingham, WA, USA, 2016; Volume 10003, pp. 84–90. [Google Scholar]
- Dorigo, W.A.; Scipal, K.; Parinussa, R.M.; Liu, Y.Y.; Wagner, W.; De Jeu, R.A.; Naeimi, V. Error characterisation of global active and passive microwave soil moisture datasets. Hydrol. Earth Syst. Sci. 2010, 14, 2605–2616. [Google Scholar] [CrossRef]
- Zheng, X.; Feng, Z.; Xu, H.; Sun, Y.; Bai, Y.; Li, B.; Li, L.; Zhao, X.; Zhang, R.; Jiang, T.; et al. Performance of multi-source passive microwave soil moisture products in maize cultivation areas of Northeast China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2451–2460. [Google Scholar] [CrossRef]
- Santi, E.; Paloscia, S.; Pettinato, S.; Entekhabi, D.; Alemohammad, S.H.; Konings, A.G. Integration of passive and active microwave data from SMAP, AMSR2 and Sentinel-1 for Soil Moisture monitoring. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 5252–5255. [Google Scholar]
- Chan, S.K.; Bindlish, R.; O’Neill, P.; Jackson, T.; Njoku, E.; Dunbar, S.; Chaubell, J.; Piepmeier, J.; Yueh, S.; Entekhabi, D.; et al. Development and assessment of the SMAP enhanced passive soil moisture product. Remote Sens. Environ. 2018, 204, 931–941. [Google Scholar] [CrossRef]
- Kachi, M.; Imaoka, K.; Fujii, H.; Shibata, A.; Kasahara, M.; Iida, Y.; Ito, N.; Nakagawa, K.; Shimoda, H. Status of GCOM-W1/AMSR2 development and science activities. In Proceedings of the Sensors, Systems, and Next-Generation Satellites XII, Cardiff, UK, 15–18 September 2008; SPIE: Bellingham, WA, USA, 2008; Volume 7106, pp. 200–207. [Google Scholar]
- Kachi, M.; Hori, M.; Maeda, T.; Imaoka, K. Status of validation of AMSR2 on board the GCOM-W1 satellite. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 110–113. [Google Scholar]
- Plummer, S.; Lecomte, P.; Doherty, M. The ESA climate change initiative (CCI): A European contribution to the generation of the global climate observing system. Remote Sens. Environ. 2017, 203, 2–8. [Google Scholar] [CrossRef]
- González-Zamora, Á.; Sánchez, N.; Pablos, M.; Martínez-Fernández, J. CCI soil moisture assessment with SMOS soil moisture and in situ data under different environmental conditions and spatial scales in Spain. Remote Sens. Environ. 2019, 225, 469–482. [Google Scholar] [CrossRef]
- Product User Guide. ESA Climate Change Initiative Plus Soil Moisture; EODC Earth Observation Data Centre for Water Resources Monitoring GmbH: Wien, Austria, 2022. [Google Scholar]
- Gruber, A.; Scanlon, T.; van der Schalie, R.; Wagner, W.; Dorigo, W. Evolution of the ESA CCI Soil Moisture climate data records and their underlying merging methodology. Earth Syst. Sci. Data 2019, 11, 717–739. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Parinussa, R.; Dorigo, W.A.; De Jeu, R.A.; Wagner, W.; Van Dijk, A.; McCabe, M.F.; Evans, J. Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals. Hydrol. Earth Syst. Sci. 2011, 15, 425–436. [Google Scholar] [CrossRef]
- Wagner, W.; Dorigo, W.; De Jeu, R.; Fernandez, D.; Benveniste, J.; Haas, E.; Ertl, M. Fusion of active and passive microwave observations to create an essential climate variable data record on soil moisture. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 1, 315–321. [Google Scholar] [CrossRef]
- Dorigo, W.; Wagner, W.; Albergel, C.; Albrecht, F.; Balsamo, G.; Brocca, L.; Chung, D.; Ertl, M.; Forkel, M.; Gruber, A.; et al. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 2017, 203, 185–215. [Google Scholar] [CrossRef]
- Bai, Y.; Meng, Z.; Zhao, K.; Zheng, X.; Jiang, T. Pixel-scale soil moisture monitoring network and its preliminary validation of L-band soil moisture products. Remote Sens. Technol. Appl. 2018, 33, 78–87. [Google Scholar]
- Li, B.; Wang, C.; Gu, X.; Zhou, X.; Ma, M.; Li, L.; Feng, Z.; Ding, T.; Li, X.; Jiang, T.; et al. Accuracy calibration and evaluation of capacitance-based soil moisture sensors for a variety of soil properties. Agric. Water Manag. 2022, 273, 107913. [Google Scholar] [CrossRef]
- Wang, C.; Gu, X.; Wang, C.; Yang, J.; Lu, Y.; Chen, Z. Study on Optimal Sampling Analysis of Soil Moisture at Field Scale for Remote Sensing Applications. Atmosphere 2023, 14, 149. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J. GlobeLand30: Operational global land cover mapping and big-data analysis. Sci. China Earth Sci 2018, 61, 1533–1534. [Google Scholar] [CrossRef]
- Yu, Q.; Hu, Q.; van Vliet, J.; Verburg, P.H.; Wu, W. GlobeLand30 shows little cropland area loss but greater fragmentation in China. Int. J. Appl. Earth Obs. Geoinf. 2018, 66, 37–45. [Google Scholar] [CrossRef]
- Arsanjani, J.J.; Tayyebi, A.; Vaz, E. GlobeLand30 as an alternative fine-scale global land cover map: Challenges, possibilities, and implications for developing countries. Habitat Int. 2016, 55, 25–31. [Google Scholar] [CrossRef]
- McColl, K.A.; Vogelzang, J.; Konings, A.G.; Entekhabi, D.; Piles, M.; Stoffelen, A. Extended triple collocation: Estimating errors and correlation coefficients with respect to an unknown target. Geophys. Res. Lett. 2014, 41, 6229–6236. [Google Scholar] [CrossRef]
- Chen, F.; Crow, W.T.; Colliander, A.; Cosh, M.H.; Jackson, T.J.; Bindlish, R.; Reichle, R.H.; Chan, S.K.; Bosch, D.D.; Starks, P.J.; et al. Application of triple collocation in ground-based validation of soil moisture active/passive (SMAP) level 2 data products. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 10, 489–502. [Google Scholar] [CrossRef]
- Gruber, A.; Su, C.H.; Zwieback, S.; Crow, W.; Dorigo, W.; Wagner, W. Recent advances in (soil moisture) triple collocation analysis. Int. J. Appl. Earth Obs. Geoinf. 2016, 45, 200–211. [Google Scholar] [CrossRef]
- Ji, S.; So, H.; Li, Y.; Pa, X.; Ji, H. Data fusion and evaluation of soil moisture products from FY-3B/3C microwave remote sensing in Inner Mongolia. Chin. J. Agrometeorol. 2020, 41, 529–538. [Google Scholar]
Land Use Types | Cropland | Forestland | GrassLand | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Products | Time | Mean (m3/m3) | Standard Deviation (m3/m3) | Coefficient of Variation | Mean (m3/m3) | Standard Deviation (m3/m3) | Coefficient of Variation | Mean (m3/m3) | Standard Deviation (m3/m3) | Coefficient of Variation |
AMSR-2 | April | 0.070 | 0.024 | 35% | 0.056 | 0.010 | 19% | 0.062 | 0.015 | 24% |
SMAP | 0.188 | 0.057 | 30% | 0.209 | 0.060 | 28.5% | 0.201 | 0.060 | 29.6% | |
ESACCIA | / | / | / | / | / | / | / | / | / | |
ESACCIP | 0.301 | 0.022 | 7.3% | 0.383 | 0.035 | 9.2% | 0.280 | 0.019 | 6.8% | |
AMSR-2 | May | 0.135 | 0.043 | 32.1% | 0.101 | 0.028 | 27.7% | 0.103 | 0.028 | 27.1% |
SMAP | 0.300 | 0.086 | 28.7% | 0.280 | 0.050 | 17.8% | 0.300 | 0.078 | 25.4% | |
ESACCIA | / | / | / | / | / | / | / | / | / | |
ESACCIP | 0.300 | 0.041 | 13.7% | 0.391 | 0.052 | 13.2% | 0.294 | 0.038 | 12.9% | |
AMSR-2 | June | 0.200 | 0.069 | 34.3% | 0.175 | 0.044 | 25.4% | 0.162 | 0.050 | 31% |
SMAP | 0.336 | 0.093 | 27.7% | 0.299 | 0.061 | 20.4% | 0.321 | 0.079 | 24.5% | |
ESACCIA | / | / | / | / | / | / | / | / | / | |
ESACCIP | 0.300 | 0.043 | 14.2% | 0.335 | 0.030 | 9% | 0.288 | 0.038 | 13.2% | |
AMSR-2 | July | 0.121 | 0.045 | 37.3% | 0.133 | 0.039 | 29% | 0.121 | 0.042 | 34.9% |
SMAP | 0.227 | 0.052 | 22.9% | 0.225 | 0.031 | 13.6% | 0.228 | 0.046 | 20.1% | |
ESACCIA | 0.248 | 0.048 | 19.5% | 0.240 | 0.137 | 57.3% | 0.210 | 0.113 | 53.9% | |
ESACCIP | 0.238 | 0.030 | 12.7% | 0.264 | 0.029 | 11.1% | 0.236 | 0.032 | 13.4% | |
AMSR-2 | August | 0.131 | 0.088 | 67.1% | 0.138 | 0.067 | 48.5% | 0.127 | 0.080 | 62.8% |
SMAP | 0.228 | 0.043 | 18.7% | 0.220 | 0.021 | 9.7% | 0.226 | 0.034 | 15% | |
ESACCIA | 0.201 | 0.072 | 35.6% | 0.231 | 0.092 | 39.7% | 0.233 | 0.067 | 28.9% | |
ESACCIP | 0.232 | 0.036 | 15.4% | 0.242 | 0.037 | 15.5% | 0.231 | 0.030 | 13% | |
AMSR-2 | September | 0.141 | 0.059 | 42.2% | 0.122 | 0.051 | 42% | 0.131 | 0.055 | 42.2% |
SMAP | 0.281 | 0.039 | 13.9% | 0.254 | 0.031 | 12.1% | 0.276 | 0.032 | 11.7% | |
ESACCIA | / | / | / | / | / | / | / | / | / | |
ESACCIP | 0.320 | 0.025 | 7.8% | 0.323 | 0.025 | 7.7% | 0.299 | 0.025 | 8.4% |
Product Group | Mean | Standard Deviation |
---|---|---|
SMAP and ESA CCI A | 0.058 | 0.006 |
SMAP and ESA CCI P | 0.435 | 0.002 |
SMAP and AMSR-2 | 0.446 | 0.001 |
ESA CCI A and ESA CCI P | 0.038 | 0.005 |
ESA CCI A and AMSR-2 | 0.059 | 0.004 |
ESA CCI P and AMSR-2 | 0.220 | 0.002 |
SM Products | R * | Bias (m3/m3) | RMSE (m3/m3) | ubRMSE (m3/m3) |
---|---|---|---|---|
SMAP | 0.43 | 0.02 | 0.083 | 0.08 |
AMSR-2 | 0.17 | 0.15 | 0.18 | 0.09 |
ESA CCI A | 0.50 | −0.055 | 0.15 | 0.14 |
ESA CCI P | 0.44 | 0.033 | 0.093 | 0.087 |
TC-1 | 0.65 | 0.024 | 0.056 | 0.051 |
TC-2 | 0.7 | 0.043 | 0.064 | 0.047 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Yu, T.; Gu, X.; Wang, C.; Zheng, X.; Xie, Q.; Yang, J.; Liu, Q.; Zhang, L.; Li, J.; et al. The Verification and Fusion Analysis of Passive Microwave Soil Moisture Products in the Three Northeastern Provinces of China. Atmosphere 2024, 15, 441. https://doi.org/10.3390/atmos15040441
Wang C, Yu T, Gu X, Wang C, Zheng X, Xie Q, Yang J, Liu Q, Zhang L, Li J, et al. The Verification and Fusion Analysis of Passive Microwave Soil Moisture Products in the Three Northeastern Provinces of China. Atmosphere. 2024; 15(4):441. https://doi.org/10.3390/atmos15040441
Chicago/Turabian StyleWang, Chunnuan, Tao Yu, Xingfa Gu, Chunmei Wang, Xingming Zheng, Qiuxia Xie, Jian Yang, Qiyue Liu, Lili Zhang, Juan Li, and et al. 2024. "The Verification and Fusion Analysis of Passive Microwave Soil Moisture Products in the Three Northeastern Provinces of China" Atmosphere 15, no. 4: 441. https://doi.org/10.3390/atmos15040441
APA StyleWang, C., Yu, T., Gu, X., Wang, C., Zheng, X., Xie, Q., Yang, J., Liu, Q., Zhang, L., Li, J., Li, L., Liu, M., Ru, M., & Qiu, X. (2024). The Verification and Fusion Analysis of Passive Microwave Soil Moisture Products in the Three Northeastern Provinces of China. Atmosphere, 15(4), 441. https://doi.org/10.3390/atmos15040441